14/11/14 La gestione del rischio di tasso di interesse 4 strategies 1. Adopt interest repricing positions which hedge (lock in) the bank’s net interest income 2. Adopt interest repricing positions which hedge the bank’s present value (stabilize its share price) 3. Anticipate correctly all significant interest rate movements 4. Do nothing to protect or optimize NII or sP 2 1 14/11/14 Opportunistic approach to interest rate structural exposure Approaching peak Approaching trough Shorten funding maturities Lenghten funding maturities Begin to lenghten investment maturities Begin to shorten investment maturities Acquire investments Sell investments Expand fixed rate loans Restrict fixed rate loans 3 Strategies 1 & 2 • Geared to keeping the sheep on an even keel • Compatible with shareholders’ best interest • Where’s the problem? • Mutually exclusive: cannot hedge bank’s NII and the bank’s economic value SIMULTANEOUSLY – Strategy 1 requires the level of NII to be insulated from changes of interest rates – Strategy 2 requires the level of NII to be responsives to changes of interest rates 4 2 14/11/14 Hedging exposures • Changing funding strategy • Changing repricing characteristics • Switching out of some type of investments and into others • Enter a variety of derivative contracts 5 8-6 Hedging Interest Rate Risk • Derivatives Used to Manage Interest Rate Risk – Financial Futures Contracts – Forward Rate Agreements – Interest Rate Swaps – Options on Interest Rates • Interest Rate Caps • Interest Rate Floors • Interest Rate Collars 6 3 14/11/14 MAIN CHARACTERISTICS OF DERIVATIVES CONTRACTS 7 8-8 Financial Futures Contract • An Agreement Between a Buyer and a Seller Which Calls for the Delivery of a Particular Financial Asset at a Set Price at Some Future Date • Futures Markets – The Organized Exchanges Where Futures Contracts are traded • Interest Rate Futures – Where the Underlying Asset is an InterestBearing Security 8 4 14/11/14 8-9 Background on Financial Futures • Buyers – A buyer of a futures contract is said to be long futures – Agrees to pay the underlying futures price or take delivery of the underlying asset – Buyers gain when futures prices rise and lose when futures prices fall 9 8-10 Background on Financial Futures • Sellers – A seller of a futures contract is said to be short futures – Agrees to receive the underlying futures price or to deliver the underlying asset – Sellers gain when futures prices fall and lose when futures prices rise 10 5 14/11/14 CLEARING HOUSE Underlying asset BUYER SELLER Funds Underlying A. BUYER funds C.H. Underlying A. SELLER funds n Adequate capital n System of margins 11 FINANCIAL FUTURES – I MARGINI n Initial margin o Legato alla massima variazione giornaliera del prezzo o Da versare in cash o titoli o Remunerato o Restituito alla chiusura della posizione n Variation margin o Conseguenza del “mark-to-market” giornaliero della posizione o Pagato o ricevuto alla/dalla C.H. entro le 10.00 del giorno successivo o “Zero-sum” game n Commissioni o Negoziate tra aderente alla C.H. e istituzione/cliente dipendono da volumi negoziati e livello di servizio 12 6 14/11/14 8-13 Most Common Financial Futures Contracts • U.S. Treasury Bond Futures Contracts • Bund futures Contracts • Three-Month Eurodollar Time Deposit Futures Contract • 30-Day Federal Funds Futures Contracts • One Month LIBOR Futures Contracts 13 Bund future Caratteristiche del contratto Obbligazione a 10 anni emessa dal German Federal Government e con una cedola pari al 6%. Sottostante Quotazione È quotato in percentuale con due decimali Variazione minima del prezzo 1 tick = 0.01 percentuale = 10€ Dimensione del contratto 100.000€ nominali (valore del sottostante *100.000/100) 14 7 14/11/14 Most common STIR (Short-Term Interest Rate futures) CCY SOTTOSTANTE NOTIONAL BPV BORSE LIFFE CME, SIMEX, GLOBEX CME TIFFE LIFFE LIFFE EUR 3M EURIBOR 1 MIO EUR 25 EUR USD 3M LIBOR 1M USD 25 USD USD JPY GBP CHF 1M LIBOR 3M LIBOR 3M LIBOR 3M LIBOR 3 MIO USD 100 MIO JPY 500.000 GBP 1 MIO CHF 25 USD 12.500 JPY 12.5 GBP 25 CHF 15 FINANCIAL FUTURES –3M EURIBOR n Trattato sul LIFFE (borsa elettronica) o Sottostante: deposito di 90 giorni (act/360) o Le scadenze ú non seriali (DEC, MAR, JUN & SEP) ú seriali (le altre) o Last trading day: 3° lunedi del mese o Settlement day: 3° mercoledi del mese o Prezzo: 100 – tasso euribor implicito o Tick Value : 1.000.000 ∗ 0.005% ∗ INDICE 90 = 12,5EUR 36000 o Delivery: “cash settled” per differenziale con il Settlement Price 16 8 14/11/14 8-17 Futures vs. Forward Contracts – Futures Contracts • Traded on formal exchanges (CBOT, CME, etc.) • Involve standardized instruments • Positions require a daily marking to market – Forward Contracts • Terms are negotiated between parties • Do not necessarily involve standardized assets • Require no cash exchange until expiration • No marking to market 17 F.R.A.: I PARAMETRI n I fixing o EURIBOR: tasso a cui fondi denominati in euro vengono offerti da una primaria banca ad un’altra (quindi un tasso “lettera”). Calcolato come media di 43 contribuzioni (escludendo il 15% delle quotazioni più alte/basse), calcolato a cura della FBE in ogni giornata operativa Target alle 11.00 CET o LIBOR: tasso a cui fondi (denominati in varie divise) vengono offerti da una primaria banca ad un’altra. Calcolato come media di “n” contribuzioni di primarie controparti attive sulla piazza londinese (8/12/16 a seconda della divisa), viene calcolato dalla BBA alle 11.00 London time 18 9 14/11/14 F.R.A.: LA “TIMELINE” n La linea del tempo di un FRA 6x12 TRADE DATE FIXING DATE SETTLEMENT DATE 6M MATURITY DATE 12M 19 Elementi di un FRA • Capitale nozionale (N) • Data di negoziazione • Data di decorrenza (t, settlement date), in cui inizia il finanziamento futuro • Data di scadenza del finanziamento (maturity date, T) • Tasso di interesse fissato (tasso FRA) • Tasso di mercato (reference rate) 20 10 14/11/14 F.R.A.: IL VALORE n Il valore del FRA a scadenza n Il valore del FRA è rappresentato dal differenziale tra il tasso contrattuale e il reference rate (LIBOR/EURIBOR), scontato al settlement date. TRADE DATE FIXING DATE SETTLEMENT DATE 6M FRA = MATURITY DATE 12M DFRA 360 DFRA # & $1 + rLIBOR ∗ ! 360 " % N ∗ (rFRA − rLIBOR ) ∗ N ∗ (rFRA − rLIBOR )∗ DFRA 360 21 F.R.A.: in sintesi…… Il venditore del FRA: Il compratore del FRA: o Paga il tasso FRA o Riceve il LIBOR COMPRATORE VENDITORE o Paga il LIBOR o Riceve il tasso FRA TASSI SALGONO INCASSA IL DIFFERENZIALE PAGA IL DIFFERENZIALE TASSI SCENDONO PAGA IL DIFFERENZIALE INCASSA IL DIFFERENZIALE 22 11 14/11/14 8-23 Interest Rate Swap A Contract Between Two Parties to Exchange Interest Payments in an Effort to Save Money and Hedge Against Interest-Rate Risk 23 Interest Rate Swaps: i flussi n GAMBA VARIABILE GAMBA FISSA FLUSSI CERTI Netting FIXING EURIBOR STIMATI 24 12 14/11/14 Interest Rate Swaps: le gambe / “legs” n Fixing e pagamenti: la gamba fissa Pagamento ú Importo costante ú Annuale n Fixing e pagamenti: la gamba variabile Pagamento ú Importo variabile ú Trimestrale/Semestrale 25 8-26 Interest –Rate Swap 26 13 14/11/14 La diffusione degli swap: il vantaggio comparato • La circostanza secondo cui le aziende si finanziano nel mercato dei capitali dove hanno un vantaggio relativo maggiore, indipendentemente dalle proprie aspettative di andamento dei tassi, permette lo sviluppo degli swap per trasformare i prestiti da fisso a variabile e viceversa. 27 La diffusione degli swap: il vantaggio comparato Esempio: Condizioni di accesso al mercato dei tassi (prestiti 10 anni): Soc. A Soc. B Fisso 4.20% 4.50% Variabile Euribor3m +10 b.p. Euribor 3m +25 b.p. Supponiamo che A voglia finanziarsi a tasso variabile (aspettativa di riduzione dei tassi a breve) e viceversa B. Rivolgendosi ai mercati in cui si ha un vantaggio comparato e successivamente concludendo un IRS si ottimizza la propria posizione competitiva riducendo i costi di indebitamento. 28 14 14/11/14 La diffusione degli swap: il vantaggio comparato 4.20% A B Eurib 3m Eurib 3m +25bp 4.20% INVESTITORI TASSO FISSO INVESTITORI TASSO VARIABILE Risultato: La Soc. A si finanzia ad Euribor 3m flat . (-4.20% +4.20% -€3m euribor) Realizza un risparmio reale di 10 b.p.p.a. La Soc. B si finanzia al tasso fisso del 4.45% (€3m euribor - €3m+25 b.p. – 4.20%) Realizza un risparmio reale di 5 b.p.p.a. 29 Swap e intermediazione finanziaria 3,90% OPERATORE A 4,22% intermediario euribor OPERATORE B euribor 30 15 14/11/14 Un IRS “particolare : l’Overnight Indexed Swap Overnight Indexed Swaps: definizione n Contratto tra due controparti che prevede lo scambio di un flusso di interesse a tasso fisso contro un tasso ottenuto attraverso la composizione di “n” tassi overnight (es.: Eonia) TASSO FISSO A B “n” TASSI O/N composti n Riproduce fedelmente la “meccanica” di un deposito interbancario reinvestito/finanziato sull ‘overnight 31 Overnight Indexed Swap:la comparazione con il deposito interbancario DEPO O.I.S. MATURITY Tailor-made Tailor-made SIZE Tailor-made Standard PRICE Rate Rate MARK-TO-MARKET No No MARKET Over the Counter Over the Counter CREDIT RISK Counterparty Substitution cost 32 16 14/11/14 Overnight Indexed Swap:un esempio concreto Esempio - 1w EURO a 0.5%, (7gg) FISSO EONIA rates: 1-2 gg 0.45; 2-3gg 0.4625; 3-4gg 0.475; 4-5gg 0.4625; 5-8gg 0.4375 Nominale: 10 mio euro Capitalizzazione composta: [1+(0.0045*1/360)] X [1+(0.004625*1/360)] X [1+(0.00475*1/360)] X [1+(0.004625*1/360)] X [1+(0.004375*3/360)] = 1.0000878501 EONIA per 7gg = (1.0000878501 -1) X 360/7= 0.004518 = 0.4518% Interessi composti sul nominale X la durata = 10 mio*0.4518%*7/360 = 878,50 euro interessi gamba variabile Il pagatore di tasso fisso deve pagare invece: 10 mio* 0.5%*7/360= 972,22 euro. Al netto il compratore dell’OIS paga 93, 72 euro (il giorno dopo la maturity) 33 8-34 Interest Rate Option It Grants the Holder of the Option the Right but Not the Obligation to Buy or Sell Specific Financial Instruments at an Agreed Upon Price. 34 17 14/11/14 8-35 Types of Options • Put Option – Gives the Holder of the Option the Right to Sell the Financial Instrument at a Set Price • Call Option – Gives the Holder of the Option the Right to Purchase the Financial Instrument at a Set Price 35 8-36 Most Common Option Contracts Used By Banks • U.S. Treasury Bond Futures Options • Eurodollar Futures Option 36 18 14/11/14 8-37 Interest Rate Cap Protects the Holder from Rising Interest Rates. For an Up Front Fee Borrowers are Assured Their Loan Rate Will Not Rise Above the Cap Rate Buyer will receive the difference: (fixed rate/cap – variable rate)* Notional 37 8-38 Interest Rate Floor A Contract Setting the Lowest Interest Rate a Borrower is Allowed to Pay on a Flexible-Rate Loan Seller will pay the difference: (variable rate– fixed rate/floor)* Notional 38 19 14/11/14 8-39 Interest Rate Collar A Contract Setting the Maximum and Minimum Interest Rates That May Be Assessed on a Flexible-Rate Loan. It Combines an Interest Rate Cap and Floor into One Contract. 39 HEDGING WITH DERIVATIVES 40 20 14/11/14 Types of hedging • Microhedging • Individual asset, liability or committment. • Macrohedging • Hedging entire portfolio interest risk (duration gap) • Found more effective and generally lower cost. • Basis risk • Exact matching is uncommon • Standardized delivery dates of futures reduces likelihood of exact matching. 41 Routine vs Selective H • Routine hedging: reduces interest rate risk to lowest possible level. • Low risk - low return. • Selective hedging: manager may selectively hedge based on expectations of future interest rates and risk preferences. • Partially hedge duration gap or individual assets or liabilities 42 21 14/11/14 Effects of hedging on risk and E(R) Unhedged E(r) Selectively hedged Fully hedged overhedge risk Minimum risk P 43 F.R.A.: un esempio di microhedging n Il 9/06/13, un’ azienda , indebitata a tasso variabile (6m Euribor + 0.50%) , teme per la semestralità dic-13 giu-14 di dover subire le conseguenze negative di un aumento del costo del denaro in misura superiore a quanto già previsto dal mercato ; n Il tasso verrà fissato il 28/13 valuta 30/13. Come coprirsi da un rialzo dei rendimenti ? 9/06/2013 28/12/2013 Funding in corso 30/12/2013 1M 30/06/2014 Funding futuro Euribor +0.50 7M 44 22 14/11/14 F.R.A.: un esempio di microhedging n Il tesoriere dell’azienda richiede la quotazione di un FRA Euro “6vs12 over end” Eur FRA 6svs12s over 30th DEC 2.18% a 2.20% n Action!: a 2.20% il Tesoriere acquista 10 mln/Eur di 6v12 FRA valuta 30/13 fissando il costo del funding 9/06/2013 28/12/2013 Funding in corso 30/12/2013 30/06/2014 Funding futuro Euribor +0.50 6M 12M 45 F.R.A.: il settlement n Ipotizziamo un rialzo dei tassi dalla BCE nel corso della riunione del 7/12 (+0.50), i tassi a 6 mesi si portano in area 2.40%. Il 28/12 l’Euribor per scadenza 6 mesi fissa a 2.51%. n Tasso applicato al “loan”: 2.51% + 0.50% = 3.01% n Differenziale tasso incassato sul FRA : 2.20% - 2.51%= 0.31% Differenza incassata dall’acquisto FRA da attualizzare FRAsettle = 10ml € ∗ (2,20 − 2,51)∗ 180 36000 180 # & $1 + 2,51 ∗ ! 36000 " % 15307,89 € Tasso finale pagato : 3.01%- 0. 31% = 2.70% 46 23 14/11/14 8-47 Hedging with Futures Contracts Avoiding Higher Borrowing Costs and Declining Asset Values Avoiding Lower Than Expected Yields from Loans and Securities → → Use a Short Hedge: Sell Futures Contracts and then Purchase Similar Contracts Later Use a long Hedge: Buy Futures Contracts and then Sell Similar Contracts Later 47 A Short Hedge • A short hedge (sell futures) is appropriate for a participant who wants to reduce spot market risk associated with an increase in interest rates • If spot rates increase, futures rates will typically also increase so that the value of the futures position will likely decrease. • Any loss in the cash market is at least partially offset by a gain in the futures market 48 24 14/11/14 Example of short Hedging A bank anticipates needing to borrow $1,000,000 in 60 days. The bank is concerned that rates will rise in the next 60 days – A possible strategy would be to short Eurodollar futures. – If interest rates rise (fall), the short futures position will increase (decrease) in value. This will (partially) offset the increase (decrease) in borrowing costs 49 FINANCIAL FUTURES –HEDGING 15 Marzo: un azienda contrattualmente legata ad un’operazione di finanziamento ad un anno a tasso Euribor 3 mesi + 2.5 teme un rialzo tassi a fine anno. Rata Finanziamento per 3 mesi (metà SETT – metà DEC) BPV + _ rata Gen. rata Mar. rata Giu. rata Sett. Dic. 50 25 14/11/14 Esempio Per coprirsi dal rischio di rialzo tassi sottoscrive a metà marzo (t0) un contratto future scadenza Dicembre alle seguenti condizioni: Venduto 1 contratto future Sett. a 98.82. Presentiamo di seguito le quotazioni successive. Data Quotazione t0 98,82 t1 98,93 - Eur 275 (= 25 × 11 p.b.) nel 1° giorno t2 98,68 + Eur 625 [= 25 × (–25 p.b.)] nel 2° giorno …. Scadenza 99,12 I profitti (e le perdite) sul futures sono pari a: -Eur 750 (= 25 × 30 p.b.) nell’intero periodo 51 Esempio: il pay-off finale della strategia Il futures ci consente di bloccare per la parte variabile del tasso da pagare di: • bloccare il 1,18% [= (100 – $98,82) / 100] per i 3 mesi che iniziano dal periodo considerato. • pagare complessivamente Eur 2950 (= 1.000.000 × 1.18 x 90) / 36000] come somma tra: - Eur 2200 (interessi al 0,88%, tasso di mercato alla scadenza desunto dalla chiusura future 100-99,12) - 750 Euro da loss da chiusura contratto future (-98,82 + 99.12) x 25 Naturalmente al tasso cosi’ ottenuto occorre sommare lo spread stabilito dalla banca alla stipulazione del contratto (2.50 %) 52 26 14/11/14 Short Hedge Example • On March 10, 2013, your bank expects to sell a six-month $1 million Eurodollar deposit on August 15, 2013 – The cash market risk exposure is that interest rates may rise and the value of the Eurodollar deposit will fall by August 2013 – In order to hedge, the bank should sell futures contracts 53 Short Hedge Example • The time line of the bank’s hedging activities would look something like this: March 10, 10, 2005 March 2013 August 17,17, 2005 August 2013 Cash: Anticipated sale of Sell $1 million Eurodollar investment Deposit Futures: Sell a futures contract Buy the futures contract September 2005 Sept 20,20,2013 Expiration of Sept. 2013 2005 futures contract 54 27 14/11/14 Short Hedge Example Date 3/10/13 8/17/13 Net result: Cash Market Bank anticipates selling $1 million Eurodollar deposit in 127 days; current cash rate = 3.00% Bank sells $1 million Eurodollar deposit at 4.00% Opportunity loss. 4.00% - 3.00% = 1.00%; 100 basis points worth $25 each = $2,500 Futures Market Bank sells one Sept. 2013 Eurodollar futures contract at 3.85%; price = 96.15 Basis 3.85% - 3.00% = 0.85% Bank buys one Sept. 2013 Eurodollar futures contract at 4.14%; price = 95.86 Futures profit: 4.14% - 3.85% 3 0.29%; 29 basis points worth $25 each = $725 4.14% - 4.00% = 0.14% Basis change: 0.14% - 0.85% =-0.71% Effective loss = $2,500 - $725 = $1,775 Effective rate at sale of deposit = 4.00% - 0.29% = 3.71% or 3.00% - (0.71%) = 3.71% 55 8-56 Basis Risk The basis is the cash price of an asset minus the corresponding futures price for the same asset at a point in time ▫ For financial futures, the basis can be calculated as the futures rate minus the spot rate ▫ It may be positive or negative, depending on whether futures rates are above or below spot rates ▫ May swing widely in value far in advance of contract expiration Basis=Cash-market price (or interest rate) – futures market price (or interest rate) 56 28 14/11/14 Macrohedge with FF • Number of futures contracts depends on interest rate exposure and risk-return tradeoff. ΔE = -[DMA – k DML] × A × [ΔR] Or: ΔE = -[DA - kDL] × A × [ΔR/(1+R)] 57 Example • Suppose: DA = 5 years, DL = 3 years and interest rate expected to rise from 10% to 11%. A = $100 million. ΔE = -(5 - (.9)(3)) $100 (.01/1.1) = -$2.091 million. 58 29 14/11/14 Risk-Minimizing Futures Position • Sensitivity of the futures contract: ΔF/F = -DF [ΔR/(1+R)] Or, ΔF = -DF × [ΔR/(1+R)] × F F = N F × PF 59 Risk-Minimizing Futures Position • Fully hedged requires ΔF = ΔE DF(NF × PF) = (DA - kDL) × A 60 30 14/11/14 8-61 Number of Futures Contracts Needed (macrohedge) = (D A - D L *k )* A D F * Price of the Futures Contract K = leverage A= total assets 61 Our example • Suppose current futures price is $97 per $100 of face value for the benchmark 20 years, 8% coupon bond underlying FF, contract size minimum $100,000, duration of deliverable bond is 9.5 years • NF = ? • What happens on BS and OFFBS when interest rates rise by 1%? 62 31 14/11/14 8-63 Principal Uses of Option Contracts • 1. Protecting a security portfolio through the use of put options to insulate against falling security prices (rising interest rates); however, there is no delivery obligation under an option contract so the user can benefit from keeping his or her securities if interest rates fall and security prices rise • 2. Hedging against positive or negative gaps between interest-sensitive assets and interest- sensitive liabilities; for example, put options can be used to offset losses from a negative gap when interest rates rise, while call options can be used to offset a positive gap when interest rates fall. 63 Duration matching with swap to immunize interest rate risk Duration of assets? Duration of Liabilities? Duration gap? 64 32 14/11/14 Duration matching with swap to immunize interest rate risk 65 Example of Macrohedge Against Interest Rate Risk • Step 1: DA= 7.5 yrs. DL=2.9 yrs. A=$750m L= $650m. DG = 5 yrs. Assume a 25 bp increase in interest rates such that ΔRS /(1+RS) = + 25bp ΔE ≈ -DGA ΔRS /(1+RS) = -5($750m)(.0025) = - $9.375m Step 2: Loss of $9.375million in the market value of equity when interest rates unexpectedly increase by 25 bp. 66 33 14/11/14 Macrohedge Example (cont.) • Step 3: Perfect hedge would generate positive cash flows of $9.375 million whenever spot rates increase 25 bp. Short hedge: buy fixed for floating rate swaps. • Step 4: Floating rate reprices each year (Dfloat=1). Fixed rate is equal to the 15 yr 8% coupon T-bond (Dfixed=9.33). ΔSwap ≈ -(DFixed –DFloat)NVΔRswap /(1+Rswap) = -(9.33 – 1)NV(.0025) set = $9.375m = ΔE NV = $450 million Buy $450 million of fixed for floating rate swaps in order to implement macrohedge to immunize against ALL interest rate risk 67 Immunizing Against Interest Rate Risk Using Swaps • Interest rate shock drops out of final formula (as long as interest rates change by the same amount in spot and futures markets): For microhedge: NVswap = (DSPS)/(DFixed -DFloat) For macrohedge: NVswap = (DG)A/(DFixed - DFloat) 68 34