Circuiti ed Elettronica • Intro ai principi di base dei circuiti • Circuiti passivi, leggi dei circuiti • Problemi INTRODUZIONE ALLE MISURE - LEGGI FONDAMENTALI Circuiti elettrici - Componenti reali Le grandezze fondamentali dell’elettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità di carica elettrica (q) che fluisce in un punto di un circuito in un determinato tempo: dq I dt La corrente elettrica si misura in ampere (A) pari a coulomb al secondo. Il voltaggio (E) è l’energia potenziale, dovuta al campo elettrico, per unità di carica. Viene misurato in volt (V) pari a joule diviso per coulomb. Il voltaggio viene anche chiamato potenziale elettrico. Legge di Ohm La corrente elettrica (I) che scorre in un conduttore è direttamente proporzionale alla differenza di potenziale elettrico (E) applicata alle sue estremità A e B: I E A EB R Questa relazione è la legge di Ohm. La grandezza R, che è il rapporto fra la corrente ed il voltaggio, è chiamata resistenza del conduttore. L’inverso della resistenza è chiamato conduttanza (G): G 1 R In un grafico corrente/voltaggio la legge di Ohm è rappresentata da una retta passante per l’origine ed avente pendenza 1/R Resistenza La resistenza o resistore è un elemento circuitale costituito da un materiale che può essere attraversato da cariche elettriche. Il suo valore R dipende dal materiale e dalle dimensioni. La resistenza è legata alla resistività del materiale (ρ) dalla relazione: R l A ove A rappresenta la sezione trasversa e l la lunghezza del conduttore. La resistenza si misura in ohm (Ω). In fisiologia si usa frequentemente il concetto di conduttanza (G) che è l’inverso della resistenza. L’unità di misura della conduttanza è il siemens (S). Resistività di vari materiali: Conduttori: Rame, ferro, alluminio Semiconduttori: Germanio, silicio, boro Isolanti: Vetro, plastica, polistirolo = 10- 8 / m = da 10- 3 a 10 2 / m = 10+15 / m Vari tipi di resistori Collegamento di resistenze Resistenze in serie Resistenze in parallelo Leggi di Kirchoff Prima legge o legge della corrente: la somma di tutte le correnti entranti in un qualsiasi punto di un circuito elettrico deve essere uguale a zero (non vi può essere accumulo di carica). Seconda legge o legge del voltaggio: la somma di tutti i potenziali elettrici lungo un circuito chiuso deve essere uguale a zero. ANALISI CIRCUITALE: LEGGE DI KIRCHOFF PER LA CORRENTE Indipendentemente dai componenti collegati, la somma di tutte le correnti che entrano ed escono da un nodo è zero. 1. Corrente entrante nel nodo : +ve 2. Corrente che lascia il nodo : -ve Quindi in A, Quindi in B, I 0 i i i i i i I 0 i i i i i i 0 1 2 4 5 3 6 4 4 5 2 6 3 i1 i4 ANALISI CIRCUITALE: LEGGE DI KIRCHOFF PER IL VOLTAGGIO + Quindi nel circuito, - + In un circuito chiuso, la somma di tutte le cadute di potenziale è zero. V1 dovuto alla (2) i1 R1 dovuto alla (1) V2 dovuto alla (2) i1 R2 dovuto alla (1) 1. La corrente viaggia dal potenziale 0 più alto al più basso. 2. Una corrente positiva fluisce dal + al – all’interno di un generatore di voltaggio (batteria). V1 V2 i1 R1 R2 Divisore di tensione (voltage divider) La tensione di uscita sarà sempre inferiore o al massimo uguale (se R1=0) a quella di ingresso I Vin R1 R2 Vout IR2 quindi: Vout Vin R2 R1 R2 Condensatore Il condensatore nel circuito costituisce una discontinuità nel flusso delle cariche. E’ costituito da due conduttori (piastre) separati da un isolante. Quando una differenza di potenziale viene applicata ai capi di un condensatore si accumula carica sulle piastre separate dall’isolante. La capacità elettrica C di un condensatore è: C q E A EB dove q è la carica depositata sulle piastre quando la differenza di potenziale è EA – EB. Dal momento che: dq I dt e: q C( EA EB ) La corrente elettrica in un condensatore (IC) sarà: IC C d ( E A EB ) dt La corrente quindi può attraversare il condensatore solo quando la differenza di potenziale ai suoi capi varia nel tempo. Il flusso di cariche non attraversa il dielettrico. Le cariche si accumulano su una piastra ed abbandonano l’altra. La capacità C del condensatore dipende dalla caratteristiche e dalle dimensioni del materiale dielettrico presente fra le piastre: C A d ε = costante dielettrica del materiale isolante A = area delle piastre d = distanza fra le piastre La capacità si misura in Farad (F). Normalmente si utilizzano i suoi sottomultipli (mF - µF – nF – pF) Collegamento di condensatori Condensatori in serie Condensatori in parallelo Vari tipi di condensatori Carica e scarica di un condensatore - Costante di tempo Quando un condensatore è inserito in un circuito contenente un generatore di potenziale continuo, non si ha passaggio di corrente salvo che in una fase transiente quando si applica il potenziale (carica del condensatore), o quando si interrompe il potenziale (scarica del condensatore). Carica del condensatore: Quando si chiude l'interruttore S1: Scarica del condensatore Quando si chiude l'interruttore S2: Vc Voe t RC Vc Vo1 e Il prodotto RC = τ è detto costante di tempo. t RC Quando alla rete RC si applica un'onda quadra si ottengono in uscita dei segnali aventi l'andamento sottoindicato in tre situazioni con differente costante di tempo (t). L'OSCILLOSCOPIO In quasi tutti i setup sperimentali di fisiologia dei tessuti eccitabili è presente l'oscilloscopio per la visualizzazione dei segnali biomedici che si vogliono misurare. Questo utilissimo strumento infatti permette di rappresentare su uno schermo fluorescente l'andamento di un segnale elettrico in funzione del tempo o di altre variabili. Tubo a raggi catodici Qual’è la resistenza combinata del gruppo di resistenze in alto a destra? 9 k 3 k 3 k 6 k 3 k 2 k R R1 R2 3 3 6 1 1 1 1 1 1 R R1 R2 3 6 2 R R1 R2 R3 3 9 2 14 3 k Qual’è la resistenza combinata del gruppo di resistenze in alto a destra? 9 k 3 k 6 k 3 k 3 k 2 k R R1 R2 3 3 6 1 1 1 1 1 1 R R1 R2 3 6 2 R R1 R2 R3 3 9 2 14 3 k R=R1+R2=2+6=8 1 1 1 1 1 5 = + = + = R R1 R2 2 8 16 R=R1+R2=3+1.6=4.6 2 k 68 k k 1.6 2 k 3 k 3 k R=1.6 cont. 3 k 1.8 k 4.6 k R=R1+R2=2+6=8 1 1 1 1 1 5 = + = + = R R1 R2 2 8 16 R=1.6 R=R1+R2=3+1.6=4.6 1 1 1 1 1 76 = + = + = R R1 R2 4.6 3 138 R=1.8 Le regole di Kirchoff •La corrente totale che fluisce in un punto deve essere uguale alla corrente che fluisce da quel punto [conservazione della carica] •La variazione totale di potenziale in un loop deve essere uguale a zero I2 I3 V1 V2 – + I1 I3=I2+I1 V3 V1 + V2 + V3 = 0 Utilizzo delle regole di Kirchoff •Disegna un (circuito) diagramma e segna ogni cosa nota o incognita! •Per ciascuna serie di componenti, assegna una direzione alla corrente I (non preoccuparti se scegli la direzione sbagliata, il risultato sarà corretto ma di segno opposto) •Tuttavia dopo aver scelto una direzione devi essere coerente! •Scrivi la conservazione della carica per ciascun vertice (nodo) •Scrivi un’equazione per ciascun loop •In una sorgente di fem (batteria), andando da – a + dà un V positivo, da+ a – è un V negativo •Risolvi tutte le equazioni Esercizio n.1 Qual’è il valore della resistenza equivalente ai due resistori in serie? 3k 6k Esercizio n.2 Calculare la corrente nel seguente circuito. Qual’è la resistenza equivalente dei due resistori in parallelo? Calcolare il voltaggio a cavallo di ciascun resistore. 110 V 11k 11k Esercizio n.3 Usare la legge della corrente di Kirchoff e la legge per il voltaggio per calcolare la corrente attraverso ciascuno dei resistori e il voltaggio a cavallo di essi. 4k 3k i1 i2 9V + i3 6k 2k + 3V i1 i2 i3 R1i1 R3i3 0 V* 1 R3i3 ( R2 R4 )i2 0 V* 2 i1 i2 i3 V1 R1i1 R3i3 0 V2 R3i3 ( R2 R4 )i2 0 1° legge di Kirchoff (dei nodi) 2° legge di Kirchoff (delle maglie) i3 5 / 8K 0.625mA i2 9 / 8K 1.125mA i 7 / 4 K 1.75mA 1 Una corrente positiva fluisce dal + al – all’interno di un generatore di voltaggio (batteria). * I1 Esercizio n.4 – In un nodo la somma delle correnti è zero In A: I1 + I3 = I2 + 9V 5 I2 3 1.5 V – + In un circuito chiuso la somma delle cadute di potenziale è zero: 1.5 – 3I2 = 0 9 – 5I1 – 3I2 = 0 I2 = 1.5/3 = 0.5 A I1 = (9 – 3I2)/5 = 1.5 A I3 = I2 – I1 = 0.5 – 1.5 = – 1 A I3 A Esercizio n.5 Un circuito stupido – + 9V 5 9V – + Quale corrente fluisce attraverso il resistore? I= 0 A I1 + Esercizio n.6 R1 E1 R3 R4 – I3 R2 In un nodo la somma di tutte le correnti che entrano ed escono da un nodo è zero: I1-I3-I4=0 I2-I3-I4=0 In un circuito chiuso la somma di tutte le cadute di potenziale è zero: E1-R1I1-R3I3-R2I2=0 I2 RISPOSTE: I1 = I2 = 0,013 A I3 = 0,0092 A I4= 0,0042 A I4 Esercizio n.7 + E1 Applichiamo le leggi di Kirchhoff E1-R1I1-R4I4=0 E2+R3I2+R2I2-R4I4=0 I1-I2-I4=0 I2 R1 R4 R3 E2 – I4 + – DATI: R1=5 R2=10 R3=15 R4=5 E1=90V E2=100V Calcolare le correnti del circuito R2 I1 RISPOSTA: I2= -2A I4=10A I1=8A 3k 3V C R·C=t C=t/R=10 s/3 k=3.3 mF Esercizio n.4 Che valore di capacità dovrebbe avere il condensatore per ottenere una costante di tempo di 10 secondi? Quanto tempo impiegherà il condensatore per caricarsi ‘completamente’? Che corrente fluità attraverso il circuito quando il condensatore sarà carico? V ( t ) = Vf (1 - e -t/t ) V @ 2 . 99 (>99%) - t / 10 2 . 99 = 3 - 3 × e - t / 10 e = × 3 2 . 99 3 - t / 10 0 .0033 = e t = - 10 × ln 0 .0033 t = 57 s 1 1 1 3 1 C 12 24 24 8 12 C 12 8 20 12 8 C 12 12 24 2412 12 Ciascuno dei condensatori qui sopra ha una capacità di 12 pF. Qual’è la capacità combinata dell’intero sistema? Quattro circuiti hanno la forma mostrata nel diagramma. Il condensatore è inizialmente scarico e l’interruttore S è aperto. I valori della fem, resistanza R, e la capacità C per ciascuno dei circuiti sono: circuito 1: 18 V, R = 3 , C = 1 µF circuito 2: circuito 3: 18 V, R = 6 , C = 9 µF 12 V, R = 1 , C = 7 µF circuito 4: 10 V, R = 5 , C = 7 µF Quale circuito ha la corrente più ampia subito dopo la chiusura dell’interruttore? Quale circuito impiega il tempo più lungo per caricare il condensatore a ½ della sua carica finale? Quale circuito impiega il minor tempo per caricare il condensatore a ½ della sua carica finale? I=E/R t=R•C Vf/2=Vf•(1-e-t/t) E(V) R(M) C(mF) I(mA) t(s) t½(s) 1 18 3 1 6 3 2 2 18 6 9 3 54 37 3 12 1 7 12 7 5 4 10 5 7 2 35 24 Se le quattro lampadine in figura sono identiche, quale circuito genera più luce? P=I•E=R•I2 I=E/R – + 1.5 V – + 1.5 V Rt=(R1·R2)/(R1+R2)=0.5 I=3 A P=4.5 Watt Rt= R1+R2 = 2 I=0.75 A P=1.125 Watt STRUMENTAZIONE ELETTRONICA DI BASE VOLTMETRO può essere analogico o digitale : misura le differenze di potenziale continue ed alternate. Va posto in parallelo al generatore. AMPEROMETRO analogico e digitale: misura le correnti continue ed alternate. In serie al generatore. OHMMETRO analogico e digitale: misura le resistenze. MULTIMETRO analogico e digitale: raggruppa i tre strumenti sopracitati in uno solo. OSCILLOSCOPIO analogico, digitale ed a memoria: visualizza su un tubo a raggi catodici l'andamento di una variabile (es. potenziale) in funzione del tempo o in funzione di un'altra variabile. Adatto alla rappresentazione di fenomeni rapidi (quello a memoria anche di quelli lenti). REGISTRATORE A CARTA : visualizza su di una striscia di carta l'andamento di una variabile (es. potenziale) in funzione del tempo o di un'altra variabile. Adatto esclusivamente alla rappresentazione di fenomeni lenti. GENERATORE DI FUNZIONI : genera segnali con forme d'onda variabili (più o meno complesse) ed in un'ampia gamma di frequenze. Le forme d'onda più comuni sono: sinusoidale, triangolare, quadra, ad impulsi, a rampa. Potenziali applicati alle placche orizzontali o verticali Placche orizzontale: tensione a dente di sega Placche verticali: segnale da visualizzare