The experiment Enerrgy Conduction band Ph t hν Photon h Valance band (occupied states) Antonio Polimeni, dipartimento di Fisica, Sapienza Università di Roma Experimental determination of the band gap: the GaAs case Ga As Optical absorption measurements bulk GaAs E (k) CB transmitted light white light k spectral analysis VB Kph<<2π/a T IT ~ I0 e (-α L) energy Optical absorption measurements r r 2 2π ⎛ eF ⎞ dk α ( hω ) = ⎜ ⎟ ∑ ∫ 3 M v , c ( k ) δ [ E c ( k ) − E v ( k ) − hω ] ≈ h ⎝ mω ⎠ c ,v BZ 4π 2 CB ≈ A M v , c ρ c , v ( hω ) 2 E (k) k For 3D (bulk) material ρ c ,v (hω ) = B hω − E gap GaAs 21 K 90 K 294 K VB 186 K Photon energy (eV) α (hω ) = C hω − E gap Optical emission r r i , f = u c ,v ( r ) f c ,v ( r ) E (k) CB [ i f VB ] Li → f (hω ) ∝ Pif f (Ei ) 1 − f (E f ) → α (hω ) e −(hω ) (k BT ) k 2π Pi , f = i Vint f h Vint = r eF (εˆ ⋅ p ) 2mω 2 δ ( Ei − E f − hω ) Density of states Calculating quantities weighted over the electronic levels r r r V Q = 2∑ Q(k ) = 2 3 ∑ Q(k ) ∆k r r 8π k k r r r Q dk f for ∆k → 0 (V → ∞) q = lim li = ∫ 3 Q(k ) V →∞ V 4π r 1 d −1 − d k d −1 2 ∝ k dk ∝ E 2 E 2 dE d (2π ) d If r h 2k 2 E (k ) = 2m g (E) = m hπ 2 2 2mE h2 in 3D Energy λdeBroglie h2 = 2π ≈ 10 nm * 2m E g ( En ) = GaAs ϑ (E ) * m n 2 hπ in 2D E0 E1 E2 E Energy 1 Lz 1 g (E) = hπ m* 2E in 1D Ly E E0 E1 E2 Energy E ρ(E) g ( E ) = ∑ 2 δ ( E − En ) n in 0D E0 E1 E2 Energy Quantum heterostructures Lz h ≈ ∆z ⋅ ∆p z ; ∆z = Lz 2 Eloc ∆p z h2 ≈ = * 2 2m 2 m * Lz ∆ pz A semiconductor quantum heterostructure can be obtained by embedding a smaller gap material in a larger gap matrix ≈1 1 µm 10 nm 1nm Excitonic effects CB VB E e- e- h+ h+ r 1 µe 4 E = E gap − 2 2 2 ; n = 1, 2, 3, ... n 2ε h without ith t excitonic it i effects ff t Excitonic effects ⎡ p 2 e2 ⎤ r r − ϕ ( r ) = η ϕ ( r ) ⎢ ⎥ ⎣ 2µ ε r ⎦ r ground state ϕ (r ) = a0ex For GaAs [ Bound states for η < 0 1 ] 12 π (a0ex )3 h 2ε = 2 µe R0ex h 2ε a = 2 ≈ 15 nm µe ex 0 e ( − r / a0ex ) µe 4 = 2 2 2ε h µe 4 R = 2 2 ≈ 4.2 meV 2ε h ex 0 Photoluminescence (PL) spectroscopy CB eCB CB Ed h hν laser Ea luminescence VB h+ Laser VB VB EXCITON: IMPURITY e‐h LEVELS system F1 M1 Sample p F3 F2 L1 Monochromator M2 L3 L2 Cryostat Acquisition Detector and Control System Exciton diamagnetic shift Using ε h2 length unit a0 = µ e2 µ e4 Ry = 2 2 energy unit 2ε h B= 2 µ Ry magnetic field unit he the Hamiltonian is ⎡ 2 ∂ 2 γ2 2 Hψ ( r ) = ⎢ − ∇ − i γ − + x + y2 ∂φ r 4 ⎣ ( ) ½ hω c ε 2 h 3 B γ= = 2 3 Ry me where Ry = 13.6 ⎤ ⎥ ψ ( r ) = Eψ ( r ) ⎦ m ε 2 eV hωc heB 0.58 ×10 B eV = = m 2 2m −4 m = 0.054 m0 ε = 12 γ= ½ hω c = 0.21 B Ry Hydrogen atom vs exciton in semiconductors Strength of magnetic field: • Magnetic field H BH Ry 1 = exc = Bexc Ry 6⋅ 6 10− 4 ⇒ hωc=(heB)/m If Bexc ~ 40 T ⇒ BH ~ 2000 T ! Magneti superconduttori “Economici” e compatti Campi stabili e uniformi Lunga durata Campo massimo 20 T ~ 103 spire/cm Lfilo~10 km B=12 T I=120 A Se tutto Cu (R=230 Ω) a 100 A, P~2 MW Magneti superconduttori NbTi NbSn ~ 1 mm Ø (Cu) µm Ø ((Nb/Ti)) ~ 20 µ La tecnica “cable-in-conduit conductor” permette di: - aumentare la superficie efficace a contatto con il liquido criogenico; - rimuovere velocemente il calore generato durante il funzionamento e portare la corrente che scorre nel superconduttore in caso di quench (ρCu=1.8⋅10 1.8 10-8 Ωm, ρNb=15⋅10 15 10-8 Ωm); - la matrice di rame conferisce stabilita’ meccanica (NbTi e’ fragile) Magneti resistivi Ag-coated Cu <1 mm-thick aste p per il posizionamento scorre acqua (250 l/s; 30 atm) deionizzata (non conduce) per raffreddare il magnete Magneti resistivi Per completare un passo dell’elica sono necessari ~10 plate intervallati da un disco isolante. Il disco di isolante serve a far compiere alla corrente un cammino elicoidale e per evitare corto-circuiti lungo l’asse della bobina. Circa 1000 dischi di rame compongono un solenoide. Magneti resistivi Le bobine sono percorse dalla corrente in serie a partire da quella piu’ interna. ~3 m - Alimentati da ~20 MW a 700 V (~3⋅104 A dc) - Raffreddati da 104 l/min a 30 atm di acqua deionizzata (isolante) a ~5 °C. L’acqua esce a ~40 °C. Si utilizza una riserva di 16 ⋅106 l. costo: 1500 euro/ora High-field limit Ec (kz,nc) 1⎞ h 2 k z2 ⎛ Ec (k z , nc ) = Ec 0 + ⎜ nc + hωce + 2⎠ 2me ⎝ h 2 k z2 1⎞ ⎛ Ev (k z , nv ) = Ev 0 + ⎜ nv + ⎟hωch + 2⎠ 2mh ⎝ k zc = k zv nc = nv Ev (kz,,nv) 1 ⎞⎛ 1 1 ⎞ 1 ⎞ heB B ⎛ ⎛ ⎟⎟ ehB = E (0) + ⎜ n + ⎟ E n (B ) = E (0) + ⎜ n + ⎟⎜⎜ + 2 ⎠⎝ me mh ⎠ 2⎠ µ ⎝ ⎝ (elettrone-lacuna liberi) r r i εˆ ⋅ p f = uc εˆ ⋅ p uv 3r * r * r d r f ( r ) f c v (r ) ∫ −ξ c2 2 −ξ v2 2 3r * r * r 3 r − i (k xc ⋅ x + k zc ⋅ z ) i (k xv ⋅ x + k zv ⋅ z ) ( ) d r f ( r ) f ( r ) = d r e e e H ξ e H n ,v (ξ c ) c v n ,c c ∫ ∫ c v dxdz ( ⋅ ⋅ ⋅ ) → k = k x x ∫ ∫ dy(⋅ ⋅ ⋅) → n c = nv k zc = k zv 12 T E(k) 0T (e,C) C k hν ( e , C ) ( B ) = E 0 CBM eh −E + B − ∆E C ( B ) 2me 0 C Quantum heterostructures Lz h ≈ ∆z ⋅ ∆p z ; ∆z = Lz 2 electroon energy Eloc ∆p z h2 ≈ = * 2 2m 2 m * Lz ∆pz A semiconductor quantum heterostructure can be obtained by embedding a smaller gap material in a larger gap matrix In--plane defect engineering In x=0.92% µ-PL 10 µm 5 µm 1 µm 2 µm 20 µm GaAsN GaAsN:H ≡ GaAs Ga(AsN) GaAs GaAsN G A N epilayer il M. Felici et al., Adv. Mater. 18, 1993 (2006). 0.5 µm Spatially-controlled modulation of carrier potential In--plane defect engineering In hydrogen GaAsN GaAs In--plane defect engineering In e beam lithograpy at IFN e-beam IFN-CNR CNR (A. (A Gerardino and M M. Francardi) 200 nm dots courtesy of L. Felisari (TASC) Toward 0D0D-nanostructures Near-surface GaAsN/GaAs quantum well [N]=0.9% well width L=6 nm surface distance ss=30 30 nm dot diameter d=80 nm GaAs Ti dot 100 nm GaAsN Toward 0D0D-nanostructures 0.9% 0.4% 20 nm 0% Low-field limit R. Trotta et al., Advanced Materials 23, 2706 (2011) PL Intensity (arb. units) d=100 nm 1.390 Energ gy (eV) T 5K T=5 1.389 1.388 1.387 1.386 0 5 10 15 B (T) 20 25 30 d 80 nm d=80 B=30 T B=0 T 1.386 1.388 1.390 Energy (eV) R. Trotta et al., Advanced Materials 23, 2706 (2011) 2 -3 β80 nm=2.2×10 meV/T 2 2 ∆EZ (m meV) ∆Ed (m meV) 3 d = 80 nm 1 0 gexc=1.04 1 d = 80 nm 0 0 5 10 15 20 25 30 ∆E d = 8µ exc µ exc = 0.095 m0 10 15 20 25 30 B (T) B (T) e2 5 0 x2 + y2 0 B2 ∆EZ = g exc µ B B d exc = 2a B = 2 0 x 2 + y 2 0 = 4.3 nm Intermediate-field limit µexc=0.053 m0 9 ⎛ ⎞ ( ) m µ 0 ∆E d = 13.6 ⋅ 10 3 ⎜⎜ ⋅ ∑ Ai 2 ⎝ ε r ⎠ i =1 ⎡ ⎤ ⎛ ⎞ ε r ⎢4.26 ⋅ 10 −6 ⋅ ⎜⎜ B⎥ ⎢⎣ ⎝ (µ m0 ) ⎠ ⎥⎦ 2 i 1 ⎞ heB ⎛ En (B ) = E (0) + ⎜ n + ⎟ 2 ⎠ µexc ⎝ µexc=0.07 m0 Exciton mass overestimation