The Nanolab http://people.roma2.infn.it/~nanolab/index.html Prof. A. Balzarotti MBE HREELS UPS-XPS LEED Prof. F. Patella Prof. M. Fanfoni MBE Lab Prof. A. Sgarlata Dr. F. Arciprete Dr. E. Placidi (CNR) Dr. L. Persichetti (PhD student) STM Lab Primo Workshop del Dipartimento di Fisica dell’Università di Roma Tor Vergata, 7 – 8 Giugno 2011 InAs/GaAs(001) Quantum Dots grown by Molecular Beam Epitaxy F. Arciprete, E. Placidi, F. Patella, M. Fanfoni, and A. Balzarotti n Investigation of the basic microscopic mechanisms driving the self-assembling of InAs/GaAs(001) QDs at each stage of their evolution (PRIN 1997, 2000, 2002 – MADESS II (CNR)) n Site-controlled nucleation: selective growth of a single Quantum Dot on 400nm selected areas of the SiO2/GaAs(001) (PRIN 2005, 2007 – FIRB 2002) n Growth and morphological characterization of Diluted Magnetic Semiconductors: Ga(In)1-xMnxAs/GaAs(001) thin films and nanostructures. (FP7 – FET No. 225926) Semiconductor Heteroepitaxy “Road-map” Richness and variety of III-V’s ⇒ high-performance "band-gap engineered" heterostructures and devices with optical and electronic properties difficult to achieve in other materials. Growth Processes q Epitaxy : the film grows following the same lattice of the substrate ⇒ single crystalline layers grow on a single crystal surface: q LPE, VPE: near-equilibrium technique; fast, inexpensive, poor thickness/interface control. q MBE (Molecular Beam Epitaxy): slower, accurate structure and composition control, better than the single atomic monolayer (~0.3 nm): Epitaxy Amorphous, Polycrystalline Lattice mismatch and deformation " The lattice mismatch ε is the cause of the deformation " The elastic energy per unit area accumulated in an isotropic film of thickness d is: The favored growth morphology of the film is that of minimum Gibbs free energy: F2D-coh = kε2d + γfilm FSK-coh = Rkε2d + γfilm + Δγ3D ΔEfilm~kε2d " " When no dislocations appear we have a “coherently strained” or “pseudomorphic” growth. F2D-MD = (2EMD/do) + γfilm low lattice mismatch partial relaxation high lattice mismatch ε= d InAs − d GaAs =7% d GaAs for d > dc coherent islands can nucleate Stranski-Krastanow (SK) growth mode Molecular Beam Epitaxy Base Pressure : 5×10-11mbar 7 effusion cells Ga, In, As4 (2), Al, Si, Mn InAs/GaAs(001) prototypical of high-mismatched growth which proceeds in Stranski-Krastanow coherent mode AFM/STM characterization of QDs during their complete evolution cycle § Wetting Layer composition § Evolution of the 2D-3D transition § Size distribution and the scaling properties of QDs 1.57 ML - InAs/GaAs(001) § Shape of islands § Lateral ordering and Selective Nucleation of QDs 1.54 ML QDs density evolution 1.0 × 0.5 µm2 Small QDs 1.57 ML Large QDs Appl. Phys. Lett. 89, 041904 (2006) 1.61 ML Step erosion QDs nucleated onto the step edge determine erosion of the steps for a volume > 0.3 ML 2.40 ML Cover page for issue 24 vol. 86 Appl. Phy. Lett. 86, 241913 (2005) The compressive strain around 3D islands significantly reduces the In attachment/detachment rate ratio in that region: step erosion takes place process evolution Site-controlled nucleation 2 x 2 µm2 1x1 µm2 200 nm 400nm 200nm J. of Nanophotonics 3, 031995 (2009) InAs QDs µPL on patterned holes 1.159 eV µPL - 5 µm spatial resolution 4×4 µm2 500 nm diameter hole 20 µm spaced FWHM=4 meV 8.0µm 1.177 eV 40×40 µm2 1 single hole is probed (~110 dots) 0.2 % of the PL spot area T=10 K FWHM<1 meV 4×4 µm2 100 nm diameter holes 100 nm spaced ~490 holes are probed 20 % of the PL spot area Appl. Phys. Lett. 93, 231904 (2008) The emission observed is compatible with emission from single dots Nanoscale selective growth of InAs QDs InAs/SIO2/GaAs 100×100 nm2 square holes 3-4 InAs dots nucleated on the GaAs at the bottom 100 nm holes: <b> = 25 nm < 30-40 nm <h> = 2 nm < 3-4 nm h b QDs selfassembled on extended GaAs surfaces The sizes of QDs inside nanoscale holes are smaller than those nucleated on the extended GaAs surface: - confined area diffusion? - different role for nanoscale finite-area WL? Appl. Phys. Lett. 93, 231904 (2008) A different kinetics for spatially confined growth at the nanoscale Holes spacing L = 150 nm 120 nm 600 × 600 nm2 Collaborations Università degli Studi di Modena e Reggio Emilia eand Centro S3 (CNR) – Istituto di Nanoscienze: Ab initio studies and MonteCarlo simulation Prof. R. Magri, Dr. M. Rosini Institute for Photonic and Nanotechnologies of Rome (CNR): Dr. A. Gerardino, Dr. E. Giovine Electron Beam Litography Max Planck Institute for Solid State Research - Stuttgart Dr. J. Honolka, Prof. K. Kern DMS - Magnetic Characterization Università di Firenze e European Laboratory for Non-linear spectroscopy: Prof. A. Vinattieri, Prof. M. Gurioli, Dr. L. Cavigli, Dr. M. Abbarchi macro-PL & µPL Istituto di Struttura della Materia (CNR) Dr. S. Colonna, Dr. F. Ronci, Dr. A. Cricenti Diluted Magnetic Semiconductors