Flash scaling and charge
trap memories
Daniele Ielmini
DEI - Politecnico di Milano, Milano, Italy
[email protected]
ITRS 2009
• Main challenges: high-k/metal WL/CT at node
25 nm, 4 bits per cell
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
2
1
Outline
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
3
Flash reliability
•
Non volatile 1. 105 P/E cycles endurance
2. 10 years data retention
NOR
Endurance
Over-erase
X
NAND
Mechanism
X
Oxide and interface traps, charge
trapping
X
Over-program
X
Data retention
X
X
Read disturb
X
X
Feb. 23, 2010
T=-40÷85°C
Charge trapping, trap assisted
tunneling, extrinsic defects
Charge trapping/detrapping, direct
tunneling, trap assisted tunneling, RTN
D. Ielmini, "Non volatile memories" – 2
4
2
NOR endurance
8
Vt P/E [V]
7
PROGRAM
6
5
4
3
ERASE
2
1
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
Number of cycles
P/E at constant voltage/time (no PV/EV loops)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
5
NAND endurance
1. Both P/E VT increase due to subthreshold slope and gain
degradation
2. Stronger degradation for erased cells
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
6
3
Bulk trap generation
1. Bulk trap generation decreased FN/CHE injection decrease of programmed VT, increase of erased VT
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
7
Charge trapping
2. Bulk trap generation trapped negative charge itself
contributes to VT increase of VT
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
8
4
Data retention
VG = 0V
a)
VS = 0V
VD = 0V
• Data retention from
programmed state
(10 years)
VD = 0V
• Gate disturb
(program, read) on
erased state
VG = 4V
b)
VS = 0V
1. NOR typical application: 106 read (109 disturbs) in 2 years
total gate disturb time of 200s in 10Y!
2. NAND non official spec. = 105 read operation, about
16s (=10µs*16WL*105)
Feb. 23, 2010
9
D. Ielmini, "Non volatile memories" – 2
Intrinsic data-loss prediction
14
tox
10
VTP=VT0+2V
12
Gate
FG
Substrate
Retention time [s]
10
30Kyears
VTfail=VT0+1V
10
10
97years
10years
8
10
120days
6
10
9.5hours
4
10
2
10
0
10
3
3.5
4
4.3 4.5
5
tox [nm]
1. Failure estimate depends on programmed VT, neutral VT0
2. Intrinsic tunneling is not a concern for data retention down
to tunnel-oxide thickness tox=4.3nm
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
10
5
Barrier engineering
• Barrier engineering can improve the trade-off between
scaling VDD and maintaining data retention
• crested barrier (B) behaves as
• thick dielectric at small voltage (retention)
• thin dielectric at large voltage (programming)
• SiO2
• SiN/AlN/SiN
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
11
Single-electron (SE) effects
N=21
N=346
G. Molas et al., IEEE T-ED 53, 2006
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
12
6
SE effects vs. scaling
• Spread of retention time increases for decreasing N increasing concern along the scaling roadmap
G. Molas et al.,
IEEE T-ED 53,
2006
• Same problem occur during program/erase
• Impact on nitride/nanocrystal is even larger (smaller N)
• Solutions: finFET structure, error correction code (ECC), etc.
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
13
Outline
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
14
7
Theory vs. roadmap
•Intrinsic tunneling is NOT the real concern
•Stress-induced leakage current (SILC) after P/E cycling
leads to anomalous data retention
Feb. 23, 2010
15
D. Ielmini, "Non volatile memories" – 2
-2
Current Density [A cm ]
SILC characteristic
-6
10
-7
10
-8
10
1V
-9
10
-10
2TAT
10
-11
10
TAT
-12
10
1
2
3
4
5
6
Floating Gate Voltage [V]
D. Ielmini et al., IRPS 2001
• Trap-assisted tunneling (TAT =
Shockley Hall Read + tunneling)
• Generalized to account for trap
cooperation (2TAT, 3TAT, etc.)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
3.5 V
16
8
Outline
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
17
Measured ∆VT
N. Mielke et al., IEEE
T-DMR 4, 2004
Intel-0.13µm
(channel erase)
Intel-0.18µm
(source erase)
1. Stronger impact on NAND cells (FN P/E) and multilevel
2. Very large spread and positive/negative ∆VT, which cannot
be explained by Poisson statistics alone
3. Positive/negative ∆VT ? Additional RTN contribution
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
18
9
Detrapping and Dit annealing
(3)
(2)
(1)
(5)
(4)
(1)Interface trap annealing
(2)e- emission toward substrate
(4) h+ capture from substrate
(3)e- capture from FG
(5) h+ emission toward FG
Feb. 23, 2010
19
D. Ielmini, "Non volatile memories" – 2
VT shift calculation
(1) Interface trap annealing
(spiega ∆VT sul neutro)
∆VT = −
(2) (4)
x
q
Cx
1
1
x
=
+
Cx C2 ε ox
(3)
(2)
(1)
(5)
(4)
(3) (5)
Feb. 23, 2010
∆VT = −
q
q
qx
+
=+
C2 C x
ε ox
D. Ielmini, "Non volatile memories" – 2
20
10
T acceleration of VT shift
EA=1.1eV
EA=1.2eV
N. Mielke et al., IEEE T-DMR 4, 2004
Feb. 23, 2010
21
D. Ielmini, "Non volatile memories" – 2
Random telegraph signal
capture
τC
emission
τE
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
22
11
Impact on MLC programming
H. Kurata et al., Symp. VLSI Circ. Dig., 2006
• VT distribution spread control by ISPP step ∆VGP is no more
effective due to RTN ∆VT
• Extrapolations indicate ∆VT > 100 mV at 45 nm
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
23
‘Complex’ and ‘giant’ RTN
N. Tega et al., IEDM Tech. Dig., 2006
P. Fantini et al., IEEE EDL 28, 2007
• Multitrap (‘complex’) RTN similar to multitrap SILC, it may
critically affect VT distribution in the array
• ‘Giant’ RTN how can one trap provide such a large VT?
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
24
12
Random dopant fluctuations
A. Asenov et al., IEEE T-ED 50, 2003 A. Ghetti, et al., IEDM Tech. Dig. 2008
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
25
Reliability – Conclusions
• Reliability issues:
• ∆VT after cycling due to charge trapping:
worsen with scaling (spread)
• ∆VT after programming due to charge
detrapping: worsen with scaling (spread)
• ∆VT due to RTN: worsen with scaling (larger
variability of trap position and number)
• SILC worsen with scaling (oxide thickness)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
26
13
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
27
NOR scaling (Intel)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
28
14
Physical scaling issues
NOR
NAND
• Active area scaling active device elements:
WG and LG
y-pitch
L
L
y-pitch
W
W
x-pitch
x-pitch
• Pitch scaling Passive
elements: isolation
(NAND, NOR), drain
contact (only NOR)
Feb. 23, 2010
29
D. Ielmini, "Non volatile memories" – 2
NOR structure and scalability
L gate
Tecnologia
250nm
180nm
150nm
130nm
90nm
65nm
0.81µm²
0.46µm²
0.32µm²
0.16µm²
0.076µm²
0.046µm²
Area/F2
13
14.1
14.2
9.5
9.4
10.9
L gate
375nm
300nm
295nm
235nm
175nm
125nm
Area
1.
2.
3.
Need for BL contact
WL/BL isolation for reliability purpose
Inherently hard scalable LG
Ever growing aspect ratio, difficult scaling
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
30
15
NOR cell
Along W
Feb. 23, 2010
Along L
D. Ielmini, "Non volatile memories" – 2
31
NOR physical scaling
2F
5F
G. Atwood, IEEE T-DMR 2004
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
32
16
Leff scaling
Source
FG
Li
Drain
• Potential barrier of 3.1eV (hence CHE VD) does not scale!
• LG must sustain the high VD=4.5V during CHE
programming can hardly be scaled below 70nm, due to
short channel effect (SCE: punch-through, DIBL)
Feb. 23, 2010
33
D. Ielmini, "Non volatile memories" – 2
Punch through and DIBL
SiO2 CB
S
D
•
D
Punch through effects enhanced for short channel
(depletion region of S and D overlap to decrease φS)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
34
17
Solutions to LG limitations
• FinFET:
• better control of SCE and
maximum read current, thus
enhancing operation speed and
sensing margin
• FinFET + FG is hard, CT
implementation most practical
reliability issues
• 3D cell structures: LG aligned to
the vertical axis, again FG is hard
• t1 scaling down improves SCE, but
conflicts with reliability (data
retention)
G. Atwood, IEEE T-DMR 2004
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
35
WG scaling
WG
Weff
• WG – Weff = isolation beak + ONO sidewalls for improved αG
• Weff scaling lowers sensing current (Leff not scaling), but
main limitation is lithography
• VT instability becomes worse as single traps can switch on
and off ID (percolation effects)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
36
18
Common NOR/NAND issues
•
•
•
•
NAND has FG space, isolation issues, too
NAND has no drain contact no Cont-gate issues
NAND has no source resistance issues, no LG issues
NAND has higher density smaller pitch, physical limit
approaching
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
37
NAND LG scaling – 1
• ION/IOFF>10 is sufficient to distinguish between “0” and “1”
easily scalable LG
• No punchthrough issues (FN programming, low VD)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
38
19
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
39
Pitch scaling
1. Cell-cell capacitive interference (NOR, NAND)
2. Dielectric breakdown at the WL-BL spacer (NOR)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
40
20
Solution #1: reducing tFG
• Capacitive coupling can be decreased reducing tFG
dij
tFG
LG
CG
CG
FG
FG
Sub
Sub
VT ,i = VT 0,i −
Qi Cij
Q ε t t
−
V j = VT 0,i − i − diel FG 2 V j
C2 C2
C2
ε 2 LG d ij
Feb. 23, 2010
41
D. Ielmini, "Non volatile memories" – 2
Drawback: reduced αG
• Unfortunately, this also reduces C2 and αG=C2/CTOT inhibits VDD scaling ( VFG = αGVG + Qi )
CTOT
Feb. 23, 2010
CG
CG
FG
FG
Sub
Sub
CG
CG
FG
FG
Sub
Sub
D. Ielmini, "Non volatile memories" – 2
42
21
NAND scaling limitation
∆VT<0.2V
• Samsung predicts difficulties in NAND scaling beyond
30 nm (K. Kim, IEDM 2005)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
43
Improving αG
αG =
C2
C2
ε 2 A2 / t 2
=
=
CTOT C1 + C2 ε1A1 / t1 + ε 2 A2 / t 2
Coupling ratio can be improved by:
• Reducing t2 (limited by retention)
• Increasing ε2 high-k IPD (HfO2, Al2O3, etc.)
• Increasing A2 U-shaped FG (not viable for ultrascaled
WG, Kim, IEDM2005)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
44
22
Solution #2: low-k/air spacers
• Air (ε=1) spacer proposed by
Samsung
• Air gap also provides
immunity against trap-up
between WLs for NAND
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
45
Solution #3: recessed FG
• Recessed field oxide:
• CG effectively shields
adjacent FGs
• Improved αG
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
46
23
Limitations to recess
• Along the WL, space will eventually become comparable
to 2t2 + minimum poly-CG thickness reduced αG
Planar structures with high-k IPD
and/or CT are likely solutions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
47
Solution #4: algorithms
Change the
programming algorithm
by taking into account
the status of
neighboring cells (or
bits, see Eitan et al.,
IEDM 2005)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
48
24
Solution #5: discrete storage
• Replacing a continuous FG with Si nanocrystals or
atomic-size traps charge-trap (CT) memory
• Advantages:
• suppress capacitive coupling between neighboring
cells
• Geometrical improvement of αG not possible anymore
high-k IPD
CG
CG
Sub
FG
Sub
CG
SiN
Sub
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
49
CT vs. FG
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
50
25
Scaling – Conclusions
• Many technical challenges for continuing FG memories
• NOR are most affected by LG and t1 scaling issues
• Aggressively scaled NAND cells will have increasing cellcell interference, small capacitive coupling and small
number of stored electrons
• Most aggressive extrapolations see FG scaling down to
15 nm node
• Further scaling:
• Barrier engineering (high-k, metal gate)
• Planar CT memories
• 3D CT memories
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
51
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
52
26
Charge-trap memories
• SONOS memory (t1 < 3 nm)
• Program: FN tunneling of
electrons
• Erase: DT of holes
• NAND replacement
• NROM (t1 > 5 nm)
• Program: channel hot
electron (CHE) injection
• Erase: hot-hole injection
(HHI)
• NOR replacement
Feb. 23, 2010
CG
SiN
Sub
CG
SiN
1
2
Sub
D. Ielmini, "Non volatile memories" – 2
53
Nitride vs. Flash cells
• Easy to fabricate
• Single poly process
• CMOS compatible
• No FG for charge storage
• Free of drain turn on
• Free of FG interference
• No need for wrapped geometry with high
coupling ratio
• No erratic/fast erase bits
• Immunity to SILC t1 smaller than in
Flash lower P/E voltages, faster P/E
• 2 b-c available (NROM)
• Compatible with 3D architectures
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
54
27
Disadvantages
• SONOS:
• 2 b-c only with multilevel reduced margins
• Erase saturation (need for barrier engineering, high-k
blocking oxide, metal or P+ poly gate, …)
• Poor reliability (thin oxide, leaky CT layer)
• NROM:
• Second-bit effect
• Erase issues (hard-to-erase, overerase)
• Program state VT shift (vertical charge loss, lateral
redistribution, Dit annealing)
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
55
VT [V]
Erase saturation
High VT state
Low VT state
Time [s]
•NAND application negative VT in erase state needed
•Positive erased VT : final steady-state is for equal
injection/emission E-fields zero stored charge
•Need to differentiate injection/emission barriers
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
56
28
Improvement: thin bottom SiO2
B. De Salvo et al.,IEEE T-DMR 4, 2004
1. t1 reduction (< 3 nm) enhances hole injection (high
tunneling barrier of 4.5 eV) to improve erase characteristics
2. Poor data retention!
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
57
TaN gate + Al2O3
C. H. Lee et al.,
IEDM Tech.
Dig. 2003
Feb. 23, 2010
O/N/Al2O3=2.5/12/10nm
D. Ielmini, "Non volatile memories" – 2
58
29
Lateral redistribution in SONOS
C. Kang, et al., IRPS 2007
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
59
WL and BL patterning
1. WL + BL SiN patterning
shows best reliability
2. Silicon-rich nitride (SRN)
with presumably large
carrier mobility was used
in the cell
J. S. Sim et al., NVSMW 2007
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
60
30
Band-engineered (BE) SONOS
H. T. Lue et al., IEDM Tech. Dig. 2005
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
61
BE-SONOS vs. SONOS
S. Y. Wang et al., IRPS 2007
BE-SONOS erase characteristics are comparable to SONOS
with t1 = 2 nm, but reliability is much better
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
62
31
Scaling perspective
tN = 7 nm
3.5 nm
2 nm
H. T. Lue et al.,
IRPS 2007
S.-H. Gu, et al.,
IEEE T-ED 54,
2007
Trapping decreases as tN is reduced, retention time strongly
impacted by t1 downscaling
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
63
Percolation effects
Drain
Bottleneck
Source
D. Ielmini, et al., Proc. IRPS 2004
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
64
32
MANOS roadmap
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
65
• Flash reliability
• Cycling endurance
• Data retention
• Intrinsic data loss
• SILC
• Detrapping and RTN
• Flash scaling
• Active area scaling
• Pitch scaling
• Charge-trap memory
• SONOS/MANOS
• NROM
• Conclusions
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
66
33
NROM: P/E operations
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
67
NROM: read operation
• VD = 0.1 V ohmic
channel, read current
depends on both bits
• VD = 1.6 V saturated
channel, only bit2 is read
• Reverse read only bit1
is read
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
68
34
Data retention
A. Shappir, et al., IEEE T-DMR 4, 2004
time
Data loss appears as a rigid shift of the VT
distribution, without tails apparently no SILC effects
Feb. 23, 2010
69
D. Ielmini, "Non volatile memories" – 2
Cycling and T dependence of VT
VT [V]
M. Janai, et al., IEEE
T-DMR 4, 2004
10 cycles
T
VT [V]
30K cycles
Feb. 23, 2010
VT features saturation
above neutral level
D. Ielmini, "Non volatile memories" – 2
70
35
Charge-loss mechanisms
Mechanism 1 : lateral
redistribution (LR) of
trapped carriers
Mechanism 2 : vertical
loss of trapped carriers
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
71
Limiting lateral redistribution
• Avoid mismatch
between electron and
hole injection (doping
profile, program/erase
pulse)
• Improve energy depth of
traps in the nitride layer
by trap engineering
• Sub-monolayer Ti
results in atomic-size
traps with good P/E
window, 2-bit operation
and suppressed LR
H. Sunamura et al., IEDM
Tech. Dig., 2006.
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
72
36
Refill method
Sort of ‘electrical shaking’ to stabilize the electron distribution
after programming
1. CHE programming (with verify)
2. -FN soft erase to re-emit shallow trapped electrons
3. Back to CHE, repeat for N=5 cycles
• Strong impact on data
retention: shallow
electrons with bad data
retention are removed,
deep electrons improve
VT loss (blue shift)
H. T. Lue et al., IRPS 2006
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
73
CT memories – Conclusions
• Charge trap memories offer improved SILC immunity
and better scalability
• Material engineering is still an issue, no solutions are
yet known for metal gate/highK/trapping layer
• Reliability is a concern:
• Lateral redistribution in MANOS/NROM
• Thin bottom oxide
• Main strength = 3D capability, allowing further sccaling
from planar flash to new architectures
Feb. 23, 2010
D. Ielmini, "Non volatile memories" – 2
74
37
Scarica

Flash scaling and charge trap memories ITRS 2009