Phase change memories
Daniele Ielmini
DEI - Politecnico di Milano, Milano, Italy
[email protected]
Flash scaling overview
1. Flash scaling:
T. Kamaigaichi, et al., IEDM
Tech. Dig. 2008
www.micron.com
Feb. 26, 2010
2. Evolutionary scenario:
H. Tanaka et al., VLSI Symp. 2007
3. Paradigm shift
M. Lee, et al., IEDM Tech. Dig. 2007
D. Ielmini, "Non volatile memories" – 3
2
1
Outline
• PCM storage concept
• Program/erase characteristics
• Reliability
• Program disturb
• Endurance
• Crystallization
• Structural relaxation
• Scaling perspective
• Conclusions
Feb. 26, 2010
3
D. Ielmini, "Non volatile memories" – 3
Phase change memory (PCM)
WL
WL plug
BL1 BL2 BL3 BL4
c
h
c
h
W
W
p+ p+
n
c
h
c
h
W
W
p+ p+
p
R. G. Neale, D. L. Nelson,
N. Carlisle, “The
and G. E. Moore,
Ovshinsky invention,”
“Nonvolatile and
Science & Mechanics,
Reprogrammable, the ReadFeb. 1970
Mostly Memory is Here,”
Electronics, Sep. 1970
F ≈ 2 mm
1 bit
Feb. 26, 2010
F ≈ 350 µm
256 bit
D. Ielmini, "Non volatile memories" – 3
G. Servalli, “A 45nm
generation phase
change memory
technology,” IEDM
Tech. Dig. 2009
F ≈ 52 nm
1 Gbit
4
2
Storage concept
IVA VA
VIA VIIA
C N
O F
Si P
S Cl
Crystalline (set state)
Ge As Se Br
Amorphous
(reset state)
Sn Sb Te I
Pb Bi Po At
Feb. 26, 2010
5
D. Ielmini, "Non volatile memories" – 3
PCM concept
Top contact
c-GST
Temperature
Bottom
contact
a-GST
Tm
Time
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
6
3
PCM logic states
10
10
Current [A]
Top contact
c-GST
c-GST
Bottom
contact
Reset
state
a-GST
10
10
10
-4
Set state
-5
VT
-6
Reset
state
-7
R=V/I
-8
10
Ge2Sb2Te5
-9
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Voltage [V]
Set state
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
7
Cell structure
Cell Structure: selector (T) + storage element (R) = 1T1R
Transistor:
• BJT
• MOSFET
Bit line
Word line
Bit line
Storage
element
Word line
Selector
Feb. 26, 2010
Resistor: heater/material
• Heater
– Sub-litho contact
– µTrench
– Planar options
• Material
– GST, AIST, SbTe,
…
D. Ielmini, "Non volatile memories" – 3
8
4
MOSFET-selected PCM cell
BL
GND WL
n+
p-substrate
n+
•
•
•
•
STI
•
Feb. 26, 2010
Larger cell size: 18-40 F2
Scalable ?
Minimum mask overhead
Suitable for low-cost
embedded applications,
medium-low size memories
Easier array design
D. Ielmini, "Non volatile memories" – 3
9
BJT-selected PCM cell
WL
BL
p+
n+
n-well
p-substrate
WL
WL plug
BL1
BL2 BL3 BL4
c
h
c
h
c
h
c
h
W
W
W
W
p+ p+
n
•
Better current driving
capabilities
•
Compact integration suitable
for high-density applications:
8-10 F2 and scalable
•
Dedicated process module for
BJT formation, more complex
array design
p+ p+
p
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
10
5
Diode-selected PCM cell
•
Good current driving
capabilities
•
Extremely compact integration
suitable for ultra-high-density
applications: 4-5 F2
•
Diode must provide high
forward (reset) current and
low subthreshold (leakage)
current poly-Si diode
demonstrated
Scalable? Stackable?
BL
p+
n+
WL
•
Hitachi, VLSI 2009
Feb. 26, 2010
11
D. Ielmini, "Non volatile memories" – 3
Basic cell structure
Top-view
Planar heater +
confined GST = pore
Metal
GST
Oxide
Heater
Cross-section
Confined heater +
planar GST = lance
Metal
GST
Oxide
Oxide
Oxide
Heater
Metal
Metal
GST-Heater
Interface
GST
Feb. 26, 2010
Heater
D. Ielmini, "Non volatile memories" – 3
12
6
Lance structures
Samsung 2003
Intel 2006
IBM 2008
Metal
GST
Heater
STMicroelectronics 2006
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
13
Pore structures
(A)
Ireset=700µA
@180nm
Samsung CVD 2007
IBM 2007
Feb. 26, 2010
Samsung ‘recess’ 2003
Samsung ‘dash’ 2003
D. Ielmini, "Non volatile memories" – 3
IBM ‘pillar’ 2007
14
7
Line structure
Philips 2004
IBM 2006
Nasa 2008
NXP 2007
Feb. 26, 2010
15
D. Ielmini, "Non volatile memories" – 3
Technology benchmarking
STMIntel
Samsung Hitachi
IBMNumonyx
QimondaMacronix
Hitachi
Year
2006
2006
2006
2007
2009
2009
F [nm]
90
90
130
180
45
80
Cell type
µtrench/
lance,
bipolar,
Ring, GST
N-doped,
epi-Si
diode
Lance,
GST Ta2O5
layer,
MOSFET
Pore,
GST Ndoped
MOSFET
Wall,
bipolar
Pillar,
poly-Si
diode,
crossbar
Ireset [µ
µA]
400/700
600
100
400
200
160
Array size [#
bit]
128M
512M
4M
256k
1G
Cell size [F2]
6
106
105
Endurance [#] >108
Feb. 26, 2010
5.8
5.5
105
D. Ielmini, "Non volatile memories" – 3
4
109
16
8
• PCM storage concept
• Program/erase characteristics
• Reliability
• Program disturb
• Endurance
• Crystallization
• Structural relaxation
• Scaling perspective
• Conclusions
Feb. 26, 2010
17
D. Ielmini, "Non volatile memories" – 3
Set/reset in PCM devices
IT
Im
Ix
Reset
Set
A. Redaelli, et al.,
IEEE EDL 2004
• IT < I < Ix no change (switching ≠ crystallization!)
• Ix < I < Im crystallization
• I > Im melting + quenching
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
18
9
Set characteristics
6
Resistance [Ω]
10
tset
5
10
10 µs
250 ns
100 ns
40 ns
20 ns
4
10
3
10
0
100
200
300
400
500
600
Programming Current [µA]
Set with < 100 ns pulses still maintaining good reading window
Feb. 26, 2010
19
D. Ielmini, "Non volatile memories" – 3
Reset characteristics
• FEM modeling of:
– Conduction (drift-diffusion)
– Heating (Joule power dissipation,
heat conduction)
10
Data
Calculations
800
Resistance [Ω]
Current [µA]
1000
Ron
600
400
200
0
Rset
0
Feb. 26, 2010
0.5
Voltage [V]
1.5
2
I
7
10
10
10
10
1
V
Data
Calculations
6
5
4
Rset
Im
3
0
200 400 600 800 1000 1200
Current [µA]
D. Ielmini, "Non volatile memories" – 3
20
10
Melting condition
GST melting
temperature, Tm
Resistance [Ω]
10
Cryst. GST
7
Data
Calculations
6
10
program
5
10
melting
4
10
3
10
Amorphous
GST
Feb. 26, 2010
0
200 400 600 800 1000 1200
Current [µA]
D. Ielmini, "Non volatile memories" – 3
21
Constant Rset optimization
Lc
Lh
φ
3 degree of freedom for
minimizing Im:
Chalcogenide height, Lc
Heater height, Lh
Contact diameter, φ
Feb. 26, 2010
Fixed
φ (technology),
Rset (readout)
1 degree of
freedom (Lh or Lc)
D. Ielmini, "Non volatile memories" – 3
22
11
Ireset optimization
1200
φ=30nm
Im [µA]
1000
800
600
400
200
0
Feb. 26, 2010
Rset = 3 kΩ
Rc,Rcth
50
100
150
Lh [nm]
Rh,Rhth
23
D. Ielmini, "Non volatile memories" – 3
Program-read tradeoff
1200
φ=30nm
Im [µA]
1000
800
2 kΩ
600
3 kΩ
400
4 kΩ
Rset=5 kΩ
200
0
Feb. 26, 2010
50
100
Lh [nm]
D. Ielmini, "Non volatile memories" – 3
150
24
12
Scaling of R, I, V
I∝F
I ∝ F1.3
Feb. 26, 2010
25
D. Ielmini, "Non volatile memories" – 3
Ireset scaling
Pore
100000
Lance
100000
Lance/C60
DCC
IBM pillar
Samsung CVD
I∝
A0.5
Samsung dash
I∝
A0.65
ITRI cross spacer
IBM keyhole
100
Hitachi crossbar
10
1000
100000
Area [nm2]
Feb. 26, 2010
Hitachi Wplug
Hitachi O-doped
STM utrench
1000
I ∝ A0.5
Intel lance
I ∝ A0.65
100
Samsung Ndoped
lance
Numonyx wall
itrs 2009
itrs 2009
itrs 2007
itrs 2007
Samsung dash 2
10
Samsung lance
10000
Ireset [µA]
Ireset [µA]
Ovonycs pore
1000
lance w/o C60
CC
10000
Samsung ring
10
10
1000
100000
STM utrench
Area [nm2]
D. Ielmini, "Non volatile memories" – 3
26
13
• PCM storage concept
• Program/erase characteristics
• Reliability
• Program disturb
• Endurance
• Crystallization
• Structural relaxation
• Scaling perspective
• Conclusions
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
27
PCM reliability issues
Reliability issue
Cell impact
Program disturb
Resistance decrease/increase
Cycling endurance
Stuck set/reset
Structural relaxation
Resistance increase
Crystallization
Resistance decrease
Read disturb
Switching, resistance decrease
Noise
Resistance fluctuation
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
28
14
Program disturb
RC1 R12 RC2
Chalcogenide
Heater
Insulator
Feb. 26, 2010
RH1
RH2
29
D. Ielmini, "Non volatile memories" – 3
Cycling endurance
K. Kim and
S. J. Ahn,
IRPS 2005
Stuck
set
Feb. 26, 2010
Stuck
reset
D. Ielmini, "Non volatile memories" – 3
30
15
Stuck-set mechanism
Before
After
cycling
B. Rajendran, et al., VLSI Tech. Dig. 96, 2008
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
31
Crystallization
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
32
16
Nucleation/growth (N/G)
−
Nucleation rate
Growth velocity
IN = IN0e
∆GA +∆G*
kBT
∆G
− A
kBT
∆G* =
16πσ 3
2
3∆GV
vG = vG0e
• ∆GA: barrier for atomic motion (constant)
• ∆G*: barrier for the formation of a stable
nucleus (increases with T melting point)
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
33
Evidence for nucleation
S.-H. Lee, et al., Nano Lett. 8, 3303 (2008)
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
34
17
Evidence for growth
Y. H. Shih, et al., IEDM Tech. Dig. (2008)
Feb. 26, 2010
35
D. Ielmini, "Non volatile memories" – 3
Cumulative distrib. %
Percolation model
99
75
50
25
10
3
1
o
190 C
180 C
rC=2.2nm
3.3nm
5.6nm
10
Feb. 26, 2010
o
o
T=210 C
0
10
1
10
2
10
3
Retention lifetime [s]
D. Ielmini, "Non volatile memories" – 3
10
4
36
18
tX extrapolation
o
T [ C]
300
200
10 years
tX [s]
10
10
10
100
70
8
∆G
10
150
Arrhenius
6
o
T10Y=118 C
4
EX
2
τ = τ x0 e
Data
Calculated
Reaction coordinate
0
10 20
25
30
EX = 2.5 eV
τx0 = 10-23 s
???????
35
-1
Ex
kT
1/kT [eV ]
U. Russo, et al., IEEE T-ED 54, 2007
Feb. 26, 2010
37
D. Ielmini, "Non volatile memories" – 3
R drift – atomic relaxation
6
10
o
R [Ω]
9x10
8.5x10
8x10
7.5x10
5
T=25 C
∆G
9.5x10
5
5
ν
5
 t 
R = R0  
 t0 
5
5
7x10 0
10
1
2
10
10
τ = τ0e
EA
kT
EA
Reaction coordinate
3
10
Time [s]
D. Ielmini, et al., IEEE T-ED 56, 2009
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
38
19
SR data
S. Roorda et al., PRB 44, 3702, 1991
Ishimaru et al., PRL 2002
SR
K. Koughia et al., JAP 2005
J. A. Mullin, PhD thesis, 2000
Mechanism = thermally-activated defect annihilation
Feb. 26, 2010
39
D. Ielmini, "Non volatile memories" – 3
Kinetic model for SR
Distributed EA:
Energy
NT
EA
EA
τ = τ0e
Monomolecular dynamics:
EA
kT
Reaction coordinate
dN(E
NT
T
A)
=dt
τ(E A )
D. Ielmini, et al., IEDM Tech. Dig. 2007
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
40
20
Why distributed EA?
• Single EA level
NT
R
Energy
EA
τ = τ0e
• EA distribution
NT
EA
kT
time
R
Energy
Feb. 26, 2010
time
D. Ielmini, "Non volatile memories" – 3
41
Simulation results: R vs. t
Initial
t =10s 102 s 103 s
Activation energy [eV]
T = 300 K
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
42
21
Temperature dependence
9
10
o
90 C
o
110 C
o
130 C
o
170 C
o
180 C
8
R [Ω]
10
7
10
R*
Power-law
extrapolations
Crystallization
6
10
5
10 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10
Time [s]
Feb. 26, 2010
43
D. Ielmini, "Non volatile memories" – 3
Arrhenius plot
o
T [ C]
10
10
8
10
6
10
4
τSR [s]
10
2
10
500
300
200
R* = 5 MΩ
10 MΩ
20 MΩ
50 MΩ
100 MΩ
200 MΩ
τX
100
R*
0
10
10
10
10
-2
TMN = 760 K
-4
-6
-8
10 10
15
20
25
30
35
-1
1/kT [eV ]
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
44
22
Meyer-Neldel rule
• Arrhenius law with distributed EA
E 
τ SR =τ 0 exp  A 
 kT 
• Crossing at TMN pre-exponential τ0 is
not constant, but is an exponential function
of EA Meyer-Neldel (MN) rule

EA 

 kTMN 
τ 0 =τ 00 exp  −
Feb. 26, 2010

N

45
D. Ielmini, "Non volatile memories" – 3
Analytical model for R drift
1
ν
• From
 t 
R = R0  
 t0 
we obtain τ SR
E
EA − A
 R* ν
kT
= t0 
=
τ
e
e kTMN

00
 R0 
• Then the power-law exponent is given by:
0.35
0.3
EA =
k
α
Data
Calculated
0.25
1- T TMN
log ( R* R 0 )
ν [1]
ν=
αT
0.2
0.15
0.1
0.05
0
250
300
350
400
450
500
T [K]
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
46
23
Unified kinetic model
• •Almost
Relaxation
identical
and behavior
crystallization
displayed
are by
completely
described different
by the same
systems
Arrhenius
(a-Si, law
metallic
+
glasses)
Meyer-Neldel rule
τ = τ0e
EA
kT
-
τ 0 = τ 00 e
EA
kTMN
[s]
ττ00[s]
0
-4
10
10-5
-6
10
10
-10
10 -8
10
-15
10 -10
10-20
10 -12
10-25
10
-14
-30
10
10 -16
-35
10
10
-18
-40
10
10
-45
-20
10
10
-50
-22
10
10-55
-24
10
10-60
-26
10
10 00
[1] R. S. Crandall, PRB 1991
Relaxation
Crystallization
[2] V. A. Khonik, et al., JAP 2000
Calculated
GST relaxation
GST crystallization
a-Si:H [1]
Metallic glasses [2]
10.52
13
4 5 2 6 2.5
7
1.5
83
[eV]
D. Ielmini and M. Boniardi, APL 2009 EEAA[eV]
Feb. 26, 2010
47
D. Ielmini, "Non volatile memories" – 3
T-acceleration model
To normalize SR time
to a given T:
t 1 =τ
β=
T2
T
β 2
T1
T1
00
2
1− β
t
TMN − T1
TMN − T2
T1 = 25°C
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
48
24
Unified energy landscape
10
∆G
Crystallization
10
-6
10
Noise SR
10
τ0 [s]
E’A
-4
10
-8
Noise
-10
-12
-14
10
-16
10
EA
10
EX
RTN data
SR data [6]
Cryst. data [6]
10
10
SR
-18
-20
-22
Crystallization
-24
10 0
0.5
1
1.5
2
2.5
3
Activation Energy [eV]
•
•
•
Noise: D. Fugazza, et al., IRPS 2010
SR: D. Ielmini and M. Boniardi, APL 2009
Crystallization: A. Redaelli, et al., IEDM Tech. Dig. 2005
Feb. 26, 2010
49
D. Ielmini, "Non volatile memories" – 3
Reliability issues: 1/f noise
12
VBias = 66mV
4
τ12
0
τ21
-4
∆G
Current [nA]
8
-8
0.00
0.05
0.10
0.15
0.20
0.25
Time [s]
Reaction coordinate
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
50
25
Structural relaxation
6
10
o
8.5x10
8x10
7.5x10
T=25 C
ν
R=R0(t/t0)
5
5
5
5
5
7x10 0
10
1
2
10
10
3
10
Time [s]
Reaction coordinate
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
51
Crystallization
∆G
R [Ω]
9x10
5
∆G
9.5x10
Reaction coordinate
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
52
26
• PCM storage concept
• Program/erase characteristics
• Reliability
• Program disturb
• Endurance
• Crystallization
• Structural relaxation
• Scaling perspective
• Conclusions
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
53
Fast/slow cells
EA = 3.2 eV
EA = 2.7 eV
• Retention time correlation material non-uniformity
in the array resulting in systematically fast/slow cells
D. Mantegazza, et al., IEDM Tech. Dig. 2008
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
54
27
Impact on scaling
• Cell downscaling results in larger
variability of fast/slow crystallization
Feb. 26, 2010
55
D. Ielmini, "Non volatile memories" – 3
o
Tx [ C]
Size-dependent crystallization
1000
800
600
500
400
300
Si nanodot [1]
GeSb nanodot [2]
200
GeSbTe
nanowire [3]
100
0
10
1
10
2
10
D [nm]
S. Raoux, et al., MRS 2008
[1] Hirasawa et al., APL 2006,
[2] Raoux et al., EPCOS 2007,
[3] Lee et al., Nature Nanotech., 2007
• 1D scaling (film) growth constriction?
• 2D scaling (nanowire) surface oxidation/depletion?
• 3D scaling (nanodot) true PCM-like scaling (isotropic)
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
56
28
Material engineering
X. S. Miao, et al., Jap. J. Appl. Phys. 2006
Amplitude [a.u.]
Y. C. Chen, et al., IEDM Tech. Dig. 2006
y/(x+y)
0
T. Morikawa, et al., IEDM Tech. Dig. 2007
Feb. 26, 2010
50
100
150
200
250
300
350
Temperature [°C]
Wavelength
[nm]
N. Yamada, et al., J. Appl. Phys. 1980
D. Ielmini, "Non volatile memories" – 3
57
Conclusions
• Outstanding endurance promising for RAM
applications
• Reduction of reset current requires sublitho cell
area scaling
• Best Ireset reduction conflicts with thermal
cross-talk
• Reliability impacts on high-T applications
(automotive) and MLC (resistance drift)
Feb. 26, 2010
D. Ielmini, "Non volatile memories" – 3
58
29
Scarica

Phase change memories Flash scaling overview