Laser-interrogated optical-fiber mechanical and chemical sensors G. Gagliardi, M. Salza, P. Ferraro, P. De Natale CNR - Istituto Nazionale di Ottica Applicata (INOA), sezione di Napoli Comprensorio “A. Olivetti”, via Campi Flegrei 34, 80078 Pozzuoli (NA) Different systems using fiber-optic structures as chemical and mechanical sensors are shown. The interrogation approach is based on laser-frequency modulation techniques with single fiber Bragg-gratings (FBGs), or resonators made from high-reflectivity FBGs, and fiber rings. In the case of fiber resonators the laser is frequency locked to the cavity resonance by an in-fiber Pound-Drever-Hall (PDH) scheme. For strain detection in static and dynamic regime, the locking-loop error and correction signals fed back to the laser both serve as strain monitor with sub-picostrain sensitivity. On the other hand, the resonator’s fiber optical field may be evanescently coupled to the external environment, providing information on the external medium refractive index and/or concentration. Minimally-invasive, selective chemical sensing can be thus carried out on liquid and gas species absorbing in the laser’s wavelength range. FBG principle Two different systems devoted to chemical sensing in liquids are presented. A first setBragg max reflectivity: λB = 2n eff L Here, we show our experimental work based on a frequency-modulation spectroscopy scheme. The idea is to superimpose sidebands to the laser carrier to obtain three different frequencies interrogating an FBG structure. Using this method, both static and dynamic strain measurements can be performed, with a sensitivity of the order of 150 n/√Hz in the quasi-static domain (2Hz) and 1.6 n/√Hz at higher frequencies (1 kHz). A further improvement of the first apparatus relies on resonant in-fiber optical resonators, such as -shifted FBGs or FBG Fabry-Pérot. The basic principle is to interrogate it by a frequency-locked laser using Pound-Drever-Hall (PDH) technique (at 2-10 MHz). The reflected signal from the cavity is demodulated by a mixer that gives a dispersive-like signal containing information about the strain. The idea is that the laser follows any shift of the resonance eventually caused by changes of the intra-cavity optical pathlength. Test strain signals can be applied to the fiber in a controlled manner via a piezo actuator. Similarly, acceleration measurements can be performed by a proper mechanical mount. up exploits the sensitivity enhancement of a whispering-gallery microsphere resonator made from the tip of a common silica fiber. Another one relies on evanescent-wave spectroscopy in a fiber-loop resonator. The detection principle is to probe the ”resonant” absorption due to an external medium that induces extra losses in the cavities. This can be accomplished measuring the change in the intrinsic cavity-decay time by either phase-shift ring-down spectroscopy (PS CRDS) or direct mode-locked cavity-enhanced spectroscopy (CEAS). FBG input signal transmitted signal reflected signal I I I l l l l l B B Whispering-gallery-mode spherical resonator sensor -shifted FBG 7 1550.00 1550.02 1550.04 1550.06 1550.08 1550.10 4 3 Intensity /arb. units -shifted-FBG 3D optical accelerometer Transmission and backscattered spectra of a silica microsphere 5 2 1 0 -1 0 20 40 60 80 100 Laser frequency scan (GHz) Strain-to-acceleration 6( L x)m ( x) a 2 bd E 3-axis simultaneous acceleration 2 4 0 3 -2 2 c -4 a 1 0 Phase-shift spectra From Rayleigh scattering 800 MHz PZT FBG FBG 0,025 DBM 0 1000 2000 3000 4000 5000 0,015 PD 0,010 Splitter tan (2 ) 2 2 neff L 1 c 2ln L 1 Cavity transmission (arb. un.) 0,020 PD 1550.00 1550.02 1550.04 1550.06 1550.08 1550.10 0,005 Servo Phase Intensity AM at 500 kHz 0 Overlap of the FBG reflection bandwidths PM 3-dB coupler b 300-micron Silica sphere Cavity-based strain sensor PR (B) Wavelength /nm Lock-in phase shift (degree) Cantilever’s excitation -6 0 0,0 -1 -1 -0,5 FWHM = 900 kHz -1,0 -2 -2 -1,5 168 172 176 180 -3 -3 -4 -4 -50 0 50 100 150 200 250 300 Intensity (V) Sensor’s performance: •3D sensing •1.5-kHz bandwidth •20 µg/Hz sensitivity •100 g dynamic range Phase / deg Shift, Transmission signal (V) 6 350 Laser frequency scan (MHz) 0,000 20000 40000 60000 Evanescent-wave ring-down spectroscopy of ETDA from the sphere’s backscattered field: 80000 Frequency detuning (MHz) 0.00 150 125 0,08 100 0,06 75 0,04 50 0,02 25 0,00 0 0 5 10 15 -0.10 a) 0,8 0,6 0,4 -0.15 -0.20 0,2 -0.25 0,0 -0.30 -0,4 0 -0,6 -0,8 -3 -2 -1 0 1 2 1 2 3 4 1/2 Strain noise ( rms/Hz ) 1/2 6 1E-9 1/2 1E-10 7 Angular Frequency, / rad s-1 8 -25 1E-10 20 25 Var coupler Diode laser 1E-11 ± EOM min< 1 p/Hz 1/2 POL l/2 l/4 0 30 500 50 % PM IN1 BVA+Rb clock-GPS IN2 100 MHz PC BEAT & LOCK UNIT S Fast MOD D D.A. PLL 30 MHz ± () Distribution 100 150 200 Laser frequency scan (MHz) 0,025 0,020 0,020 0,015 0,015 0,010 0,010 0,005 0,005 0,000 0,000 0,0 0,1 0,2 0,3 0,4 Time (sec) Applications: •Real-time analysis of biological compounds •Environmental monitoring 9.4 MHz Related publications G G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13, 2377-2384 (2005) to counter J. Barnes, B. Carver, J. Fraser, G. Gagliardi, H.-P. Loock, Z. Tian, M. Wilson, S.Yam, O. Yastrubshak, “Loss determination in microsphere resonators by phaseshift cavity ring-down measurements”, Opt. Express 16, 13158-13167 (2008). 10 MHz Osc/Analyser STRAIN MONITOR Servo IF 9.4 MHz Acoustic shield NOISE EATER T-controlled fibre cavity PC AOM + - Vref 10 % K. Bescherer, S. Dias, G. Gagliardi, H.P. Loock, N.R. Trefiak, H. Waechter, S. Yam, “Measurement of Multi-Exponential Decays by Phase-Shift Cavity Ring-Down”, Appl. Phys. B 96, 390-397 (2009) SENSOR UNIT MOD IN Applications: •Seismic monitoring •Gravimetry •Giroscopic sensing 10-MHz reference 50 PD PC EOM 192.1 THz Er-fibre fs-laser MenloSystems FC1500 Laser & Comb …towards the 10-14 level Rep. Rate & CEO control Cavity’s transmission decrease and shift due to evanescent-wave absorption by liquid EDA Comparison of Resonator signals with and without Diamine0.5% and Glycerin+D2O solution 99.5%, 10th July 2008 Resonator signal with Diamine0.5% (volts) Optical-frequency comb for laser’s noise reduction 0,025 OPTICAL FREQUENCY COMB UNIT 0,04 0 Frequency (Hz) PZT 5 A 1560-nm diode laser is locked on the fiber ring resonance: 0,00 The transmission spectrum contains information on the RI and loss change caused by the sample (EDA) 1000 1500 2000 2500 3000 3500 Frequency (Hz) 1560-nm ECDL Wavelength Shift, l/ pm 0 0,08 Resonator reference signal for Diamine. (volts) 15 -5 loop Acoustic sensing Isolato r 10 -10 sample 1E-11 5 -15 Fiber-loop evanescent-wave sensor 1E-12 0 -20 3 1E-9 min< 50 p/Hz 5 Frequency detuning (MHz) Quasi-static sensing -0.5 -0.35 -4 1E-8 0.0 -1.0 -0,2 Time (s) Strain noise ( rms/Hz ) EDA = 1.5 1015 cm-2 0.5 Cavity signals (V) 0,10 Correction signal (n) PZT signal (V) b) Frequency locking 1,0 tan- (0) 0,12 Cavity tranmitted and reflected signals (V) -0.05 Phase angle / arb units 0 Piezo driver Circ PZT F300 G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques” J. Opt. A: Pure Appl. Opt. 8 (2006) S507–S513 G. Gagliardi, P. Ferraro, S. De Nicola, P. De Natale “Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking”, Opt. Express 15, 37153728 (2007). G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, A. Di Maio, S. Carlino , G. De Natale and E. Boschi, “Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications”, Meas. Sci. Technol. 19 (2008) 085306 Patents IT patent on “fiber cavity laser locking”. RM2006A000279. Inventors: G. Gagliardi, P. Ferraro, S. De Nicola, P. De Natale (2007). IT patent on “Fiber-optic seismic sensor”. RM2007A000589. Inventors (CNR-INOA): G. Gagliardi, M. Salza, A. Di Maio, P. Ferraro, P. De Natale. (2007) EU patent on “fiber cavity laser locking”. PCT/IT2007/000365. Inventors: G. Gagliardi, P. Ferraro, S. De Nicola, P. De Natale (2008). International collaborations -Department of Chemistry, Queen's University, Kingston, ON (Canada) -Centre for Photonics and Optical Engineering, Optical Sensors Group, Cranfield University, Bedford (UK) -Fibre Optics Laboratory, Central Glass & Ceramic Research Institute (CSIR), Calcutta (India) -Centre for Gravitational Wave, Australian National University, Canberra (AU)