CIMSA 2003 - In t e r n Co In t e l l i g L m u p g u t a t i o a n o , n a l Sw i t z e r l a n a t i o n d e n , a l c e 29 Sy m f o - 31 r p o s i u Me a s u J u l y m o n r e m e n t Sy s t e m s a n d Ap Composite T ec h Cesare A n l i p p iq 1 i u , es f or G i u sep p 3 i s m be co an u ach w co i n m p i ts p w o i n au l i cati o an si ti v e m g i m re d to d m p Early i ti o act o n th al ap is impact on q b u h co al f e m re d p ro IN T o e u a 'A l ity n c en g A ap e n i q an e r q ech P i u u g al i ty g ri e s h co m p sp co p tati o n al o n n ce o e a so n i n se d co niv l i cati o th e cti o m as be e n u p n 3 l y sis in at t eo an d F iat, O ersity rb so m req f t- C T IO in economical metal manu factu issu e artifact and th e e indu i o P asq u el d in g 2 et t az iaz z a L . da V inci 3 2 , M ilano, Italy ) , Italy ramante 6 detected tational b u 5 , C rema ( C th defects) rden in R ) , Italy , e performance issu b u t also order to th e e ( in req satisfy u ired real- time irements. particu to F ) ou t 7 ] . [ 1 lar, th e th e indu laser at T e g th h e w strial elding lab process of ox au oratories e specific test b earb ring for rg e addressed not solely part in th a sis of th R i o W 3 t t i of carried N defects main O G ser tion w u ( C DU c o , a ia B refers are d 1 c c i e L ilan, V In r tomotiv ilano P terms e s. O S compu f o p i o solu n u at t eu ab of M l ase r f M A assano ( T s ti o e re d co M a ste e l l u o si d , n olitecnico di M e F ies, U i n e sts i n sy ste m u ap al y si s su icerch nolog 2 el o z o entro R l ase r- base d al i ty si te ce d R of analy u u p p ach th q e te ch ecoming ality o r re al - ti m n i ti o g f o T A detection stries ri n e ate d s. I. indu i to stry . m n n n i ssu u trad trad o ai n p g e m an ap ti n a ri n g g u o i th g f actu Q i n C Department of Information T e al - ti m i n i e v i n e l d R m s Department of Electronics and Information, P 2 Abstract – l i c a t i o n e D V 1 p 2003 u nder tomotiv of C e entro R icerch ed is a steel g for a passeng er v eh monitoring components e F iat ear, a critical icle ( see F ig u re 1 ) . A its B Z strial process. A g u tomated row th and process th speed produ w ith a process. M u ch y prov env du th e isag u th su b seq q sefu e can eat inpu t [ 1 ] . L asers ig h h t reliab may b focu u ality analy sis of th Fig. S tomated sed w l feedb process ack to th itself to v sy ery process activ pert u . , b y ity th ser on h tu ning ternal inspection of th dev serv ith th u e ality A w e process [ 4 th e th ent process tu composite sy alg stem, compu tech stem th e and ning ms u F u different es ollow . T at M for [ 5 ] . stu h ing ality eng dy it a sy nerg Du ality ring er, ag u nal defects th ineer ing analy ic e to dev su g h 5 T e h ] U e ge a r c o n s id e 4 on th r e d in o u r w o r k . stru res ex e ex u ilt j oining e principal O 2 laser. factory S y T h ropean U e dev g tw e actu ed is proj ect aser s ( i. e. , a lig are test- b stems L o ring ear) , M S L elopment of intellig b part of P ( S A aterial nion effort to adv ally P S h u t ttth e elf- rocessing ance th e applied ent laser processing ] . ctu re of th e eneral b paper ack g ed th rou is as e ov follow r indu S erall composite alg e tu ection 2 and a presents th e p and in section orith ning S elding ection 3 strial set- u e classifier selection, th perimental resu s. nd on laser w e ty pical defects. tracted from ou is describ th y ear, b th ser- independent a Eu ces a g also th C anu description of th II. g L A S ER W EL A ested th e for a m describ meth odolog IA S y ing and lts. T composition and of of softth e h e w DIN T elding C ph G R A F L N A D IN B O enomenon R DU A T S O can T R R L ET - U h eat and/ or pressu small areas; permit th e w th re. L aser lig is remark elding ab h t may b e defined b e focu r. as th e ced b sed to v le concentration of pow process to occu P IES localiz ed coalescence of metals or non- metals produ stem is a elopment 6 a M and nit [ 1 featu directly effects processing T a self- assess sis sy . and sing [ 1 introdu enomena ilosoph u ning elded ith ear ent nits) u approach is ph g research ow tracted from sis w detects e q sig th analy oreov process namely orith niq q sy process traditional ] . elding process. les A tu sis implemented directly some critical parameters/ ph elding of analy set of information is ex ing e laser w enab [ 3 1 en ty pes of g elded U at some e w ev ncro Intellig is elded component. ming e ex ( e. g e X eres, and le and au e Y h re, most of times carried re ting h a h lig ersatile ig ase is a time- consu classification u v metals or non- metals at h ] . ning ality increasing and ices tu u l procedu e address th q e e process. th an erfu ires a costly associated w ring ing ltrasonic w procedu av pow m, controlled atmosph ith laser e an on- line q ring u In addition, ex u ith low acu h e w th th e sensors ob du er, ides u artifact req w th offline inspection of each parameters) . t is to ] . eneral, improv ou ely ers w inspection ph rarely to relativ oreov assessed b S e s for j oining amb small areas [ 2 g elding du elds in air, v riz ed ch In w sion at allow ce w pressu laser diffu y ery er can Since a radiation, laser the beam ref lectiv is e a beam composed properties of partially ref lect the light and a big part of pow er can bou nce back . T light, w L iq u ch more pow he v point metal v apor. apor opens a deep and narrow ( depth/ w bu idth) threshold pow ork eyhole laser w process: a k eyhole, piece. w hen O w ill of pow cau the produ se K is low v ery er is able absorbed near the changes in k t becau conf igu hav e the e hav f ew eyhole − not se all the metal in the w j oint A ny E v in the en if u beam can pass throu ithou t w elded mu ej ected f rom the k lens damage as w ou r A ) . R eld togenou s: laser w T e are − penetration depth, − misalignment of − porosity ( spontaneou pow − T aser P er lack ow ( t= the R T he ex of in Sinar D 0 pling in mou s and cau er lev ms) in detecting rce. T res ex e are interested er new samples, bu ing this resu lt du t e to ne the classif ier, classif ied f or by the it the process) , the dif f erent error ned to w ecu e solv consider e a an specif ic ad-hoc class of s to simplif y the system tion of iou the classif iers. s section w f ramew ork e are look ing f or choosing of the ith correctly k a now self -tu ning process process of su itable ledge, and then au classif ier u sing self -tu w can f ew be f eatu ef f ectiv res, by ely classif ied solv ed of ex mean by pert tomatically selecting the optimal ning techniq u es. I I I . C el ( -1 0 in laser sou % ) of laser sou rce, rce. elding process are: e been carried ou laser sou rce [ 1 8 t by u u er lack onv D F E C T the T re redu ction. ersely, u the F E detection A T U of R E the E X T pow R A er C f rom the I O N decrease en f rom the grid cu or rrent on the f f icient inf ormation to solv signal T e that task photodiode is u sed . to the dataset in strial env the ironment, high f req signals coming f rom u ency noise the process; to e did a spectral -pass f ilter. A been done to f eatu re bseq redu low tremely e to the indu analysis in order to select the correct low ality t by u u ce ent the dow n-sampling dataset in operation order to has speed u p the traction and classif ication. igu re 2 show s the signals af ter being processed by the -pass f iltering. ex tracted f eatu du ration ( T order ce a compression of D su ex he f irst is I t is ex N s, the signal tak present F e the f inal q S A separate the correct signal f rom the noise w sing es f rom signals. eatu important since it can produ E oncerning pow ] . traction phase and can be carried ou he second phase is F D classif y penetration, misalignment and porosity f ormation. and I nf rared radiation f rom the applying traditional techniq T racy in tational load. ity and parameters, both ypical nted samples, he methodology presented to achiev eatu e complex sed by misalignment ring the w rrent) 5 w n. problems tu tomated laser possesses su ired du 3 ming phase optimal classif ier, in terms of cing spatter, porosity, and interested periments hav C samples pport a parallel ex set the sensor e a good accu correctly e stated also in the prev a er, the material being of consu ith linear and non- nded the compu his choice allow f or a general au C cou 0 s w def ining nces of f time classif ication ailable to tu now these T mm gap classif ier can be decomposed by three phases. the F A is 1 u er ( grid cu T and to su the ) , he signals acq process. elding errors. his lts in the laser sou decrease in laser pow − w T st bou a classif ier w are of nk specif ically samples. oreov tion ercome af ter . 2 ring the ny non-metallic contaminants get elding and f au er lack ov the eyhole, produ w o classif ier sed to def ects can be classif ied as or pow T he ell. process distribu sed ith a 0 samples t lties in achiev samples typologies is u elding. ts all in M ndercu alidation ses: ts are acceptable, a f ocu tt j oint w u the eeping bou samples are av the to no f iller metal is become the ithou operator ( there is an intrinsic error w heat egardless of in the beam j u t the other side. ires low eld is being u re 1 critical j oint gh a bu st be clean. def ects in w is ndercu elding it at all; alls and ou I n p elds are au gaps eld. f it-u igu u elding. in ind of e some dif f icu − property ration f or laser w s f or high speed and req lmost all laser w sed. appreciated on w racy and generaliz ation ov dif f erent cau elds, f or that reason it is common tt j oint conf igu ration, f inished w L w the w directly domain transf ormation; in are accu gh to the raining and V I n this phase, the main characteristics w : 1 little by ing time classif ication by k elding is a , reation, T linear components in order to achiev nd the laser 0 ork the considered dif f erent k this he aspect ratio eyhole w changes remark machines ration allow in inpu w . pow hold the assembly together ( F w : 1 irradiant the er ce thin and deep w conf igu w of w in spectral − asers to select the bu u T signals ality. L A eyhole. re elds can be as high as 1 nd 4 processing, ddenly nce the irradiant is high enou most Small threshold u k er is absorbed. f orm w of pressu he third phase is the C the classif iers. I n order to satisf y the real-time constrains, du e the boiling channel arou hat is called a k t is more commonly arou T the classif ication designing phases it is pref erable to select f ast and parallel rf ace melts. absorbed su re abov beam, f orming w q x increases, raising the metal' s temperatu generating of er f rom the incoming radiation than solids do, so the heat f lu and T nded by isible light. hen the su classif iers maintaining racy of system. the incoming en better than v ation drastically changes w id metals absorb mu satisf ied constrains on the accu to strial laser types emit inf rared hich metals ref lect ev his situ and permit to obtain less complex light tend his problem is compou the f act that the maj or indu T by metals to ) of detect greatest positiv its mean F rom the pow er signal ( F igu re 2 . a) w e res ref erring to the mean intensity ( A) , and the u sef u lack in l part of the e and negativ ( respectiv ely F 1 pow the signal. er sou rce e dev iation of and F 2 in M w oreov e er, in detect the the signal f rom the f igu re) then synthesized in the m w el ding F r o a x im u m p o w er m the f il ter ing , w o e r ig ex ina l w el ding tr a c ted f ea tu sig r es a r ia nc e; these index p th. A l o enetr a tio n dep r ef er enc e o r der sig to isa l ig dev ia tio m u ex u u ig p o r o l itu de ( A the u , 3 p int e T he c o tr a c tio c o m c h a p u e o u m o m n p l ex ha s l ing m r ea l - tim .b n du b r ing nm the f v iew , o f een e na l l y c o p m the k ep t er f o p e b o f u p - p I V o r o f l o na l m del ig u r e 2 the o .b etw o r ithm ssib l e to s f o l o a nc es, no so r . T in no a na l ysis ha s b sp o H E m p o is p su y a p o A L G O R w r es to o f r m b r u l o I T H M o F m is ht o du ntr o ed o a s b l o l l o g p l ex m u F T T 2 c k s w sa m T 1 A A A 1 u o w e r ( a ) F w a e n l d d w in e g w l d in it h g ( b s e l e ) c s ign a l s t e d f e a Fmax 1 F F in t u a r e c ex l e w is g a el ding so e im p f r enetr a tio ther , m their nted p e the c o sed ing , f o in no − the l o w − the L a ser ( N - p m r c o m o p o r o u c o a s n dep c essing r ing then n p l ex ity o f ea tu w r es ith f no na l o ex r esp n– p o w r d e c r e r s detec tio w e a c tiv l e p s f c tr a c tio ec t f t c o m p c essing n, to ( a ) a n d 1 0 m u ting w e c a n nu m b u the p r r e the the N o c o w e r b r e a ss f il ter ing P o w er F ha s c o ea tu r e E m x p l ex ity O tr a c tio ( N ) , n ha s c o T 1 m p l ex ity 2 2 1 t 2 A Fig. 4 ) a k d o w n ( b ) f na l : H p f a r t r se er 1 s a te a nd f o the A o n l e is r esenc e o Fmax e p ( a ) o 2 a er y H T e y v the sa m ssib so r o ) ( b p ting s ( a ) % u r ithm th a r e c l a ssif ied er r o . I f the p ( b 0 p ) , D e A . 1 her e o ented b D Fig. 3 m the a l g l em nting r r ec tl y” , nito ea c h sig the ta tio l es in the sig F T def ec ts. r es a nd the f t a r t o en in ities w tr a c t f ea tu p iv hier a r c hic a l a c tiv r esent tha t c a n b n a nd p l e f o r ithm 2 ( b o r ithm n 2 ( a ) . P o o c essing a ining A Fig. 2 ssib r o r ep T a x o p l ied to s ea c h o o du n a l g a sed ity) . nl y a f ter o na l p c k ic b n a s p l es ( the r em m “ m ent m o sig es a r e a p hl ig n m desc r ib O 1 r ithm sities. l l o ted in o c l a ssif ic a tio the a l g f o u a r e c o er the c l a ssif ic a tio s r ef er s to endentl y f r o r o ha se. F hig l e c o seq T o r der c k tec hniq er f o b c a n es. f ea tu u p f a l g detec t a s so l o c l a ssif ied ec tr a l een c o r a y b r e o he a c h to indep ) . typ the w T ha r dw P f a r e r es r w ns. ) c tu . nded l o te, b f ea tu een the er r o na l l y .b u is sim o 5 c l a ssif ic a tio na l s r el a ted to sel ec ted n b , 4 r o a nd ia tio a nd H r o he g del ; r dina tes ( D el y sig ) i r e c l a ssic a l a in o n ( T u p T in he str u ig a p a nd o these dev o F c a l sities tw o T ea n c l a ssif y sig r a tio c o a ss m il d a the e du m it is p a l g r m l ex ic intentio sed to een ec tiv tha t ina tio w the r ef er enc e m ent ( F r esp l o the r esent e o b r e to to etw the c u w ef o , w n p m a in f iv in r r ec t a r tif a c ts; o l a tio a r e isa l ig sho ity b o tr a c t the tim f f f ic ient disc r im ta tio p p 2 the m b es a r e u r ef er r ing r e e ex f im na l , intensity, f r o a nd 4 a l ita tiv su u f o a x n- c o it a ) i r r ec t a nd no su a tio a ss f il ter ing inter p r es ig s o - p ic f ea tu F w dif f er enc e a nd m er m b sities w er , r es 2 c u I n detec t c o u a c hiev y tr a c t ent. m sed to c o q v inim F p p r eo f ter b ns, in ter m the a m o na l ex nm in detec ting M c tu r ef er r ing intensity a nd v m f l u ( Fmax) . m is a . P l ign o r o m ) s e it ie n t s e ( a r r o ) r s a n ( b d ) the − c o O O w n a l i d f a m p u e to l e ( N a p p m n n p a tter n a s s i g n b ed ei g hb o el o n the n ei g c a s e, g u hb n k o s i ty F ea tu r e the r el ev a l E x m p E l ex x i ty n tr a c ti o a n t f ea tu tha t, q u b a l i ty y p a n tr a c ti o O 3 ( N ha s n c o ha s i n o f o c u a n c l a s s i f i er . W c l a s s i f i er s : n eu r a l c o l e) s [ 9 ] . a f i ts hb ei g hb n u r o n p n l y w n d ha s o es f o ) , m p l ex tha t c l a s s . c o ei g n o p n o the c l a s s i f i c a ti o o v o m p l ex i ty i s to a j o the g h d d es i g ei g f ea tu p a ta n r o c o , ti o hb the n w u n n o n r es r u tw l e a n i n o f b to u e r ef u a l s o b o n s i d f g to n a n g u n k o o - n f i ts k - n ea r es t n ei g hb i f the s ed I n k - n the m f n a j o u ei g ep hb o a l u p l ex n o r ed ta ti o u n c ti o m p ei g u a l W n l ex hb o e o l o n m a n o m u d t m c a u f w d L P o o w q u P as ly no m is s it io F , n etho P eat u P C o r o las o r o s if ic s M it y x t r ac t io F n eu r a l i th d d u en t a las o u s l em to ti f i ed L F as F it t ing er P eat u x t the m E x t r ac t io n L n o w w L L as er las P enet r at io s if ic at io n F er q P eat u Signal u as as t r ac t io is s it io F er P r es E n ilt er ing o w er x t r ac t io n P n las at io n o s w if ic er at io GOOD GOOD GOOD NO GOOD NO GOOD GOOD NO GOOD GOOD NO GOOD Fig. 5. The Algorithm g o n n f b er i n p i th s i n a n d c tu eu r o o f u a the the T he r e; f o s , f o n s a m ts e the ea r ) . p i m the p r o f ea tu r es i n p r r l es a c ts i n r m f a ti o k f U s i n e i th r i o w r i the s a ti s f a c to w a y n , to g w a n a te the p a n d er f o K e r ed k u N t f ea tu u i th c e u c e the - n ea r es t s i n r m r y N r e w r ed the es s t r el ev w c l a s s i c a l a ti o a l u n l o ea c h f ea tu thi s e b a - p eep a o w to s e a n to g s c es s the s el ec ted f o e u a l r m v o n n b r w n s tr u t a l l W I n k o t o . f o es ti m nt ing if ic . r t enet r at io r es n c e o i n s e. c f s i x ea n a n i r ed ] o t ta i n m r k i d f m f f o o i l i es . c l a s s i f i er . 0 u s ed l i n o o e o u u a i n b er c a n r o o n s o m a ti o n eu i n b er g l em y nt ing r e E M C n r o m b the i f f er en [ 1 C it y at io o eat u e b u o b m p A C s r e E r o r m u thei r te tha t n e a m t n P - F o s i g the n o f o etw er n u l ed the r el ev n ilt er ing ial n t o m a b p the a c q w e i d a l , n u w the n l a y s n u n f en th f a m o etec t, Welding Signal c n o n t to b d the etho e o r f o b k a c hi ev to o he n f g t d i n i f i c a ti o r a l o the n r i ty S A o s i g a d etho c y i ty ea c h er r o T i ty to e tr y d r n . eu n u en n the s a m n tp d c l a s s i f i er n ep o r a l c ti o u o m ta n o d s i c a l r ta n ta i n n l i c s k eta i l ed a r d o d f hy p eu c l a s s i f i er , ea c h i m c o r e o m m en D i ts f u the the c l a s s i f i c a ti o the c l a s s i f i er d i t d the p c a n r w n er b r te. d he n - f o hy p o a n T a ti o ec t the c l a s s i f i c a ti o l ea v ea r es t the s ec o i f c o n s , I t i s r a c y . the r ed r s o p r k f r o . ] . f o u l e the c l a s s i f i er s g , [ 9 n q r u d a the c o r i s ti c m f i ti n r es r es p n n n l o c l a s s i f i c a ti o - i s o o p r f eed c ti o the v ec t to a c c u ea r es t the c l a s s i f i c a ti o s ed c o a i s o d tr a c ted heu i s ea r es t n a n x a n n o etw i r ec tl y r es p n w er i ty n - n f ea tu r the n r a l ] ec i f i c o ( the a c ti v f u l ex hb n n c l a s s i f i ed o t the k p r ed ex the er i n u m s p ei g [ 8 l a y a ti o E d the c l a s s i f i er e c l a s s . e r ef u i n a c c o a l l k r d n l a y er en eu d d c l a s s i f i c a ti o c o t to i ts the s a m f to c l a s s ei ther r i ty c a n o e i n p f d s to o hb en the k hi c h the c l a s s i f i er s tea d ta k o ei g t r ea c h a the i n a c ti v l em n d d c o e a n o r b o ea r es t n hi d r r ec tl y tu ea r es t n a c c o the f i r s t c a s e, c a n t s tep a i n a tten n to the i f g g a r i ety n I n a te c l a s s n u to the a a y l a r n s ex he m o er ea r es t r . e m i n el o r d hy a tter n a tter n t b T c l a s s i f i ed p I n c es s i n s i s . l i c i ty , p hb n the n i r e en i n s o a t l ea s t the m w p s ed es ti m a r ti c u n n c l a s s i f i c a ti o i ty s . i s o n to d u , - n s i m hi l o to o o o r o k r k a tter n r s k a een ea r es t n o n o a l he p p n tu b T the etw c ep ha s tha t ei g n n e u r es r o a l y a c q m r s n r es tr a c ti o to hu to r s x er ts A n E p n n r e c o i s o . ea tu ha s n i s ea r es t F g ex y r u r i ty i tti n b i ts l i c a ti o a j o ea tu the c l a s s i f i er a r d ea r es t n F g ti f i ed f N r el i es F c l a s s i f i c a ti o o r w ti n r o the - f o n i a l t the f i n a ta r u o the i l i es D u m n ) , hi d en en a te f eed o etr a ti o ( N ) . c l a s s i f i ed v o P ( N l em i th d n en O ) , c e i d el o p P i ty l y M ( 1 O ev o the − d l ex the − a s er p the P − i m L m a n g the c e o r es f o f r The topology applying the of the c asc ade neural network c orrelation different error type c lassifiers. B is designed algorithm [ 1 1 ] interv by to im oth feed- forward neural network c lassifiers and k- nearest neighbor c lassifiers hav Figure 6 we plot alidation set ( m trials) . the results with a v the that m with iation ov er 1 0 0 the parable in ac c urate c lassic al perform one and anc e, in v the neural onc e 1 alidation. the to 1 The the m c lassifier has notic eably error a lower m ax c ase. M oreov al c om plex im with respec t to er the ity the of best c om 4 ity inv estigate the reproduc ed the sam whole set of 1 0 c orrelation c om topologies. notic eable c onfirm of feature e c lassific ation ex for m eac h ethod The differenc e to inv the leav estigate of this ing rev eal test error ant features m the training phase we uses part of the av the topology L ev network and selec tion. enberg- M arq the The uardt preproc essed by norm rest training ue to sm possible phase interv use and als) perform estim to all am ate D ep the m the t h 3 aj ority a for the estim B y 2 ] the data are and of sam statistic al ple for bound probability the of B and it the c om position of the the best result in ac c urac y the m it ent when ax im with a different c lassifier um is likelihood ε , the initial giv en, estim s if ic a t io n e r r o r a n d d e v ia t io n o is the num τ distribution, c l a s if ie v is possible the to c om real eric ally and sam ertic al ax m easurem M it h the N ples. G iv en the and c onfidenc e the estim interv ated als error for the lev el of c onfidenc e ) . is there is the true error ε, is is the estim ent ( ex atlab on a P c om plex and the ity ated error inary ev perim entium and m ents hav I I I em ε . I n this paper we aluation of the system m for q e been perform onoproc essor system ory oc c upation for neural networks is lower with respec t of K uality ed by using ) . S inc e the feed- forward N N c lassifiers we c hoose for all the error type detec tion the best neural c lassifier ev obtained. W ith suc h a system the aluation of a standard welding took about 3 M w ple of applying isc lassified sam pute error tabulated present the prelim we r s ust the ) training s m for τ = ber of m I n the horiz ontal ax c onfidenc e f er weights we ator by drawing a random data . 95 in Figure 7 γ = 0 Power Error s ost alidation has been selec ted ov f e a t u r e r e d u c ou t io n n t ( h Error o r iz o n Poros i t y t a l a x is : n u m b e r o f s e l e c t e d f e a Error t u q uality sec onds. Error Fig. 6. Cl a and the ) c onfidenc e approac h N als of c onfidenc e. perim m from ε ( num it is also the ( by ayesian error N ε ated ac c urac y of the best c lassifiers applying ex the between ] . ailable, the ) and the ples av e where thus using and ilies ( k- nn and neural c lassifiers) ) aliz ation and resc aling in order to ount of sam obtain anc e. [ 1 alidation subsets, ε no ed set ple. c lassifier to it: ore perform training we alidation ) ade by alidation are The table shows for eac h error type probability of error ailable data to c ross- v is algorithm speed- up the learning phase [ 1 D for . the m the ount and porosity) Theoretic ally, the off- line test. train m different ac hiev we also c lassific ation ing the a- priori c hoic e of relev power, ents using the type bounds initializ ation the reduc tion perim error results in 0 siz e alidity features c asc ade plex v al I n the c ase of feed- forward neural networks, c orresponding c lassic al c lassifier. To interv sing the plot in Figure 7 from ac c urate network in c ross- v of neural of U ely are an i. i. d sam c orresponding interv neurons, plex c onfidenc e . e the hypothesis that the c ross- v for the two fam ) I n partic ular the best neural network is ounting el independent training and v ore ac c urate than the k- nearest neighbor c lassifier in the in is ( depth, are subset - lev presented in table 1 plot c lassifier c orrec t 0 % The final results of the training phase for our tests are the different ber of hidden neurons ( from ost feature is selec ted. m ean and dev ariable num shows c om obtained s of c lassific ation error on The neural c lassifier has been c reated and tuned selec ting 5 patterns effec tiv reduc ed set of features in term the v The plic itly assum subset e been trained. I n als. plotted as func tion of N the r e s ) . T C l a s s i f i e r T r a i n i n g C a r o b l e s s 1 V . E x p a l i d e a t i o r i m e n e p t h K 4 N 0 N s a m ( 1 - N F F N 2 8 0 o w e r K N N 6 9 F 4 8 N o u n t K N N 5 0 F N 3 9 P o r o s i t y K N F N - N F N 2 1 0 1 9 4 l e s % ( 1 0 9 s a m 0 % l e s 2 % 0 1 s a m l e s 8 p l e s p l e s ) p l e s p l e s % 0 c c u r a c y I n t e r v 0 % 0 % ~ – 1 0 0 – ~ 0 1 0 % ~ 0 – 0 % ~ 0 – 1 . 8 % 0 0 ~ 0 % 8 p % l e s 0 . 3 5 1 0 l e s % N 0 0 % J . ] E H l i o . p ] [5 . C ] D ] L ] G F s o Y W 8 . – 4 % ~ 0 – 4 % F H . . t e r v a l f o r γ = 0 . 9 [10 5 ] S . C O N C L U S I O N S M [12 A a p o r o f n s y w n p e u a u o l e m f o r a l s t e m h t o a c h n t o c o m a t i c r p q u l a s e r e t w o a c h i e v u r k t a t i o a l i t y w s e l d a n n e g a l o l o d o a n a l y g i s i n t r a d d a d p s e l f - t u r e s e n i t i o a c c u . s i s n a l r a c y n t e d a l g k . o e e p i n T g e a s u e r i t h i n m h g m c o s b m r e m b o a l l o i n u n w d s e d e n a t i o . e [13 0 0 ) s = v 0 ) 0 ) 0 ) 4 e r = 1 0 1 e u r o n o s = v 2 e r 1 0 1 = e u g n 9 p N C E g l e n s = v 4 e r 1 0 S l i c a t i o n s i n 8 ” . P e r g s e s ” . a m I n d m u o n p s t r i a l r e s s , 19 l a s e r 6 s o 7 l u t i o n , . u l t r a s o i n U I n F a h l m p n s t e e l S a n p . g . e n “ F e c t r o , S o . i c l o s t r u c t u “ R n g - r a n g r e s ” . e l a t i o e t r a t i o u z z y n l e y . i v n a n n ” . d u s h W N r e v a n a n g 9 P e P i m a g r o c e e d f o p i n g i n s c h g s o e m f O e f o M A r E , i p e l d e u o i n r a l g a p J o p t i c a l u a n d a c o a l , 19 9 a c h i n e n g i n f a c t u r i n r o r n 8 u s t i c . e e r i n g ” . L o l w m o e r n . i n v R E E m 9 T a n r l d , “ C u 19 9 8 g o f t h p r o c e s s e s ” . . l a s s i f i c a t i o n g 6 2 e u M n e 2 9 o t h f L c o n a s e r w f e r e n c e e l d s o n u s t e r n i t i o n a n ” . S N e u d p r i n g r a l e r - V N e r l a g e t w o r k , s ” . . c h 2 a n g M s a c t i o n , “ T N n g r a n e : i n o e c o 19 i e r e . c e s K J i a n l u e b a n . a t i o n I E V t r o c e e d . ; ” , n i c s 0 . W c e , v T n r o r e s s , P . d . P a t t e r n , i e w C A K 19 “ P e n , , r e ” . l , c o e l e c t r o l a s s i f i k i n t e l l i g e t e r s t o e r s i t y D r e ” . F t r o i p m p a t u “ K a O n . n : r i g i g C n n h . S d . e l d r l d K . ; e H a g u g t y e n u n o . p e r i m a n a r d c e e d e t w , , e t w i n r k g i n g e n . o . r k 19 9 o J a n h e . C r a l I n 2 a o s 0 o 0 0 p a s c a d f o r m “ S n a t t e r n a g e ( s ) : e - C a t i o t a t i s t i c a l P o n A n 4 - 3 r r e l a t i o P r o p a t t e r n a l y s i s a n d 7 n L c e s s i n g e a r n S i n y s t e m g s , h t t p : / / w w w . i m ] h t t p : / / w w w . s l a p [16 ] h t t p : / / w w [17 ] t t p : / / w s . o w “ T E o g t e r n i n r a n “ I m s i n I n r a i n T , o e . . c r f . i t / w . r o “ T S r g s . o w f i n c h t h e l l ] I E p . r o i n g O n v i n f o N r a l e u g i t i a l a t i o n f e e d v a l t h e a l u J o a r d N o t f o o r k g e n e t w o i n t h C n e t w l e a r n e s i n r w s , s p a d f e r e n r k s 19 e e d a p t i v c e w 9 4 o f e w o i t h t h e . 2 - l a y e i g h t s ” . N e u r a l n e r . a n B a j . r o y f 0 h ” . i d b l e y m t s ” . e n m W s [15 w M r i t h B o s s , H M a l g [14 h E a p c u e w Y w “ S , e i n r o . H d o 19 n R n o . . N W , n l l , o R i t i o P e x E r o e s t 7 w . . K r a l ] F “ F r l d “ A . U 9 . a n A e u N e . n a n r i d n t t h t h D o A P s i t e c t u 0 . s t i c n n a r q ] n g . T i o . D b 9 H w l a s e r 19 c u u . B r c h 19 A a r s o , . E A , i e m a c h [11] V F 3 J a i n M i n n o e s t N a n e r r i t . e r . t o i x o N 8 n c o a m ] k a l a s , F A r e c o e r o K E s y s t e m H i c s a k s k e c i s i o ] C [9 c 1 1 K N 0 . n i l e y , D y 19 n 2 e r = e u % a r a c t e r i z a t i o n u . J . D [8 B a r s o . T D G . a s e r ] a s e r c h i s s i o b e s = v 8 . L [7 . M 9 “ L y , e l e c t r o e f e c t N [6 . e e d t o M n R e m f i d n o e s t ( B [4 n r o % ) 19 o e u e s t K ~ % d C 1 ) p [3 . N % – ~ O 7 t e s = % 8 – 0 % [1] . o K ( B [2 i g N % R F a l ) 0 ( 3 A ) s a m 1 f ( B % s a m o ) 0 6 r c l a s s i f i e r ) 0 ( ~ l t s ( B % 0 4 r r o e s t l e s % 6 1 ) p 0 ( ~ 1 u ) 0 ( 3 p p s a m ) s a m 0 s a m 5 ) p 0 ( 7 1 1 s ) % ( ~ r e l e s % s a m 2 l e s 0 0 ( 3 % s a m 5 8 ) p p 0 s a m 6 l e s s a m ( 7 2 ) p % 0 1 1 l e s % 0 ( 1 - N F s a m ( 3 p s a m 5 9 ( ~ ) s a m ( 7 M l e s % 0 3 ) p 0 ( 1 - N F l e s % s a m ( 7 P p 0 l E n b D t a h e d y s t e m e s i g T / e c h r g - s i n / a r . c o m / n a n . J o d a n u r n a l y s i s a l , 19 6 o 2 f . p a t t e r n r e c o g n i t i o n