A
Samuele Straulino
Lezioni di astronomia
Per gli studenti di Scienze della formazione primaria
Copyright © MMXII
ARACNE editrice S.r.l.
www.aracneeditrice.it
[email protected]
via Raffaele Garofalo, /A–B
 Roma
() 
 ----
I diritti di traduzione, di memorizzazione elettronica,
di riproduzione e di adattamento anche parziale,
con qualsiasi mezzo, sono riservati per tutti i Paesi.
Non sono assolutamente consentite le fotocopie
senza il permesso scritto dell’Editore.
I edizione: maggio 
Indice
Prefazione
7
Introduzione
9
Capitolo 1 – La legge della gravitazione universale
11
SCHEDA N. 1 – Le potenze di 10
12
SCHEDA N. 2 – Il moto di caduta libera
15
SCHEDA N. 3 – Dimensioni relative dei corpi celesti
19
Capitolo 2 – Stelle e pianeti
21
SCHEDA N. 4 – L’osservazione del cielo con il cannocchiale
22
Capitolo 3 – I movimenti della Terra
27
SCHEDA N. 5 – Il moto dei pianeti
29
SCHEDA N. 6 – Il pendolo di Foucault
37
SCHEDA N. 7 – Eratostene misura la circonferenza della Terra
39
SCHEDA N. 8 – Il mappamondo parallelo
41
SCHEDA N. 9 – La costante solare
42
Capitolo 4 – La misura del tempo: giorni e anni
45
Capitolo 5 – Altezza e azimut
49
Capitolo 6 – La Luna
51
SCHEDA N. 10 – Le dimensioni apparenti della Luna
52
SCHEDA N. 11 – Viaggio alla scoperta del cielo: una proposta didattica
55
Per approfondire
57
5
Prefazione
Questo libretto ha origine dalle lezioni di Didattica della Fisica, che ho tenuto negli ultimi anni agli studenti del Corso di Laurea di Scienze della Formazione Primaria
all’Università di Firenze.
Si tratta di un breve compendio di Astronomia di livello elementare, in cui ho cercato
di utilizzare un linguaggio immediato riducendo all’essenziale il formalismo matematico.
Le “schede” che ho inserito permettono di approfondire aspetti specifici o di suggerire
possibili sviluppi didattici delle conoscenze acquisite.
Sarebbe molto bello se questo piccolo lavoro potesse essere di qualche interesse anche
per gli insegnanti in servizio nella Scuola Primaria, i primi educatori alle Scienze per
ogni studente, almeno come stimolo alla realizzazione di semplici esperimenti con i loro
allievi.
Ringrazio i colleghi del Dipartimento di Fisica e Astronomia dell’Università di Firenze per le correzioni e i consigli ricevuti. Un ringraziamento particolare va ad Annamaria
Cartacci, con la quale ho discusso molte volte del contenuto di queste pagine, che mi
ha sempre dato suggerimenti utilissimi per migliorare la chiarezza del testo, e a Cecilia
Gambi, responsabile del laboratorio OpenLab, per l’interesse e la disponibilità con cui ha
sostenuto il mio lavoro.
Firenze, Maggio 2012
7
Introduzione
Tutti in qualche occasione siamo rimasti affascinati dalla bellezza del cielo stellato, specialmente quando ci è capitato di trovarci immersi nell’oscurità della notte, lontano dai
centri abitati. Il cielo appare allora come una calotta che sovrasta l’orizzonte, costellata
da centinaia di stelle; la Terra sembra il centro di un grande scenario, su cui gli astri si
muovono seguendo leggi precise.
Lo studio dei corpi celesti ha affascinato generazioni di uomini a partire dai tempi
più remoti. Nell’antichità classica gli astronomi avevano costruito un modello del cosmo
che, ponendo la Terra al centro del mondo, permetteva di conoscere con precisione la
posizione delle stelle e dei pianeti in qualsiasi momento e di fare previsioni sui loro movimenti. Tutte le osservazioni avvenivano a occhio nudo, perché fino all’inizio del XVII
secolo non esistevano strumenti ottici che permettessero di scrutare i corpi celesti. L’astronomia degli antichi era una scienza molto raffinata, contrariamente a quanto si può
pensare; tuttavia i meccanismi che spiegavano i movimenti degli astri sulla volta celeste
erano spesso assai complicati.
Nel Rinascimento Kopernik comprese che, se si poneva il Sole anziché la Terra al centro dell’Universo, la descrizione del moto dei pianeti si semplificava. L’avvento, poi,
del cannocchiale permise a Galileo e ad altri scienziati di osservare alcuni elementi
decisivi che portarono, nei secoli successivi, all’affermazione della teoria eliocentrica
copernicana.
Alla fine del Seicento Newton formulò la legge di gravitazione universale, che permetteva di spiegare le traiettorie dei pianeti, unificando il moto di caduta degli oggetti nell’ambiente terrestre e le orbite planetarie come risultati dell’azione di una stessa
forza.
Ma soltanto nel secolo scorso gli scienziati hanno compreso quale sia la composizione
delle stelle e quali i meccanismi che ne regolano il funzionamento. Si è capito allora che
le stelle non sono corpi immutabili e incorruttibili, come gli astronomi dell’antichità li
avevano considerati.
Iniziamo questo viaggio fra i corpi celesti cercando di ripercorrere le principali tappe
di un percorso di conoscenza che ha impegnato l’umanità per migliaia di anni fino ai
giorni nostri (e che, naturalmente, non si è ancora concluso).
9
Capitolo 1 – La legge della gravitazione universale
La Terra è uno dei pianeti che appartengono al Sistema Solare, un insieme di corpi
celesti con struttura e dimensioni molto diverse, fra i quali agiscono forze di attrazione
reciproca. L’attrazione che si esercita fra questi corpi è descritta dalla legge della gravitazione universale di Isaac Newton (1643–1727). Tale legge afferma che, fra due corpi
qualsiasi di masse m1 e m2 , posti a una distanza d molto più grande delle loro dimensioni
(come, per esempio, i due oggetti rappresentati in Fig. 1), si esercita una forza attrattiva
F che può essere scritta in questa forma:
F =G
m1 m2
d2
(1)
Leggendo questa equazione vediamo che per ottenere la forza F dobbiamo moltiplicare fra loro le due masse considerate e dividerle per il quadrato della distanza d; è
necessario moltiplicare poi il risultato per un fattore G, che è chiamato costante di gravitazione universale e nel Sistema Internazionale di unità di misura1 ha un valore di circa
6,7 ·10−11 = 0,000000000067.
L’attrazione gravitazionale è presente fra qualunque coppia di masse nell’Universo; per esempio, nel caso di due oggetti di 1 kg posti alla distanza di 1 m, la forza di
interazione che si ottiene sostituendo nell’Eq. 1 i valori numerici è:
F = 6,7 · 10−11
1·1
= 6,7 · 10−11
12
L’unità di misura delle forze nel Sistema Internazionale è il Newton (N); pertanto abbiamo un risultato di 6,7 · 10−11 N. Notiamo subito che si tratta di una forza piccolissima:
infatti 1 N corrisponde più o meno al peso di una coppia di uova.
Quando, però, almeno una delle due masse che compaiono nell’Eq. 1 è molto più
grande di 1 kg, gli effetti della forza di gravitazione universale diventano facilmente
osservabili, come vedremo fra poco.
1È
il sistema di unità di misura, composto da grandezze con multipli e sottomultipli decimali, adottato ormai
quasi ovunque nel mondo. Fra le grandezze fondamentali del Sistema Internazionale ci sono il metro (m) per la
lunghezza, il kilogrammo (kg) per la massa e il secondo (s) per il tempo.
d
m2
m1
Figura 1: Due corpi di masse m1 e m2 , posti a una distanza d, si attraggono con una forza che è
descritta dalla legge di gravitazione universale (Eq. 1).
11
12
Lezioni di astronomia
SCHEDA N. 1 – Le potenze di 10.
Ricordiamo cosa significa scrivere b n (potenza n–esima di b):
b n = b| · b · b{z
· . . . · }b
n volte
b è detta base della potenza e n è l’esponente. Per esempio, 23 = 2 · 2 · 2 = 8.
Cosa accade quando moltiplichiamo fra loro due numeri scritti in forma di
potenza, se le potenze dei due fattori hanno la stessa base?
Supponiamo di dover fare la moltiplicazione 23 · 22 : possiamo scrivere (2 · 2 · 2) ·
(2 · 2). Osservando che il numero risultante è 2 · 2 · 2 · 2 · 2 = 25 , si intuisce che,
se dobbiamo moltiplicare due potenze con la stessa base, è sufficiente sommare
fra loro i due esponenti (b m · b n = b m+n ).
Per la divisione vale una regola analoga. Per eseguire la divisione 24 ÷ 23 possiamo scrivere (2 · 2 · 2 · 2) ÷ (2 · 2 · 2) = 21 = 2: il risultato si ottiene facendo la
sottrazione dei due esponenti (b m ÷ b n = b m−n ).
Inoltre, se calcoliamo 22 ÷ 23 , si trova: (2 · 2) ÷ (2 · 2 · 2) = 21 = 2−1 , da cui si
può dedurre la regola più generale:
Å ãn
1
−n
b
=
b
Osservando infine che 20 = 21 ÷ 21 = 2 ÷ 2 = 1, possiamo assumere senza
difficoltà che, per qualunque numero b, valga b 0 = 1.
In particolare, per scrivere in forma più compatta e più facilmente comprensibile
numeri molto grandi o molto piccoli, si utilizzano le potenze di 10:
101 = 10
10−1 = 0, 1
102 = 100
10−2 = 0, 01
103 = 1000
10−3 = 0, 001
104 = 10 000
10−4 = 0, 0001
ecc.
ecc.
Quindi un numero come 0,0016 può essere scritto nella forma 1, 6 · 10−3 . Ovviamente per le potenze di 10 valgono le regole di calcolo enunciate per una base b
generica. Per esempio:
105 ÷ 107 = 10−2 =
1
100
= 0, 01
Le potenze di 10 con esponente multiplo di 3 possono essere sostituite con speciali
prefissi da attribuire alle unità di misura. I più comuni sono questi:
Potenza
109
106
103
10−3
10−6
10−9
Prefisso
giga
mega
kilo
milli
micro
nano
Simbolo
G
M
k
m
µ
n
Si osservi che il prefisso corrispondente alla potenza 103 va utilizzato con la
lettera minuscola; di conseguenza si deve scrivere kg, km (non Kg, Km).
Capitolo 1 – La legge della gravitazione universale
13
Consideriamo una persona di massa m che si trovi sulla superficie della Terra e scriviamo l’espressione della forza che agisce fra la persona e il nostro pianeta (che ha una
massa molto maggiore di 1 kg !). Si può dimostrare che per questo calcolo la distanza d
da includere nell’Eq. 1 corrisponde al raggio RT della Terra: cioè la massa del pianeta
(MT ) per gli effetti gravitazionali si può considerare localizzata nel centro del globo e, di
conseguenza, la distanza fra le due masse considerate è uguale al raggio terrestre (Fig. 2).
Quindi:
ã
Å
mMT
MT
m1 m2
(2)
=G
=m G 2 =m·g
F =G
d2
RT2
RT
dove g = GMT /RT2 è una costante di proporzionalità, visto che il raggio e la massa della
Terra sono entrambi costanti2 . La relazione appena scritta indica che la forza di attrazione
che la Terra esercita su un corpo (che di solito indichiamo, con espressione leggermente
impropria, come peso P del corpo3) è proporzionale alla massa del corpo stesso.
La costante di proporzionalità dell’Eq. 2 si chiama accelerazione di gravità; dalle
considerazioni fatte si comprende che l’accelerazione di gravità g è (approssimativamente) costante sulla superficie terrestre: g = 9,8 m/s2 . Come conseguenza di ciò, qualunque
oggetto in caduta sulla Terra, indipendentemente dalla sua massa, è sottoposto a un’accelerazione g verso il basso4 . Se l’accelerazione è costante, la velocità dell’oggetto in
caduta aumenta progressivamente con il tempo; il corpo segue questa legge oraria:
1 2
gt
2
dove s è lo spazio percorso dalla posizione iniziale e t è il tempo (immaginando di far
partire un cronometro nell’istante in cui l’oggetto viene lasciato libero e inizia a cadere).
Questa relazione è valida se l’oggetto parte da fermo, cioè se la velocità iniziale è uguale
a zero; altrimenti bisogna includere un termine additivo. Invertendo questa formula si
ricava facilmente il tempo necessario a percorrere lo spazio s per un oggetto in caduta che
parta da fermo.
Galileo Galilei (1564–1642) riesce a descrivere correttamente il moto di caduta libera.
Comprende che la velocità di un oggetto che cade aumenta progressivamente, ma intuisce anche i limiti di questa descrizione: la resistenza dell’aria cresce con la velocità di
caduta e fa sì che il corpo raggiunga una velocità massima, che da un certo istante in poi
rimane costante. Galileo, però, non è in grado di comprendere perché un oggetto cade;
egli, seguendo ancora la Fisica di Aristotele (384 a. C. – 322 a. C.), accetta l’idea di un
moto naturale di caduta verso il basso. Infatti, nei Discorsi e dimostrazioni matematiche
intorno a due nuove scienze, opera pubblicata nel 1638, Galileo afferma: Dico per tanto
s=
2 In realtà la Terra non è perfettamente sferica; perciò il raggio terrestre ha un valore leggermente diverso da
punto a punto. In prima approssimazione possiamo comunque considerarlo costante.
3 Il peso non è una proprietà esclusiva del corpo: dipende anche dalla massa e dalle dimensioni del globo
terrestre.
4 La forza con cui un oggetto viene attratto verso il basso, secondo l’Eq. 2, è proporzionale alla massa m
dell’oggetto stesso. Questo significa però che l’accelerazione è costante. Infatti, per il secondo principio della
mg
F
=
= g.
dinamica, a =
m
m
14
Lezioni di astronomia
m
RT
MT >> 1 kg !
m
Figura 2: Per calcolare la forza di attrazione a cui è soggetta una persona che si trova sul nostro pianeta si può immaginare che la massa della Terra non sia distribuita, ma si trovi nel centro
del globo (questo passaggio non è scontato! Tuttavia è corretto, anche se la dimostrazione non è elementare). Un disegno di questo tipo può essere utile anche per far notare agli
alunni più piccoli come si dispongono gli esseri umani sulla superficie terrestre alle varie
latitudini (i piedi sono sempre ben saldi sulla Terra e gli oggetti che cadono sono attratti
dalla forza di gravità della Terra.)
Capitolo 1 – La legge della gravitazione universale
15
che un corpo grave ha da natura intrinseco principio di muoversi verso ’l comun centro
de i gravi, cioè del nostro globo terrestre, con movimento continuamente accelerato, ed
accelerato sempre egualmente.
Alcune decine di anni più tardi Isaac Newton capisce che qualsiasi corpo che cade
sulla Terra è soggetto alla forza di attrazione del nostro pianeta, descritta dall’Eq. 1; comprende inoltre che quella stessa legge matematica descrive l’attrazione della Luna da parte
della Terra, l’attrazione della Terra da parte della Luna e in generale l’attrazione mutua
fra due corpi qualunque.
SCHEDA N. 2 – Il moto di caduta libera.
Uno dei primi esperimenti che ciascuno di noi fa nella propria vita riguarda la caduta libera: infatti il bambino piccolo si diverte ad afferrare gli oggetti e a lasciarli
cadere. Responsabile di questo movimento verso il basso è la forza di attrazione
che la Terra esercita sui corpi che si trovano sulla sua superficie. Aristotele, vissuto nel IV secolo a. C. ma ritenuto l’esponente più autorevole della filosofia della
natura fino al Seicento, afferma che gli oggetti pesanti cadono più velocemente
di quelli leggeri. Se confrontiamo la caduta di una piuma e di un sasso, anche
noi possiamo essere indotti a credere che questa affermazione sia vera. In realtà,
il problema che stiamo affrontando è troppo complesso e non siamo in grado di
tenere sotto controllo tutte le variabili: la piuma e il sasso sono molto diversi per
massa, forma, densità ... Proviamo allora a semplificare.
Prendiamo due fogli identici e appallottoliamo uno dei due. Se li lasciamo cadere
insieme vediamo che il foglio steso impiega molto più tempo ad arrivare a terra.
Dato che i due fogli sono uguali – solo la forma è diversa – l’esperimento ci
suggerisce che l’aria, che i fogli devono attraversare, abbia un ruolo importante
nella loro caduta.
Galileo comprende chiaramente che l’aria è un “impedimento” alla caduta degli
oggetti: È (torno a dire) l’intento mio dichiarare, come delle diverse velocità di
mobili di differente gravità non ne sia altramente causa la diversa gravità, ma che
ciò dependa da accidenti esteriori ed in particolare dalla resistenza del mezzo, sì
che, tolta questa, tutti i mobili si moverebber con i medesimi gradi di velocità.
(Discorsi e dimostrazioni matematiche intorno a due nuove scienze, 1638).
Facciamo un altro semplice esperimento utilizzando un libro e un foglio steso un
po’ più piccolo di questo: se appoggiamo il foglio sopra il libro e li lasciamo
cadere, notiamo che i due oggetti arrivano a terra insieme. Questa volta il foglio
non mostra alcun ritardo nella caduta per effetto della resistenza dell’aria. Infatti
il foglio segue da vicino il libro, che provvede a spostare lateralmente l’aria da
attraversare; dunque non c’è più alcun impedimento alla caduta del pezzo di carta.
Consideriamo adesso l’attrazione che, secondo l’Eq. 1, si esercita fra due corpi celesti qualsiasi, in particolare fra il Sole e un pianeta. Perché il pianeta, attratto dal Sole
mediante la forza di gravità, non cade su di esso? In Fig. 3 ho rappresentato il pianeta P
che si muove su un’orbita attorno al Sole, nella direzione mostrata dalle frecce. La forza
16
Lezioni di astronomia
senza la gravità !
v
F
con la gravità !
F
v
Figura 3: Il pianeta P si mantiene in orbita attorno al Sole grazie alla forza F . Infatti, in assenza di
attrazione gravitazionale, il pianeta percorrerebbe una traiettoria rettilinea con velocità v
costante e si allontanerebbe indefinitamente dal Sole. Si osservi che i due vettori F e v
rappresentano grandezze fisiche diverse e quindi non si sommano.
con cui il Sole attrae il pianeta è indicata dal vettore F ; la velocità del pianeta è invece
rappresentata dal vettore v. Osserviamo che, se nessuna forza agisse sul pianeta, questo
si moverebbe di moto rettilineo uniforme (come è stabilito dal primo principio della Dinamica): in figura la sequenza di puntini marroni indica il destino del pianeta, supponendo
con uno slancio di fantasia che l’attrazione del Sole si esaurisca improvvisamente. Si
intuisce pertanto che l’attrazione gravitazionale è necessaria per mantenere il pianeta in
orbita attorno al Sole.
La forza F , per il secondo principio della Dinamica, produce un’accelerazione a nella
stessa direzione di F . In questo caso l’accelerazione corrisponde a una variazione della
direzione della velocità v verso il centro dell’orbita (ed è chiamata pertanto accelerazione
centripeta). Questo accade tutte le volte che un oggetto viene mantenuto in rotazione attorno a un asse: è necessario un vincolo che impedisca all’oggetto in moto di allontanarsi (si
pensi per esempio ai sedili di una giostra, trattenuti da un cavo collegato con la struttura).
Nel caso dei pianeti è l’attrazione gravitazionale del Sole che funziona da vincolo.
Il Sole è il centro di attrazione del Sistema Solare grazie alla sua massa: oltre 300 000
volte più grande di quella della Terra e molto maggiore anche di quella degli altri pianeti. L’Eq. 1 ci ricorda, infatti, che è proprio la massa degli oggetti che interagiscono a
determinare, insieme alla distanza, l’entità della forza di attrazione.
I pianeti, fra cui la Terra, si muovono attorno al Sole percorrendo orbite che hanno
la forma di un’ellisse (più o meno schiacciata, a seconda dei casi, come vedremo meglio
Capitolo 1 – La legge della gravitazione universale
17
in seguito). Le orbite di tutti i pianeti giacciono approssimativamente nello stesso piano5 .
Molti pianeti hanno uno o più corpi minori, i satelliti, che orbitano attorno a loro: la Luna
è il satellite della Terra.
Per quanto riguarda le dimensioni, il raggio della Terra (RT ) è circa 6370 km; utilizzandolo come unità di misura, il raggio del Sole è 109 RT (vedere la rappresentazione
in scala di Fig. 4) e la distanza media Terra–Sole è 23 500 RT , che corrisponde a circa
150 milioni di km (1, 5 · 108 km). La distanza media Terra–Sole è utilizzata come unità
di misura per le distanze degli altri corpi celesti e si chiama Unità Astronomica (UA).
ESERCIZI
1. È più intensa la forza di attrazione del Sole verso la Terra o quella
della Terra verso il Sole?
2. Utilizzando le proprietà delle potenze, determinare il volume del
Sole, sapendo che il suo raggio è circa 7 105 km.
3. Calcolare quanto tempo impiega un sasso a cadere al suolo da
un’altezza di 1 m, senza considerare la resistenza dell’aria.
4. Se il sasso cade da un’altezza di 2 m, possiamo aspettarci un
tempo di caduta doppio rispetto al valore ottenuto nell’esercizio
precedente?
5 Questo non è vero per Plutone. Tuttavia, secondo una recente classificazione, Plutone non è più considerato
un pianeta a causa delle sue dimensioni (il suo raggio è oltre cinque volte più piccolo di quello della Terra), della
sua distanza dal Sole e dell’orientazione della sua orbita.
18
Lezioni di astronomia
Figura 4: Dimensioni relative del Sole rispetto alla Terra: il Sole ha un raggio che è circa 109 volte
più grande del raggio del nostro pianeta. Si osservi che, per comodità di rappresentazione,
la distanza fra i due corpi celesti nel disegno non è una riproduzione in scala della
distanza reale. Con le dimensioni della figura, dovremmo porre il Sole a una distanza
di circa 20 metri dalla Terra per avere una riproduzione corretta della situazione reale!
Nel disegno, infatti, l’angolo che delimita il disco solare per un osservatore terrestre è
quello indicato dalle linee tratteggiate; molto più grande di quanto non sia in realtà, come
l’esperienza ci suggerisce e come vedremo in dettaglio più avanti.
Capitolo 1 – La legge della gravitazione universale
SCHEDA N. 3 – Dimensioni relative dei corpi celesti.
Il raggio del Sole è 109 volte più grande di quello della Terra (per semplicità
di calcolo diciamo circa 100 volte). Possiamo chiederci: quanto più grande è il
volume del Sole rispetto a quello della Terra? E la superficie? Ci sarà sempre un
fattore 100 fra le grandezze corrispondenti?
Ovviamente la risposta è ... no! Vediamo per quale motivo.
Assumiamo che i corpi celesti siano sfere di raggio r (ma il ragionamento potrebbe essere esteso a qualunque tipo di solido). Sappiamo che la superficie di una
sfera è 4πr2 , e il volume è 34 πr3 . È importante sottolineare che la superficie deve
essere proporzionale a r2 e il volume a r3 : infatti le superfici si misurano in metri
quadrati e i volumi in metri cubi (per il nostro calcolo i fattori moltiplicativi 4π e
4
3 π ... non sono essenziali!).
Con queste premesse, è immediato osservare che, se abbiamo due sfere di raggio
r1 e r2 rispettivamente, e tali che r2 = 2 r1 , il volume della seconda sfera è 8
volte maggiore di quello della prima! Infatti r23 = (2 r1 )3 = 23 · r1 3 ; il fattore 43 π
è presente in entrambi i volumi e non conta.
La foto dovrebbe aiutare a rafforzare questa convinzione: sul piatto della bilancia
ci sono alcune sferette di acciaio, di diametro 30 mm e 15 mm. Come si può
vedere, la massa di una sola sfera grande corrisponde (a meno di una differenza di
pochi decimi di grammo) a quella di otto sfere piccole. In questo caso possiamo
fare un confronto diretto fra le due masse anziché fra i volumi perché le sfere sono
dello stesso materiale, e quindi hanno la stessa densità: altrimenti questo tipo di
misura non avrebbe senso.
Ritorniamo adesso al Sole e alla Terra: per quanto abbiamo appena detto, la superficie del Sole è circa 10 000 (1002) volte maggiore di quella del nostro pianeta
e il volume del Sole è circa un milione (1003) di volte più grande di quello della
Terra!
Come abbiamo visto nelle pagine precedenti, la massa del Sole è circa 300 000
volte maggiore di quella della Terra, mentre il volume è circa un milione di volte
più grande: i due dati non sono in contrasto fra loro, perché il Sole ha una densità
media inferiore a quella della Terra.
19
Scarica

Lezioni di astronomia