Riscaldamento e current drive del plasma del reattore ITER Torino 17 Maggio 2007 Arturo Tanga ITER IO 1 footer text, location, date Sommario • Introduzione: La sfida scientifica/tecnologica dell progetto ITER • I sistemi di riscaldamento e current drive • Risk reduction e ricerca e sviluppo • Iniettori di neutri • Sistemi a radio frequenza • Conclusioni footer text, location, date 2 What is ITER Today? • ITER (“the way” in Latin) is the essential next step in the development of fusion. • Objective - to demonstrate the scientific and technological feasibility of fusion power. • The world’s biggest fusion energy research project. • An international collaboration. footer text, location, date 3 The Mission • Up to steady state fusion power production. • Plasma makes 10x more power than needed to run it. • Optimise plasma behaviour. • Have dimensions comparable to a power station. • Produce about 500 MW of fusion power. • Demonstrate or develop all the new technologies required for fusion power stations, except materials endurance. • Obtain license for construction and operation. • Operate for about 20 years. • Cost about €5bn to construct (over 9 years) and €5bn to operate (about 20 years) and decommission. Cadarache Site The ITER building footer text, location, date 4 Construction Sharing footer text, location, date 5 Immagine del sito dopo la costruzione footer text, location, date 6 Integrated Project Schedule LICENSE TO CONSTRUCT ITER IO 2005 2006 2007 Bid 2008 TOKAMAK ASSEMBLY STARTS 2009 2010 2011 2012 FIRST PLASMA 2013 2014 2015 2016 EXCAVATE Contract TOKAMAK BUILDING OTHER BUILDINGS Construction License Process First sector Complete VV TOKAMAK ASSEMBLY Install PFC cryostat MAGNET Bid Bid Contract footer text, location, date Install CS COMMISSIONING Vendor’s Design Contract VESSEL Complete blanket/divertor PFC TFC CS fabrication start First sector Last TFC Last CS Last sector 7 Contributo italiano all’ ITER • L’ITER e’ vicino, solo 4 ore d’ auto. • L’Italia ha una forte tradizione in Fusione per ITER. • Polito e’ socio fondatore nel consorzio per la ciclotronica ionica (Bosia, Maggiora). • Lo studio e stabilizzazione dei modi si basa sugli studi fatti qui (Porcelli et gruppo) • Lo sviluppo degli ioni neutri sara stabilito a Padova. • Diagnostiche saranno costruite a Milano e Frascati. • ITER RF design fatto da Bosia footer text, location, date 8 footer text, location, date 9 Main Features of the ITER Design Central Solenoid Nb3Sn, 6 modules Outer Intercoil Structure Toroidal Field Coil Nb3Sn, 18, wedged Poloidal Field Coil Nb-Ti, 6 Machine Gravity Supports (recently remodelled) Blanket Module 421 modules Vacuum Vessel 9 sectors Cryostat 24 m high x 28 m dia Port Plug (IC Heating) 6 heating 3 test blankets 2 limiters/RH rem. diagnostics Torus Cryopump 8, rearranged Divertor 54 cassettes footer text, location, date 10 1022 Tipple Product - Diagramme, Status 1996 ITER ignition How do we size a Reactor class Fusion machine (1) JT-60U JET 1021 TFTR break-even JT-60U DIII-D H-mode reversed shear LHD, W7-X 1020 10 Ti (keV) • Ti > 10 keV => ne x τE ~ 6.0 1020 m-3s => ne ~ 1.0 1020 m-3 => τE ~ 6.0 s H-mode Confinement Scaling Relation: 100 -> (to optimise D-T reaction rate) -> (close to Density Limit: nL ~ I/a2π) -> (defines more or less machine size) ELMy 0.41 0.19 1.97 0.58 0.78 τE,th = 0.0562× I 0.93B0.15P−0.69ne,19 M R ε κ footer text, location, date 11 Typical Example of an Inductive Tokamak Pulse (ITER) Burn Burn Termination Current Rampdown Current Rampup PFB Pfus -200 Heating PF Magnetization Plasma Initiation PF Reset and Recool End Pulse Begin Pulse 0 tSOF tSOB Time(s) IP0 Ip (~400s) 600 700 900 1400 ISOD φSOP φOH φSOB ΓDT DT Refuel φEOB neB ne 5% fHe Paux EC(2MW) footer text, location, date Current and “q” profile for an inductive Tokamak pulse 12 ITER - Mission Expected long Pulse and Steady State Performance in ITER Technical • Aim at steady state with Q>5 footer text, location, date 13 footer text, location, date 14 Heating & current drive systems on ITER Design scenarios • Plasma operation has been designed with variable combination of heating and current drive systems: 2 (3) NB H&CD injectors 33 – 50 MW, 20~40MW ECH, 20~40MW ICH, 0~40MW LH, 3 MW ECH for start up, 3.5 MW DNB. • Baseline: The start-up configuration requires 33 MW NB,20MW ICH, 20MW ECH,0MW LH, 3 MW ECH for start up, 3.5 MW DNB. • The machine configuration is consistent with the possibility of implementation of various operating scenarios. The H&CD systems cost app. 400Me • footer text, location, date 15 footer text, location, date 33 2 20 1 20 1 0 0 73 4 16 Neutral beam injection: principles Accelerator Ion Neutraliser source footer text, location, date Residual ion Dump (RID) Plasma 17 The injector The Injector can be separated in beam components (Ion Source, Accelerator, Neutralizer, Residual Ion Dump and Calorimeter) other components (cryo-pump, vessels, fast shutter, duct, magnetic shielding, and residual magnetic field compensating coils) 9m 15m footer text, location, date 5m 18 ITER NBI requirements Neutral beam injection is required since the beginning of ITER operation The NBI system consists of 2 (+1) beams for Auxiliary Heating and Current Drive Beam parameters: P=16.5MW I=40A V=1MV ( to heat the core plasma) t pulse=3600s 1MeV neutrals implies negative ions for efficient neutralisation (60%) footer text, location, date 19 NBI injectors in ITER 2+1 NBI DNB Plan view tangential injection Vertical cross section view On/off axis injection by tilting the beam axis vertically footer text, location, date 20 Ion source design Drivers RF driven Variable capacitors (C2) Arc driven Front view Fixed capacitors (C1) 8 RF drivers 72 filaments Source case (b) 1m Support structure Electrodeposited copper Bias bus bar Integrated design Magn shield SINGAP extractor PG bus bar Both sources mechanically compatible with reference and alternative accelerator footer text, location, date 21 Neutral beam Test Facility Experiment Power supply Maintenance Cooling towers Auxiliary systems At present work is in progress to adapt the generic site to Padova site, which has been proposed by EU as the Test Facility site footer text, location, date 22 RF systems IC H&CD: 1 antenna in un port equatoriale, 20 MW, frquenza varaibile da 35 a 65 MHz EC H&CD 1 antenna equatoriale 20 MW @170 GHz, e 4 port superioriPer il controllo dei modi LH CD 20 MW per il current drive (upgrade) @5.4 GHz Ulteriori upgrade di IC e EC footer text, location, date 23 ICH Requirements footer text, location, date 24 Example of 2 antenna configurations Side view Front Artist view Back • Matching units in interspace or port cell footer text, location, date 25 ICH&CD system • Conceptual design in progress with important contributions from EU, IN and US on the ICH system components. • Antenna concept guidelines chosen in May-June, and will allow to specify the generators and transmission lines. • Procurement packages for Transmission lines (US) and generators (IN) will be defined for October 2007. • Detailed design phase for antenna port plug and port cell matching units will start this summer for 3 years as an EU collaboration CYCLE, in parallel with corresponding R&D footer text, location, date 26 ITER ECH&CD System 170 GHz gyrotrons Start-up gyrotrons 1. 170 GHz, 20 MW 2. 127.5 GHz, ≥2 MW, pulsed [ Function] Heating for Q>10 and L-H transition, Current drive for Steady State operation, Stabilisation of MHD instabilities, Plasma start-up assist. Corrugated waveguide Upper launchers Equatorial launcher footer text, location, date 27 Lavoro teorico • Modelling of macroscopic magnetic islands in tokamaks • F. Porcelli, et al a Istituto Nazionale Fisica della Materia and Dipartimento di Energetica, Politecnico di Torino, footer text, location, date 28 footer text, location, date 29 R&D Status of 170 GHz gyrotron Specifications :RF output power≥ ≥1MW, Pulse duration=400s~3600s (CW), Efficiency≥ ≥50% with a depressed collector. Gyrotron (RF) Gyrotron (JA) Coaxial Gyrotron (EU) 0.6MW/250s, 0.6MW/1hr/46%, 0.82MW CW tube was constructed. 0.5MW/300s, /600s/56%, 1MW /800s /55% ). High power test in 2007. 0.95MW/70s. Issues: Different Gyrotrons, magnets, power supplies & thermal requirements, spares footer text, location, date 30 Launchers with front steering mirrors ~6m [Upper Launcher] Miter bend [Equatorial Launcher] [Steering range] Upper launcher: Vertically 53º~69º with 18º inclination for USM and 39º~61º with the inclination of 20º for LSM. Equatorial launcher: Horizontally 20˚~45˚ footer text, location, date Transmission lines Window Front shield Driver unit 24 RF beams 20 MW ~3 Steering mirror m 31 High Power Transmission Line at 170 GHz (63.5mm) JAEA Objectives • High power rf experiment for the launcher components • Demonstration of MW-level & CW transmission at 170GHz In-line switch Teflon attenuator SS load Pre-load SS load End of line Switch GV Transmission line (~40m, waveguides, 6bends, 1switch, 2 loads) footer text, location, date 32 Lower Hybrid footer text, location, date 33 Why LHCD on ITER? "ITER Plant Design Specification: Physics performances. ITER Device should: -achieve extended burn in inductively driven plasmas with the ratio of fusion power to auxiliary heating power of at least 10 for a range of operating scenarios and with a duration sufficient to achieve stationary conditions on the timescales characteristic of plasma processes. -aim at demonstrating steady-state operation using non-inductive current drive with the ratio of fusion power to input power for current drive of at least 5." Hybrid scenario • • LHCD is the most efficient non inductive method : efficiency @ 5GHz in the range of 0.2~0.3x1020A/Wm² at (Te,ne) expected for ITER, far above NBI, ICRH, ECRH. Off-axis CD needed for long shots at high βN in ITER, and other systems are inefficient ☺ Higher power density ☺ Less power absorbed by α q factor 5GHz : Higher RF losses LH Radius footer text, location, date 34 LHCD System footer text, location, date 35 LHCD present concerns • Confirmation of scenarios : – – • 0 power for start up (procurement package uncredited) 20 or 40 MW in later configurations Confirm choice of frequency : – – 5 GHz correspond to low alpha absorption, but high technical difficulties 3.7 GHz well known, but larger absorption on alphas; • R&D program on source (if 5 GHz) and RF window and transmission line technologies. • Provision of space for generators (assembly hall), power supplies; cooling requirements (in start up configuration) footer text, location, date 36 Conclusioni • La costruzione di ITER e’cominciata. • Essa durera circa 10 anni • Una parte importante sono i sistemi di riscaldamento e di current drive. • Un grosso sforzo di ricerca e necessario per raggiungere questo obbiettivo. • Allo stesso tempo dovremmo provvedere gli strumenti per fare gli esperimenti con queste apparecchiature, ed I loro effetti sul plasma, per raggiungere le prestazioni necessarie. footer text, location, date 37