Antenne e componenti passivi per misure di fondo cosmico ANTENNE A RIFLETTORE Fabrizio Villa INAF / IASF – Bologna [email protected] 1 Angolo Solido del Beam 2 QUALCHE RIFLESSIONE • Quali caratteristiche deve avere un’antenna per fondo cosmico? • Risoluzione angolare • Misure di Spettro > 10 gradi • Misure di Anisotropia e polarizzazione (lensing) - ordine dei primi d’arco • bump di polarizzazione modi B ~1 grado • aberrazioni ottiche contenute • Bassi lobi laterali -60dB • Adatta per lavorare alle microonde (GHz – THz) 3 horn e riflettori Come guadagnare in risoluzione angolare? 4 horn e riflettori 416 PENCIL-BEAM AND SIMPLE FANNED-BEAM ANTENNAS ~Sm,, 12.2 focus; the coordinates are R, O, +, with O the pola~ angle and I#Jthe azimuth angle, the latter being measured from the zz-plane. The reflector is cut off by the “aperture plane” A at z = Zo. The diameter of the aperture will be designated by D, and iix area by A. The “shape” of the reflector is specified by the ratio of focal length to Come guadagnare in risoluzione angolare? z 1 1! / Y . A v I I I .f+zo I A FIG. 12. 1.—Geometrical S.Silver, Microwave Antennas Theory and Design parameters for the paralmlo idal reflector. diameter, j/D, or alternatively by the angular aperture T, that is, the angle subtended at the focus by a radius of the aperture. The relation between the f/D ratio and the angular aperture is given by Il modo più semplice è posizionare una sorgente puntiforme nel fuoco di un sistema ottico (quali un riflettore od una lente) per produrre un fascio di raggi paralleli (4b) 5 Figura di diffrazione 6 7 PLANCK, WMAP, BOOMERANG, ECC. 8 UN’ANTENNA SEMPLICE: LA PARABOLA 9 IL RAPPORTO FOCALE Tipici valori di F#: 0.4 – 1.4 Angoli: 60 – 20 gradi 10 ILLUMINAZIONE DELLA PARABOLA Parabola Livelli di dB 0dB Fuoco 11 FEED CON DIAGRAMMA UNIFORME Parabola Livelli di dB 0dB Fuoco 12 ILLUMINAZIONE UNIFORME Parabola Livelli di dB 0dB Fuoco 13 DIAGRAMMA DEL FEED “REALE” Parabola Livelli di dB 0dB Fuoco 14 PERDITE PER ILLUMINAZIONE E SPILLOVER Parabola Livelli di dB 0dB Fuoco 15 ANTENNE AD “APERTURA” Pattern Illuminazione 16 TIPI DI ILLUMINAZIONI 17 DIAGRAMMA DEL FEED “REALE” Parabola Livelli di dB 0dB Pbordo Fuoco Pcentro 18 L’ EDGE TAPER (ET) Potenza incidente al bordo del Riflettore ET = Potenza incidente al centro del Riflettore ET ( dB ) P bordo = 10 * Log 10 ≤0 P centro ET = 0 ( dB ) ET < 0 ( dB ) --> Illuminazione Uniforme --> Illuminazione NON Uniforme 19 EDGE TAPER (E ALTRO) NEL CASO DI WMAP 20 EFFETTO DELL’ ILLUMINAZIONE FWHM (arcmin ) λ 180 = 60 * [1.149 + 0.0135 * (−ET −10)] * D π D=1500 mm ; f = 30GHz (100GHz) ET FWHM 0 dB 23’ –10 dB 26’ – 20 dB 29.4’ – 30 dB 32.5’ (9.8’) 21 EFFETTO DELL’ ILLUMINAZIONE Caso Reale Feed Horn at 100 GHz ET 30 dB @ 22° Feed Horn at 100 GHz ET 15 dB @ 22° Feed Horn at 100 GHz ET 23 dB @ 22° Feed Horn at 100 GHz ET 10 dB @ 22° 22 EFFETTO DELL’ ILLUMINAZIONE Caso Reale 23 MAIN BEAM E STRAY LIGHT Main Beam Sub Spillover STRAYLIGHT Potenza proveniente dal cielo che viene misurata nei rivelatori, entro la loro banda di frequenza di lavoro, e Main Spillover che non è originata dal main beam del telescopio Main Spillover 24 COME SI CONTROLLA L’ILLUMINAZIONE ? • Scelta accurata del feed • disegno dell’horn • Scelta della configurazione dell’ottica • F#, Doppio o singolo riflettore, ecc... Il Feed non puo’ essere disaccoppiato dal riflettore Il telescopio e’ composto da Feed + Riflettore 25 “GAUSSIAN BEAM PROPAGATION” 26 CONFIGURAZIONI OTTICHE In – Asse Singolo Riflettore Doppio Riflettore Fuori – Asse Singolo Riflettore Doppio Riflettore 27 OTTICHE A DOPPIO RIFLETTORE Si ottengono combinando riflettori ottenute da coniche di rivoluzione Ellissoidi Iperboloidi Piani (caso degenere) Lo scopo e’ di Deviare il cammino ottico e cambiare il rapporto focale del riflettore principale (parabola) 28 ESEMPI DI CONFIGURAZIONI Configurazione Primario Secondario Gregoriano Paraboloide Ellissoide Cassegrain Paraboloide Iperboloide G. Aplanatico Ellissoide Ellissoide C. Aplanatico Iperboloide Iperboloide 29 ANTENNE A RIFLETTORE F/# basso, feed piccolo F/# alto, feed grosso Le configurazioni in asse sono SIMMETRICHE, anche nel beam pattern, ma l’ostruzione alza i lobi laterali 30 ANTENNE A RIFLETTORE F/# basso, feed piccolo F/# alto, feed grosso Le configurazioni fuori asse sono ASIMMETRICHE, anche nel beam pattern (aberrazioni) , ma senza ostruzione 31 PARABOLA FUORI ASSE 32 PARABOLA OFF–AXIS: PARAMETRI Illuminazione non Simmetrica 33 FEED “FUORI ASSE” 34 EDGE TAPER DI PLANCK 35 EDGE TAPER PER PLANCK Top of the reflector 36 RADIATION PATTERN Main Beam Response Far Sidelobes Near Sidelobes Angle from boresight 37 — PG25 ET ⇒ 25.5 dB @ 24° MS ⇒ -7 dBi AR ⇒ 10.56 arcmin — PG27 ET ⇒19 dB @ 24° MS ⇒ -2 dBi AR ⇒ 10 arcmin — PG31 ET ⇒ 15 dB @ 24° MS ⇒ 3 dBi AR ⇒ 9.5 arcmin 38 ESEMPIO ANTENNA SINGOLO RIFL. 39 ORIGIN OF THE FAR SIDE LOBES 40 External straylight (1/2) Main Spillover (a) MB Sub Spillover (a) Main Spillover (b) Sub Spillover (b) 41 DISTORSIONI DEL BEAM Degrado della risoluzione angolare Statistica falsata Degrado della purezza in polarizzazione Difficoltà nel combinare più beam 42 Possiamo Simmetrizzare il beam si ottiche fuori asse? 43 DRAGONE – MIZUGUCHI (DM) l’asse di rivoluzione del riflettore secondario e’ inclinato rispetto a quello del riflettore principale α: angolo tra l’asse del feed e l’asse del secondario β: angolo tra l’asse del primario e l’asse del secondario e: eccentricita’ dell’ellissoide M: ingrandimento del secondario 44 PARABOLA EQUIVALENTE 1/2 La condizione DM ottimizza la X – pol e la simmetria del beam relativo al feed posizionato nel fuoco geometrico Il telescopio a due riflettori e’ equivalente ad una parabola in–asse ma senza oscuramento da parte del feed 45 PARABOLA EQUIVALENTE 2/2 46 PRESTAZIONI OTTICHE DI DM Configurazione ottica COBRAS/SAMBA 47 PRESTAZIONI OTTICHE DI DM Configurazione ottica COBRAS/SAMBA 48 DIRETTIVITÀ, ANGOLO SOLIDO E FWHM 49 GREGORIANO APLANATICO Correzione delle costanti coniche del primario e del secondario Annullare l’aberrazione sferica Annullare l’aberrazione di Coma Beam pattern piu’ simmetrici rispetto a DM 50 DM Vs APLANATICO 51 DM Vs APLANATICO 52 IL TELESCOPIO DI PLANCK Primary Mirror: ellipsoidal, ~ 1.9m x 1.5m Secondary Mirror: ellipsoidal, ~ 1m x 1m Overall Focal Ratio: F# = 1.1 Field of View: ± 5° x 5° 53 Il Telescopio Configurazione Gregoriano aplanatico ottimizzato Frequenza 25 – 1000 GHz Temperatura 40 K and 65 K Massa totale < 120 Kg Lifetime 6 years on the ground + 2 years in space 54 54 CODE V package and GRASP8 software (partially ASAP) symmetric FPU 8 HFI Feeds (1, 1, 2, 4) 8 LFI Feeds (2, 2, 1, 1, 1, 1) Minimisation of the WFE at the aperture with gaussian illumination OUTPUT “Case1” Design 55 Timeline (1992) COBRAS (1996) Phase A Telescope 1.3 meter aperture Dragone – Mizuguchi (minimizzazione della polarizzazione al centro del piano focale) (1998) Carrier Telescope Phase A telescope + Extension of the primary mirror 1.5 meter aperture (1999) Architect Study Ottimizzazione del Telescopio 56 Core Celle esagonali di fibra di carbonio Reflecting coating Adesivo: 5nm di NiCr Riflettivo: 550nm di Al Protettivo: 30nm PLASIL (silicone) 57 Qualification Model 58 Dove siamo con Planck? c ESO 2011 ! Astronomy & Astrophysics Planck early results Special feature A&A 536, A3 (2011) DOI: 10.1051/0004-6361/201116480 Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance! Bersanelli22,39 , Butler38 , Curto47 , Cuttaia38 , Davis50 , Dick57 , Frailis37 , A. Mennella et al.: Planck early results. III. Fig. 12. Examples (one per frequency channel) of the LFI measured be computed in the co- and cross-polar basis according to Ludwig’s third de with respect to the LOS frame. They are referred to the design telescope c −20 dB from the corresponding power peak. The simulations have been optics and physical theory of diffraction have been used on both reflector "%$&( "%$&' "#!$ Reference [V] "%')"( "%')$* "%$&( Difference [V] Sky [V] nce [V] "%')"( "%')$* M. R. C. A. F. R. J. J. M. 23 16,32 49 57 50 S. A. Gregorio , H. Kurki-Suonio , C. R. Lawrence , S. Leach , J. P. Leahy , S. Lowe50 , 22,39 38 37 D. Maino , N. Mandolesi , M. Maris , E. Martínez-González47 , P. R. Meinhold19 , G. Morgante38 , D. Pearson49 , F. Perrotta57 , G. Polenta2,36 , T. Poutanen32,16,1 , M. Sandri38 , M. D. Seiffert49,7 , A.-S. Suur-Uski16,32 , D. Tavagnacco37 , L. Terenzi38 , M. Tomasi22,39 , J. Valiviita45 , F. Villa38 , R. Watson50 , A. Wilkinson50 , A. Zacchei37 , A. Zonca19 , B. Aja12 , E. Artal12 , C. Baccigalupi57 , A. J. Banday62,6,53 , R. B. Barreiro47 , J. G. Bartlett4,49 , N. Bartolo20 , P. Battaglia61 , K. Bennett30 , A. Bonaldi35 , L. Bonavera57,5 , J. Borrill52,59 , F. R. Bouchet43 , C. Burigana38 , P. Cabella25 , B. Cappellini39 , X. Chen41 , L. Colombo15,49 , M. Cruz13 , L. Danese57 , O. D’Arcangelo48 , R. D. Davies50 , G. de Gasperis25 , A. de Rosa38 , G. de Zotti35,57 , C. Dickinson50 , J. M. Diego47 , S. Donzelli39,45 , G. Efstathiou44 , T. A. Enßlin53 , H. K. Eriksen45 , M. C. Falvella3 , F. Finelli38 , S. Foley29 , C. Franceschet22 , E. Franceschi38 , T. C. Gaier49 , R. T. Génova-Santos46,27 , D. George58 , F. Gómez46 , J. González-Nuevo57 , K. M. Górski49,63 , A. Gruppuso38 , F. K. Hansen45 , D. Herranz47 , J. M. Herreros46 , R. J. Hoyland46 , N. Hughes9 , J. Jewell49 , P. Jukkala9 , 94 96 98 100 A. Mennella et al.: Planck early results. III. M. Juvela16 , P. Kangaslahti49 , E. Keihänen16 , R. Keskitalo49,16 , V.-H. Kilpia9 , T. S. Kisner52 , J. Knoche53 , L. Knox18 , M. Laaninen56 , A. Lähteenmäki1,32 , J.-M. Lamarre51 , R. Leonardi28,30,19 , J. León-Tavares1 , P. Leutenegger61 , 35 , S. Matarrese20 , P. B. Lilje45,8 , M. López-Caniego47 , P. M. Lubin19 , M. Malaspina38 , D. Marinucci26 , M. Massardi Fig. 12. Examples (one per frequency channel) of the LFI measured beams compared with simulations. The simulate 53 21 28 61 25 49 14 , P. Natoli , cross-polar basis according to Ludwig’s third definition (Ludwig 1973), in spherical grids with F. Matthai , A. Melchiorri , L. Mendes , M. Miccolis , M. Migliaccio , S. Mitra , A. Moss computed in the24,2,38 co- and 33 10 49 60,7 38 31 37 with respect to the LOS frame. They are referred to the design telescope configuration. In each plot the contours are the le R. Nesti , H. U. Nørgaard-Nielsen , L. Pagano , R. Paladini , D. Paoletti , B. Partridge , F. Pasian , 57 49 55 7,49 49 38 42 dB from V. Pettorino , D. Pietrobon , M. Pospieszalski , G. Prézeau , M. Prina , P. Procopio −20 , J.-L. Pugetthe, corresponding power peak. The simulations have been carried out in the transmitting mode using GR optics and physical 25 53 46,27 53 38 53 49,7 , theory of diffraction have been used on both reflectors. , M. Reinecke , S. Ricciardi , G. Robbers , G. Rocha C. Quercellini , J. P. Rachen , R. Rebolo 50 46,27 16,32 14 61 48 N. Roddis , J. A. Rubi no-Martín , M. Savelainen , D. Scott , R. Silvestri , A. Simonetto , P. Sjoman9 , 94 96 98 100 G. F. Smoot17,52,4 , C. Sozzi48 , L. Stringhetti38 , J. A. Tauber30 , G. Tofani33 , L. Toffolatti11 , J. Tuovinen54 , M. Türler40 , the dipole and the dipole signal was weak G. Umana34 , L. Valenziano38 , J. Varis54 , P. Vielva47 , N. Vittorio25 , L. A. Wade49 , C. Watson29 , are ∼4% rms and ∼67% peak-to-peak. T S. D. M. White53 , and F. Winder50 Galeotta37 , Sky [V] A. Mennella22,37 , A. Mennella et al.: Pl !"#!$ statistical uncertainties in the determinat single pointing period, rather than actual We can put a limit on the true intrin Received 9 January 2011 / Accepted 9 May 2011 looking at the variation of the total pow Sect. 5.1). The small variations in total po 94 96 98 100 94 ABSTRACT gain96 variations to98 be less than100 1%. Days aftersolution launch based on individua The gain The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white Fig. noise12. sensitivity, and noise A preliminary evaluation of themeasured impact of the Examples (one properties. per frequency channel) of the LFI beams compared with simulations. The simulated main beams have beento improve its stability therefore Fig. 13. Sky (top), reference (middle)processed and difference (bottom) signals main systematic effects is presented. For each of the performance parameters, wecooutline methods used to obtain them from the flight third data and computed in the andthe cross-polar basis according to Ludwig’s definition (Ludwig 1973), in spherical grids with 301running × 301 points defined 59sm averages thattohave further from radiometer LFI27M. The modulation is due the been thermal effect (Affiliations can be found after the references) Il Futuro: La polarizzazione • Ottiche “perfette” • “Tantissimi” rivelatori • Ingombri e pesi limitati 60 SVILUPPO DI DISEGNI DI OTTICHE P. Bolli et al 2009 - INAF-IRA IR #428/2009 (Pre-phase-A study for the B-POL program Configurazioni simili a Planck 61 IL FUTURO … INCERTO Grandi Piani focali (~ 10000 rivelatori Multi frequenza Ottima cross polarizzazione 62 ESEMPIO DI FUTURA MISSIONE (EPIC) Jamie Bock presentation 63 =&(7.&#!$%'./!/-)*+,! =&(7.&#!%$$3-+! H:I!7! H:KK!7! F-'%)8.&#!3-7(!$%'./!30.'()*! D:HH!7! L%&)!8(6-&*-)'-! KD:KD!8-*! J%'./!/-)*+,!%$!+,-!0.&.1%/%(8./!0&(7.&#! C(30/.'-7-)+!%$!+,-!%0+('./!.9(3!$&%7!+,-!3#77-+&#!.9(3!%$!+,-! 0&(7.!()!%+,-&!5%&834!+,-!8(3+.)'-!+,.+!+,-!0&(7.&#!(3!%$$!'-)+-&! L./$!+,-!3-0.&.+(%)!%$!+,-!$%'(!%$!+,-!-//(03%(8./!3-'%)8.&#! L./$!+,-!%0-)()*!.)*/-!.+!+,-!$%'./!0/.)-4!8-$()()*!+,-!.0-&+2&-!.)8! ! +,-!7.&*()./!&.#3! Studio di EPIC ! ;.1/-!D!M0+('./!=.&.7-+-&3!$%&!+,-!>=?@A?B!M0+('./!3#3+-7! !"#"$%&%#' (")*%' +%,-#./&.01' >$$-'+(6-!J%'./!N-)*+,! D:E!7! J%'./!/-)*+,!%$!7(&&%&!3#3+-74!./3%!23-8!+%!'./'2/.+-!0/.+-!3'./-! !"#$%&'()*+$,-(./(#0*(1234536(47.++*8()7&,.-*(9*'*+%."*! >$$-'+(6-!O0-&+2&-! K:P!7! C-$()-8!1#!-)+&.)'-!.0-&+2&-! ! JQR! <:KP! ! "#$%!&'$%($)!*'$+!,-.%/-%$)!0$'1!2'$3-4$%5)!,$67/!*-81((5)8)!95+#::$.!9:;$5'<5)!9:7=!965:$'++)! JMS!T! DE:D!8-*! O6.(/.1/-!JMS!()!/%)*!8(7-)3(%)!.+!DE!GLU! 2$%<7:!*$#6$%7)!0$'8!*7>-#:7?)!&$:/-!@.#<5)!A-'</!@-:-65-3)!9/$%>.$!@--'$B+)!2#/><%!@'#65.)! JMS!V! KW:W!8-*! O6.(/.1/-!JMS!()!3,%&+!8(7-)3(%)!.+!DE!GLU! C7>7'!2$B5)!@:<47!2<817%/-%8)<)!2$''7%!2-D7::5)8)!E#%<:!F-:D$:$8)!G'HB/H>-?!F-'/1<5)8)!E.$#:! ! "$%$%B;)!I$''7%!"-:67/5)!G7%>!J'D<%1)!*'<$%!G7$><%3:)!@.$-KA<%!G#-6)!9+'<$%!A77$)!9%+'7D! A$%378)5)!@.$':7/!A$D'7%875)!E>747!07B7'%)!L$>7!0<::7':)!"<7%!L3#B7%5)!M:7%$!C<7'N$-:<3)!L<8-:$/! C-%>.<7#?)!,7$%KA-#N!C#37>?)!,7??!O$$5-)!C$#:!O<8.$'+/$)!@7:7/>7!E$>>7'5)!0<17!E7<??7'>5)!07<'! E.<6-%:)!*'7>>!I<::<$6/5)!,-%$/!P6#<+H<%$/8)5! ! $ Q%<47'/<>B!-?!@$:<?-'%<$!*7'17:7B)!*7'17:7B)!@9)!RSTUV)!QE9W! ,7>!C'-N#:/<-%!A$5-'$>-'B)!SXVV!Y$1!F'-47!2'Z)!C$/$+7%$)!@9)!R[[VR)!QE9W! 8 @$:<?-'%<$!J%/><>#>7!-?!&78.%-:-3B)![UVV!M$/>!@$:<?-'%<$!*:4+Z)!C$/$+7%$)!@9)!R[[U\)!QE9W! + Q%<47'/<>B!-?!@$:<?-'%<$!J'4<%7)!J'4<%7)!@9)!RU]RT)!QE9W! 7 "$'4$'+!Q%<47'/<>B)!@$65'<+37)!09)!VU[^X)!QE9W! ? J%/><>#>7!+_9/>'-N.B/<`#7!EN$><$:)!R[SV\!Y'/$B!@7+7=)!a'$%87W! 3 Q%<47'/<>B!-?!E-#>.7'%!@$:<?-'%<$)!A-/!9%37:7/)!@9)!RVVXR)!QE9W! . 9&G!97'-/N$87!EB/>76/)!SVS!LZ!"$:/>7$+!E>Z)!C$/$+7%$)!@9)!R[[VT)!QE9W! < ,-+'7::!*$%1!@7%>'7!?-'!9/>'-N.B/<8/)!QZ!0$%8.7/>7')!Y=?-'+!O-$+)!0$%8.7/>7')!0[^!RCA)!QGW! ; Q%<47'/<>B!-?!0<%%7/->$)!0<%%7$N-:</)!0L)!\\S\\)!QE9W! 1 L$><-%$:!J%/><>#>7!-?!E>$%+$'+)!^U\!*'-$+D$B)!*-#:+7')!@Y)!XV^V\)!QE9W! : Q%<47'/<>B!-?!@$:<?-'%<$!E$%!2<73-)!R\VV!F<:6$%!2'Z)!A$!,-::$)!@9)!RUVR^)!QE9W! 6 E>$%?-'+!Q%<47'/<>B)!E>$%?-'+)!@9)!RS^V\)!QE9W! !% Q%<47'/<>B!-?!@.<8$3-)!\XV[!E-#>.!M::</!947Z)!@.<8$3-)!JA)!]V]^T)!QE9W! L-'>.'#N!F'#66$%!97'-/N$87!EB/>76/)![!EN$87!C$'1)!O7+-%+-!*7$8.)!@9)!RVUTX)!QE9W! 5 :;<9=:49((! &.7! M=N7'<67%>$:! C'-57! -?! J%?:$><-%$'B! @-/6-:-3B! K! J%>7'67+<$>7! 0<//<-%! bMCJ@KJ0c! </! $! 8-%87N>! ?-'! >.7! L9E9! M<%/>7<%! J%?:$><-%! C'-57! /$>7::<>7Z! MCJ@KJ0! </! +7/<3%7+! >-! 8.$'$8>7'<H7! >.7! N-:$'<H$><-%! N'-N7'><7/! -?! >.7! @-/6<8! 0<8'-D$47! *$813'-#%+! >-! /7$'8.! ?-'! >.7! *K6-+7! N-:$'<H$><-%! /<3%$:! 8.$'$8>7'</><8! -?! 3'$4<>$><-%$:! D$47/! 37%7'$>7+! +#'<%3!>.7!7N-8.!-?!J%?:$><-%!<%!>.7!7$':B!#%<47'/7Z!!MCJ@KJ0!76N:-B/!$!:$'37!?-8$:!N:$%7!D<>.![[)VVV!+7>78>-'/!-N7'$><%3! <%!R!D$47:7%3>.!5$%+/!>-!N'-4<+7!^V!><67/!.<3.7'!/7%/<><4<>B!>.$%!>.7!8#''7%>:B!-N7'$><%3!C:$%81!/$>7::<>7Z!!&.7!-N><8$:! +7/<3%! </! 5$/7+! -%! $! D<+7K?<7:+! [ZS! 6! 8'-//7+K2'$3-%7! >7:7/8-N7)! $%! $N7'>#'7! >.$>! $::-D/! %->! -%:B! 8-6N'7.7%/<47! 67$/#'767%>/! -?! J%?:$><-%$'B! *K6-+7! N-:$'<H$><-%)! 5#>! $:/-! 67$/#'767%>/! -?! >.7! MK6-+7! $%+! :7%/<%3! N-:$'<H$><-%! ! /<3%$:/!>-!8-/6-:-3<8$:!:<6<>/)!$/!D7::!$/!$::K/1B!6$N/!-?!F$:$8><8!N-:$'<H$><-%!D<>.!#%6$>8.7+!/7%/<><4<>B!$%+!$%3#:$'! '7/-:#><-%Z! ! &.7! -N><8/! $'7! 8'<><8$:! >-! 67$/#'<%3! >.7/7! 7=>'767:B! ?$<%>! N-:$'<H$><-%! /<3%$:/)! $%+! $%B! +7/<3%! 6#/>! 677>! J(*2&-!D:!X.#+&.'-!8(.*&.7!%$!>=?@A?B:!;,-!$%2&!7.()!'%70%)-)+3!.&-!3,%5)4!./%)*!5(+,!&.#3!$&%7!+,-!-9+&-7-! +76$%+<%3! '7`#<'767%>/! -%! /B/>76$><8! 7''-'! 8-%>'-:Z! ! I7! +7/8'<57! >.7! MCJ@KJ0! 8'-//7+! 2'$3-%7! -N><8$:! +7/<3%)! <>/! $(-/83:!;,-!7.&*()./!&.#3!()!+,(3!$(*2&-!&-0&-3-)+!+,-!AKE8"!+.0-&-8!&.#3!$&%7!-.',!0(9-/!$%&!+,-!<!$O!'.3-:!J%&!+,-! N-:$'<H$><-%!N'-N7'><7/)!$%+!?$'K/<+7:-57!'7/N-%/7Z! D:<H!$O!ҏ'.3-4!+,-!7.&*()./!&.#3!.&-!+,-!A<H!8"!+.0-&-8!&.#3:!;,-!$%'./!0/.)-!.)8!7(&&%&!0&%Y-'+(%)!,-&-!3,%53!+,-! >*[email protected]+A!@-/6<8!6<8'-D$47!5$813'-#%+)!8-/6-:-3B)!<%?:$><-%)!N-:$'<H$><-%)!-N><8$:!+7/<3%)!/$>7::<>7)!6<//<-%!8-%87N>! 3,%&+!8(7-)3(%):!;,-!$%'./!0/.)-!.)8!7(&&%&3!.&-!/%)*-&!()+%!+,-!0/.)-!%$!+,-!$(*2&-:! ( (&.</!N$N7'!.-%-'/!>.7!676-'B!-?!"#$%!&'$%)!$%+!.</!+7+<8$>7+!8-%>'<5#><-%/!>-!>.7!MCJ@KJ0!-N><8$:!+7/<3%Z!!E78><-%/!UKT! $'7!>$17%!?'-6!>.7!8.$N>7'!.7!D'->7!D<>.!*'$+!,-.%/-%!$%+!0$'1!2'$3-4$%!?-'!>.7!MCJ@KJ0!'7N-'>!dUeZ!!"#$%!</!3'7$>:B! 6<//7+!5B!.</!?'<7%+/!$%+!8-::7$3#7/Z! ((;;5f$/>'-Z8$:>78.Z7+#W!N.-%7![!]U]!^R\KUV[TW!?$=![!]U]!^R\KU^]]!! ! !"#$%&#'&(!)*&+#,%&--./&&--.//012 ! 64 Comparison of the crossed and the Gregorian Mizuguchi–Dragone for wide-field millimeter-wave astronomy Huan Tran,1,* Adrian Lee,2 Shaul Hanany,3 Michael Milligan,3 and Tom Renbarger4 Space Sciences Laboratory, University of California, Berkeley, California 94720, USA 2 Department of Physics, University of California, Berkeley, Q"U Imaging California Experiment94720, [10] useUSA the crossed con3 figuration. Here we compare the relative School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455,merits USAof and crossed Mizuguchi–Dragone. 4Department of Physics, University of California,the SanGregorian Diego, California 92093, USA 1 Crossed configurations tend to have secondary reflectors similar in size to the primaries. The study is *Corresponding author: [email protected] therefore limited to a 1.65 m aperture, as a larger crossed configuration is mechanically complicated Received 13 August 2007; accepted 8 September 2007; due to the large secondary. The study is divided into a geometric and physical-optics analysis. The geoposted 16 November 2007 (Doc. ID 85684); published 4 January 2008 metric analysis shows that the crossed configuration has a larger DLFOV than the Gregorian, although Fig. 2. Strehl ratios across the focal plane, calculated at 150 GHz. the Gregorian has a large enough DLFOV for most Crossed shows a clear advantage in terms of DLFOV. A design is practical applications. The physical-optics analysis considered diffraction-limited if the Strehl ratio is above 0.8. show that both configurations have adequate We compare the geometric and physical-optics performancewill of two configurations of offset dual-reflector cross and instrumental polarization. antennas that obey the Mizuguchi–Dragone condition. The traditional Gregorian configuration is comondary with the clearance between the main beam A complete optical system could also include relay pared with theand larger crossedInconfiguration. These the configurations are candidates experiments that optics, depending on the for exact requirements of the the receiver. the Gregorian design, items focalParticular plane technology. Relay systems many posin competition separation of the receiver and measure the polarization of are thethe cosmic microwave background. attention is given to have wide-field primary, the size fidelity. of the secondary, andtracer the obliquedesigns, andsimulation hence will not be included in this performance and polarization Both a ray and sible a physical optics package are used ness of the primary. The differences between the two analysis. to conclude that the crossedare configuration has ina Section larger 5. diffraction-limited field of view, but within this configurations further explained The aberrations both configurations evallimit both configurations haveforroughly the same were instrumental polarization 2. Geometric Optics and both show excellent uated by calculating the Strehl ratios with the ray cross-polarization levels, with the crossed configuration showing dB better performance. © 2008have The two!10 configurations chosen for comparison tracing software. Figure 2 is a plot of the Strehl ratios the same aperture size and EFL. Since both obey the Optical Societyasofa America function of field position. The crossed configuraMizuguchi–Dragone OCIS codes:tion110.3000, 220.1250, 220.4830, 260.5430. condition, they are also reprehas nearly110.6770, a factor of 2220.1000, larger focal plane diam- 1. Introduction sented by the same equivalent paraboloid. It is thus eter. The crossed configuration also has a nearly expected that the geometric and electrical perfortelecentric focal plane, meaning that chief rays from mance of both configurations should be similar to a all field positions arrive nearly parallel at the focal centered parabola near the central feed. It has been plane. This makes the use of bare planar arrays of shown, however, that the performance quickly discalar feedhorns at the telescope focus possible, eliminating the need for relay optics. Nearly all the Greverges from the equivalent parabola as the feed is gorian systems, on the other hand, require a curved to the edge of the field signals [3]. Serabyn [11] has for scanned the window. Spurious from ground focal plane or relay optics. furthermore suggested that conics arranged in the contamination seen from farsmaller sidelobes are due also a major Increasing demands on sensitivity have driven the cross configuration can have abberations 3. Physical Optics concern. Unobstructed primary to cancellation between the mirrors. apertures are benefineed for large-format, millimeter-wave Thepackage The GRASP9 [14] physicalarrays. optics software was To compare the Gregorian and the crossed configcial used toarrays evaluate three copolar pro-in reducing scattering and diffraction from obcurrent generation of detector havequantities: an order of beam urations at field positions far from the center, it is cross-polar profiles, and instrumental polarizastructions Furthermore, the expected 1000 elements, about anfiles, order of magnitude larger necessaryand to usesupports. a more robust tool than the equivation. To study the effects of the telescope mirrors lentofparabola. Here we use ray CMB tracing software, the intensity ofthethe to the polarized than the previous generation. being only, anThese idealizedarrays feedhorn are was used, with zeroratio cross Fig. 3. Copolarized beams for both the (a) crossed and (b) GregoZEMAX [12], to compare the geometric performance of polarization and a Gaussian taper of !12 dB at the Diagrams of two Mizuguchi–Dragone configurations. For rian. Strehl ratio contours calculated independently ray tracing gravitational wave CMB signal is by!90 dB, placing actively developedFig. for1.use in Sunyaev–Zeldovich clusedge primary. each, the chief rayof is the shown as the thick black line. The "2° off-axis the systems. While have advantage of for different points ray in thetracers focal plane are the superimposed for com- 65 X-polarizzazione Fig. 4. Cross polarization across the focal planes. The top two panels are the cross-polarized beams produced by GRASP9. Each feedhorn was rotated about the boresight to null the cross polarization on the middle of the beam, resulting in a characteristic double-lobe pattern. The gray scale is in decibels relative to the peak of the copolarization beam. Note that the two color scales are different. The Strehl ratios 66 DOVE CI PORTA IL FUTURO? 67 4pi simulation method: GRASP9 MrGTD MrGTD computes the scattered field from the reflectors performing a backward ray tracing. The main difficulty was to understand the contributions that had to be considered, or in other words, to identify the sequence of diffractions and/or reflections on each scatterer which produce a significant power level in the resulting radiation pattern. 68 MrGTD: direct and Rs contributions Left panel: 4pi map of the field due to the rays coming from the feed (direct contribution), together with the field due to the rays reflected on the subreflector and not intercepted by the main reflector (Rs contribution). Most of the map is empty (grey colour) since most of the rays are blocked by the baffle. The power peak of the direct contribution is about -11.64 dBi whereas the power peak of the Rs contribution is about -3.16 dBi. This latter is the brightest contribution in the far sidelobes. Right panel: sketch of the optics in the symmetry plane, together with the ray-tracing of these two contributions in the plane at φbf = 22° (these rays lie in the white dashed cut indicated in the map, where the field is present). 69 MrGTD: Rb contribution Left panel: 4pi map of the field due to the rays coming from the feed that are reflected by the baffle (Rb contribution) is shown. The power peak is about -7.58 dBi. Right panel: sketch of the optics in the symmetry plane is shown together with the ray-tracing of this contribution in the plane at φbf = 22° (these rays lie in the white dashed cut indicated in the map, where the field is present). 70 MrGTD: RsDm contribution Left panel: 4pi map of the field due to the rays that are reflected onto the sub reflector and diffracted by the main reflector (RsDm contribution) is shown. The power peak is about -19.48 dBi, in the main beam direction. Right panel: sketch of the optics in the symmetry plane is shown together with the ray-tracing of this contribution in the plane at φbf = 22° (these rays lie in the white dashed cut indicated in the map, where the field is present). 71 MrGTD: total field 72 Far beam at 30 GHz Co− and cross− polar components of the 4pi beam at 30 GHz (feed horn #27 Y polarised) The maximum level of the main spillover is about −4.6 dBi at φ ~ 17° and θ ~ 85° for the co− polar component, and it is about −8.0 dBi at φ ~ 18° and θ ~ 86° for the cross− polar component. GSC ⇒ 7.2 microK (peak-to-peak) and 1.3 microK (rms) 73 Far beam at 44 GHz Co− and cross− polar components of the 4pi beam at 44 GHz (feed horn #24 Y polarised) The maximum level of the main spillover is about −5.4 dBi at φ ~ 0° and θ ~ 85° for the co− polar component, and the cross− polar component is down to −15 dBi everywhere. GSC ⇒ 3.1 microK (peak-to-peak) and 0.31 microK (rms) 74 Far beam at 70 GHz Co− and cross− polar components of the 4pi beam at 70 GHz (feed horn #23 Y polarised) The maximum level of the main spillover is about −7.0 dBi at φ ~ 10° and θ ~ 85° for the co− polar component, and the cross− polar component is, in the main spillover region, at about −11 dBi. GSC ⇒ 2.8 microK (peak-to-peak) and 0.29 microK (rms) 75 76 BEAMS AND POLARIZATION Each MB has been computed in its own coordinate system defined w.r.t the LOS, in which: the power peak of the co- polar component lies in the center of the UV- grid a minimum in the cross- polar component appears in the same point (i.e. the major axis of the polarization ellipse is along the U- axis) the main beam polarization directions of the t wo symmetrically located feed horns in the focal plane unit are at 45° in angle when they observe the same direction in the sky Scan Direction 45° 77 Main beam #23 Main beam #23 X- polarized computed with the QM telescope (copolar component is on the left side and cross- polar component is on the right side). Main beam #23 Y- polarized computed with the QM telescope (copolar component is on the left side and cross- polar component is on the right side). 78 Polarization Angle Polarization Angle of LFI21 Polarization Angle of LFI24 Very close to the beam pointing direction, the main beam can be assumed linearly polarized and the X- axis of the beam frame can be assumed as the main beam polarization direction. 79 Gaussian Vs Dual Profiled Directivity ⇒ 53.79 dBi Directivity ⇒ 54.09 dBi % DEP ⇒ 0.23 % DEP ⇒ 0.29 FWHM ⇒ 23.77 arcmin FWHM ⇒ 23.09 arcmin e ⇒ 1.39 e ⇒ 1.41 Spill-over ⇒ 0.05% Spill-over ⇒ 0.16% 80 Bandwidth effects Because of – different response of feed horns with frequency – different telescope diameter with frequency (normalized to wavelength) the main beam shape is expected to be frequency dependent within the bandwidth of each detector (20% for LFI). Directivity ⇒ 54.10 dBi % DEP ⇒ 0.35 FWHM ⇒ 22.95 arcmin e ⇒ 1.30 Spill-over ⇒ 0.68% Directivity ⇒ 54.09 dBi % DEP ⇒ 0.29 FWHM ⇒ 23.09 arcmin e ⇒ 1.38 Spill-over ⇒ 0.16% Directivity ⇒ 53.82 dBi % DEP ⇒ 0.51 FWHM ⇒ 24.16 arcmin e ⇒ 1.52 Spill-over ⇒ 0.17% 81 30 GHz channel 27 GHz 33 GHz AVERAGE 82 30 GHz channel blue rays pink rays Main reflector Sub reflector 83 30 GHz channel 84 OTTICA GEOMETRICA (GO) Legge di Snell Angolo di incidenza = angolo di riflessione Principio di Fermat Se un raggio propaga tra due punti A e B, attraverso C su un riflettore, la lunghezza di cammino ABC e’ stazionaria rispetto allo spostamento di C 85 TEORIA GEOMETRICA DELLA DIFFRAZIONE (GTD) Estensione della GO (Keller, 1962) Calcolo della diffrazione dovuta ai bordi dei riflettori I raggi diffratti sono linearmente dipendenti dall’onda incidente. La dipendenza e’ espressa mediante una matrice di COEFFICIENTI DI DIFFRAZIONE 86 OTTICA FISICA (PO) Il campo elettromagnetico incidente induce delle correnti sul riflettore che a sua volta re – irradia un campo elettromagnetico. Il singolo elemento del riflettore e’ approssimato da una superficie piana e si considera l’onda incidente come localmente piana 87 PO IN DETTAGLIO J= n × H tot = = n × H inc + H rifl = Approssimazione = 2 n × H rifl = Dell’Ottica Fisica = 2 n × H inc ( ) 88 TEORIA FISICA DELLA DIFFRAZIONE (PTD) Estensione della PO Calcolo della diffrazione dovuta ai bordi dei riflettori Integrazione delle correnti equivalenti degli spigoli … formulazione complicata … 89 G O PO /G /P TD TD + PO METODI DI SIMULAZIONE Up => -0.00002 Vp => 0.00001 Up => -0.00002 Vp => 0.00002 COMP1 MAX => 32.99 dBi COMP1 MAX => 33.01 dBi COMP2 MAX => 60.68 dBi COMP2 MAX => 60.69 dBi % DEP => 0.44 % DEP => 0.44 FWHM X => 9.33 arcmin FWHM X => 9.31 arcmin FWHM Y => 11.80 arcmin FWHM Y => 11.81 arcmin FWHM AVE => 10.56 arcmin FWHM AVE => 10.56 arcmin e => 1.27 e => 1.27 90