The Extended Thermodynamics for the fractional statistics
M. Trovato
Dipartimento di Matematica e Informatica, Università di Catania, Italy
In classical mechanics, the introduction of a maximum entropy principle (MEP) has
proven to be very fruitful in solving the closure problem to any degree of approximation
in Extended Thermodynamics (ET) [1, 2]. The aim of this talk is to present a rigorous
formulation of the ET in the framework of fractional exclusion statistics [3, 4, 5] for different
dimensions of the phase space.
In particular, in the framework of a local theory: (i) by using the H-theorem we construct a correct formulation of the collisional terms for systems of identical particles, by
generalizing the Uehling-Uhlenbeck approach; (ii) by introducing the MEP, we calculate
explicitly the entropy, the flux entropy, and the closure relations for a set of hydrodynamic
balance equations (HD) obtained for an arbitrary number of moments of the distribution
function; (iii) we obtain a virial expansion and a Sommerfeld expansion, evaluated to all
orders, both for the chemical potential and for the equation of state.
Analogously in the framework of a nonlocal theory we present a rigorous formulation of
the Quantum Extended Thermodynamics (QET) by using an arbitrary number of moments.
Here, the main difficulties concern with: (i) the definition of a proper quantum entropy that
includes the fractional exclusion statistics; (ii) the formulation of a global quantum MEP
(QMEP) [5, 6, 7] that allows one to obtain the corresponding Wigner distribution function;
(iii) the generalization of the Lagrange multipliers and the corresponding closure relations
for a quantum gas.
In particular, all the results available in the literature [4, 8, 9] are generalized in terms
of both the fractional statistics and a nonlocal description for a quantum gas. Finally,
some examples of closed quantum systems are reported, gradient quantum corrections are
explicitly given and, classical results are recovered when h̄ tends to zero.
[1] I. Müller, T. Ruggeri, Rational Extended Thermodynamics : Springer Tracts in Natural Philosophy, Vol.
37, (Springer-Verlag New York) (1998)
[2] M. Trovato, L. Reggiani. Rivista del Nuovo Cimento, 35, 99-266 (2012) and references therein.
[3] F. D. M. Haldane. Phys. Rev. Lett. 67, 937-940 (1991).
[4] Y. S. Wu. Phys. Rev. Lett. 73, 922-925 (1994).
[5] M. Trovato, L. Reggiani. Phys. Rev. lett. 110, 020404-1-5 (2013);
M. Trovato. Acta Appl. Math. (2014). DOI 10.1007/s10440-014-9934-8.
[6] P. Degond, C. Ringhofer. J. Stat. Phys. 112, 587-628 (2003);
P. Degond, F. Mehats, C. Ringhofer. J. Stat. Phys. 118, 625-667 (2005).
[7] M. Trovato, L. Reggiani. Phys. Rev. E, 81, 021119-1-11 (2010);
M. Trovato, L. Reggiani. Phys. Rev. E 84, 061147-1-29 (2011)
[8] W. Yang W. Phys. Rev A 34, 4575-4585 (1986); W. Yang, R.G. Parr, C. Lee. Phys. Rev A 34, 45864590 (1986); P. Tarazona, E. Chacon. Phys. Rev. B 39, 10366-10369 (1989); M. Brack, C. Guet, H. B.
Hakansson. Phys. Rep. 123, 275-364 (1985); E. Engel, P.I. LaRocca, R.M. Dreizler. Phys. Rev B 49,
16728-16732 (1994).
[9] M.G. Ancona, G.J. Iafrate. Phys. Rev. B 39, 9536-9540 (1989); C. Gardner, C. Ringhofer. Phys. Rev.
E 53, 157-167 (1996); A. Jüngel, D. Matthes, J. P. Milišı́c. SIAM J. Appl. Math. 67, 46-68 (2006); L.
Barletti, C. Cintolesi. J. Stat. Phys. 148, 353-386 (2012).
Scarica

The Extended Thermodynamics for the fractional statistics