Fig. 4. Mechanism of internalization and axonal transport of NGF signaling in neurons. The NGF receptors localized on the distal axon are activated upon binding of NGF. The ligand-receptor complex is internalized through clathrin-mediated endocytosis (A) and is retrogradely transported to the cell body using a dynein-dependent and microtubule-dependent transport mechanism (B). Trafficking of NGF and its receptors from the membrane surface is being started by forming clathrin-coated vesicles (CCV) and in the next step, early sorting endosomes. p75NTR moves from early endosome to recycling endosome and returns back to the surface. TrkA receptors are sorted from early endosomes to late endosomes (MVB) and then are retrogradely transported on the cytoskeleton from distal axon to cell body (C). The retrograde transport of the NGF-TrkA containing late endosomes depend on the motor protein dynein. The juxtamembrane domain of TrkA binds to dynein light chain, and the motor domain of the dynein binds directly to the micrtotubule (B). Arimura and Kaibuchi Nature Reviews Neuroscience 8, 194–205 (March 2007) | doi:10.1038/nrn2056 Rho GTPase effectors implicated in actin and microtubule dynamics Govek E et al. Genes Dev. 2005;19:1-49 La crescita di un neurite è determinata dall’apposizione di nuovi elementi citoscheletrici e di membrana La direzione di crescita dalla polimerizzazione/depolimerizzazione della actina del GC Rho GTPase signaling downstream of four axon guidance cue families, the semaphorins, ephrins, netrins, and slit proteins Govek E et al. Genes Dev. 2005;19:1-49 ©2005 by Cold Spring Harbor Laboratory Press Neuromuscular synaptic function depends critically on the precise spatial apposition of presynaptic motor neuron acetylcholine release sites with high-density clusters of acetylcholine receptors (AChRs) in the postsynaptic muscle fiber membrane. During neuromuscular synaptogenesis, AChRs are clustered before innervation, prepatterning a central muscle region where synapses will later be established. Motor neuron signals refine the muscle prepattern by clustering AChRs beneath terminals and dispersing uninnervated clusters so that AChRs become localized to, and are stably maintained at, nascent synapses. Over the last 15 years, work from a number of groups has uncovered the basic signaling mechanisms that underlie these events. Musclespecific kinase (MuSK), a receptor tyrosine kinase expressed by postsynaptic muscle fibers, is essential for the formation of aneural, prepatterned AChR clusters as well as for the formation and maintenance of later, innervated AChR clusters. The presynaptically released proteoglycan agrin is now more fully understood to be important as an anti-declustering, AChR cluster maintenance factor. A role for the neurotransmitter ACh as a cluster dispersion factor for noninnervated AChR clusters has also recently come to be appreciated. Il neurone utilizza per condurre informazioni rapidamente per lunga distanze segnali elettrici Differente permeabilità della membrana alle differenti specie ioniche EK = 61 log (K+)e/(K+)i = -105 mV ENa = 61 log (Na+)e/(Na+)i = + 67 mV Vm = 61 log P(K+)e + P(Na+)e + P(Cl-)i / P(K+)i + P(Na+)i + P(Cl-)e Il neurone utilizza per condurre informazioni rapidamente per lunga distanze segnali elettrici -. • I CANALI IONICI sono immersi nella matrice della membrana plasmatica. Essi possono essere: • 1. PASSIVI: sono sempre aperti e non influenzati dal potenziale di membrana. Il loro ruolo è di mantenere stabile il potenziale di riposo • 2. ATTIVI: si aprono solo in risposta a determinati stimoli (chimici o elettrici o di altra natura fisica). Concorrono alla generazione di potenziali che modificano il potenziale di riposo di una cellula, inducendo la Difficoltà 1. Studi strutturali 2. Studi funzionali