Adsorption of CH2CClF and CH2CBrF on TiO2: infrared spectroscopy and quantum-mechanical calculations Jessica Scaranto and Santi Giorgianni Università Ca’ Foscari di Venezia – Dipartimento di Chimica Fisica, Calle Larga S. Marta 2137, I-30123 Venezia, Italy The toxicity of the halogenated ethenes, which are compounds widely employed in the industrial field, represents a serious problem for the human health. Heterogeneous photocatalysis on TiO2 represents a promising approach for removing these compounds from the air [1]. Since the decomposition occurs after the adsorption, a study on the nature of the adsorbate-substrate interaction can lead to useful information for a complete understanding of the reaction mechanisms and then, for the develop of successful applications. In a recent work, the adsorption of vinyl halides at room temperature was investigated by IR spectroscopy [2]: according to the results it has been concluded that these molecules adsorb by an acid-base interaction through the halogen atom and the surface Lewis acid site (Ti4+), and an H-bond through the CH2 group and a surface Lewis basic site (O2- or OH-). This adsorbate-substrate model was successively studied by periodic quantum-mechanical calculations [3,4]. The aim of the present work is to formulate an adsorption model of the 1-chloro-1-fluoroethene (CH2CClF) and 1-bromo-1-fluoroethene (CH2CBrF) on TiO2 at room temperature through the analysis of the FTIR spectra of the adsorbed molecules. The attention has been focused on the adsorbate absorptions above 1000 cm-1 and in particular on the bands related to the C-H, C=C and C-F stretching modes. The approximate description of the vibrations of the adsorbates has been carried out by comparing the related absorptions with those of the compounds in the gas-phase. In order to obtain information on the variation of the molecular structural parameters, a periodic quantum-mechanical study according to the formulated model has been performed; the calculations have been carried out by considering the rutile (110) which represents the most stable surface of TiO2 [5]. IR spectroscopy Experimental Details CH2CClF CH2CBrF Pre-treatment of TiO2 (a) (x 10) 4 2 (x 10) TiO2 powder (Degussa P25) [pellet of 20 mg.cm-2] T = 723 K, P ~ 10-4 Torr, t = 5 h re-oxidation with mix N2/O2 1 3 1 3 Residual surface hydroxyl groups around 3700 cm-1 Transmittance 3050 The pre-treated surface contains two surface Lewis acid sites which differ in the electrophilicity 1360 1624 1118 1135 1186 1168 10% 5 (b) (c) 3140 4 2 5 (b) Transmittance (a) (c) 3036 3135 Adsorption spectra Background (TiO2 after the pre-treatment) Introduction of the gas (0.5 – 2.0 Torr) 20 scans at resolution of 4 cm-1 1112 1122 1632 1166 10% 1156 1654 3650 3400 3150 2900 1700 1643 Proposed adsorption model 1550 1400 1250 1100 -1 Wavenumber / cm IR spectra of CH2CClF in gas-phase and adsorbed on TiO2. (a) Room temperature, P ~ 1.0 Torr, 16 cm cell; the spectrum in the region 3800-2850 cm-1 has been multiplied by a factor of 10. Infrared spectrum of TiO2 taken after being in contact with ~ 0.6 (b) and ~ 1.2 (c) Torr of CH2CClF at room temperature. Experimental vibrational frequencies CH2CClFa(gas) CH2CClF/TiO2 Vibration Approx. description Wavenumber Wavenumber 3140 CH2 asym stretching 3069 1 3050 CH2 sym stretching 3016 2 1654 C=C stretching 1656 3 1624 1360 CH2 bending 1383 4 1186; 1168 b C-F stretching 1186 5 1135; 1118 b Wavenumbers are given in cm-1. a: from ref. [6]. b: the two frequencies refer to the presence of two surface Lewis acid sites. 3650 F Ti O Ti O O 1100 Wavenumbers are given in cm-1. a: current work. b: the two frequencies refer to the presence of two surface Lewis acid sites. O Structure II Structure I 1250 CH2CBrFa(gas) CH2CBrF/TiO2 Vibration Approx. description Wavenumber Wavenumber CH2 asym stretching 3055 3135 1 CH2 sym stretching 3002 3036 2 1643 C=C stretching 1647 3 1632 CH2 bending 1369 1348 4 1166; 1156 b C-F stretching 1166 5 1122; 1112 b Cl H 1400 Experimental vibrational frequencies H F 1550 IR spectra of CH2CBrF in gas-phase and adsorbed on TiO2. (a) Room temperature, P ~ 1.0 Torr, 16 cm cell; the spectrum in the region 3800-2850 cm-1 has been multiplied by a factor of 10. Infrared spectrum of TiO2 taken after being in contact with ~ 0.6 (b) and ~ 1.2 (c) Torr of CH2CBrF at room temperature. X = Cl, Br H 2900 1700 Wavenumber / cm Acid-base interaction between surface Lewis acid site and a molecular basic site (F atom or C=C bond) Cl 3150 -1 No H-bond between CH2 group and surface Lewis basic site (O2- or OH-) H 3400 Quantum-mechanical calculations Cl Computational details H1 C1 H1 Program C2 F Br C1 CRYSTAL03 [7] CRYSTAL06 [8] H2 C2 F H2 Method CH2CClF molecule Structure I Eint = -20.19 Structure II Eint = -15.41 CH2CClF molecule DFT/B3LYP [9] Structure I Eint = -18.47 Structure II Eint = -12.80 Basis set Ti : DVAE (86-51G* ) [10] O : TVAE (8-411G) [10] CH2CFX : standard 6-31G** [11-13] Calculated structural parameters Free C1-C2 C1-Cl C1-F C2-H1 C2-H2 Cl-C1-C2 F-C1-C2 H1-C2-C1 H2-C2-C1 F-Ti C1-Ti C2-Ti Ti-F-C1 Ti-C1-C2 Ti-C2-C1 1.326 1.739 1.333 1.081 1.083 125.1 123.2 121.0 119.3 Adsorbeda Structure I % Structure II 1.321 -0.4 1.331 1.728 -0.6 1.734 1.358 1.9 1.330 1.080 -0.1 1.082 1.080 -0.3 1.084 125.9 0.6 125.2 123.2 0.0 123.1 120.6 -0.3 120.3 120.9 1.3 118.6 2.557 3.763 3.237 148.2 57.0 102.8 % 0.4 -0.3 -0.2 0.1 0.1 0.1 -0.1 -0.6 -0.6 Lengths and angles are reported in Å and degrees, respectively. a: % refers to the isolated optimised molecule (Free). Calculated structural parameters Free C1-C2 C1-Br C1-F C2-H1 C2-H2 Br-C1-C2 F-C1-C2 H1-C2-C1 H2-C2-C1 F-Ti C1-Ti C2-Ti Ti-F-C1 Ti-C1-C2 Ti-C2-C1 Rutile (110) surface O(2f) Ti(6f) Ti(5f) O(3f) Bulk and surface parameters Bulk aB [Å] 4.572 cB [Å] 2.995 u 0.305 Vibration 1 2 3 4 5 6 7 8 9 10 11 12 Adsorbed Structure I Structure II Approx. Wavenumber Wavenumber Wavenumber description CH2 asym stretch 3179 3202 3077 CH2 sym stretch 3082 3110 2989 C=C stretch 1675 1668 1603 CH2 bend 1361 1350 1298 C-F stretch 1166 1120 1076 CH2 rock 927 897 862 C-Cl stretch 694 664 638 CClF bend 412 412 396 CClF rock 357 372 357 CH2 wag 819 824 791 torsion 658 652 626 CClF wag 510 479 460 Wavenumbers are given in cm-1. The vibrational frequencies have been scaled by using a scaling factor equal to 0.961. % 0.4 -0.3 -0.1 0.1 0.1 0.1 -0.2 -0.6 -0.5 Lengths and angles are reported in Å and degrees, respectively. a: % refers to the isolated optimised molecule (Free). Surface aS [Å] 2.995 bS [Å] 6.465 γ [°] 90.0 Calculated vibrational frequencies Free 1.325 1.906 1.332 1.081 1.084 125.0 123.3 121.2 119.1 Adsorbeda Structure I % Structure II 1.320 -0.4 1.330 1.893 -0.7 1.900 1.357 1.9 1.331 1.079 -0.2 1.082 1.080 -0.4 1.085 125.1 0.1 125.1 123.3 0.0 123.1 120.9 -0.2 120.5 120.7 1.3 118.5 2.568 3.857 3.290 145.2 55.4 105.1 Calculated vibrational frequencies Free References [1] Linsebigler, A. L.; Lu, G.; Yates Jr., J. T. Chem. Rev. 1995, 95, 735. [2] Scaranto, J.; Pietropolli Charmet, A.; Stoppa, P.; Giorgianni, S. J. Mol. Struct. 2005, 741, 213. [3] Scaranto, J.; Mallia, G; Giorgianni, S.; Zicovich-Wilson, C. M.; Civalleri, B.; Harrison, N. M. Surf. Sci. 2006, 600, 305. [4] Scaranto, J.; Giorgianni, S. J. Phys. Chem. C 2007, 111, 11039. [5] Diebold, U. Surf. Sci. Rep. 2003, 48, 53. [6] Mann, D. E.; Acquista, N; Plyler, E. K. J. Chem. Phys. 1955, 23, 2122. [7] Saunders, V. R.; Dovesi, R.; Roetti, C.; Orlando, R.; Zicovich-Wilson C. M.; Harrison, N. M.; Doll, K.; Civalleri, B.; Bush, I. J.; D’Arco, P.; Llunell, M. CRYSTAL03 User’s Manual, University of Torino (Torino, 2003). [8] Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson C. M.; Pascale, F; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D’Arco, P.; Llunell, M. CRYSTAL06 User’s Manual, University of Torino (Torino, 2006). [9] Becke, A.D. J. Chem. Phys. 1993, 98, 5648. [10] Muscat, J. PhD Thesis, University of Manchester, 1999. [11] Hariharan, P. C.; Pople, J. A. Theoret. Chim. Acta 1973, 28, 213. [12] Francl, M. M.; Petro, W. J.; Hehre W. J.; Binkley J. S.; Gordon, M. S.; DeFrees D. J.; Pople J. A. J. Chem. Phys. 1982, 77, 3654. [13] Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L.A. J. Comp. Chem. 2001, 22, 976. Vibration 1 2 3 4 5 6 7 8 9 10 11 12 Adsorbed Structure I Structure II Approx. Wavenumber Wavenumber Wavenumber description CH2 asym stretch 3175 3202 3177 CH2 sym stretch 3077 3112 3072 C=C stretch 1660 1662 1634 CH2 bend 1364 1345 1355 C-F stretch 1147 1099 1142 CH2 rock 934 896 936 C-Br stretch 581 581 584 CBrF bend 346 353 349 CBrF rock 310 328 313 CH2 wag 824 826 826 torsion 693 646 699 CBrF wag 473 432 486 Wavenumbers are given in cm-1. The vibrational frequencies have been scaled by using a scaling factor equal to 0.961.