Stato di Vub e Vcb Concezio Bozzi INFN Ferrara Babar Italia, Trieste 14 Aprile 2005 Sommario • Decadimenti semileptonici inclusivi – con charm (Vcb) – senza charm (Vub) • Decadimenti semileptonici esclusivi – pln, rln (nuovi risultati, Moriond&CKM05) – D*ln • NB: ho attinto a piene mani da materiale presentato (da altri ma anche da me!) a CKM2005 Misure inclusive Inclusive Decays – the Big Picture Semileptonic B Decays & HQE 3 r D3 r LS 2 2 p G mb pert z ( r ) 1 A ( r , ) 1 3 0 2 2 m b 2 5 G F mb 2 ( B X c n ) | Vcb | 1 AEW 3 192 p 3 3 r r LS G2 D free-quark rate 3 1 mb rD pert 4 (1 A5 (r , )) 2(1 r ) d(r ) 3 O 4 2 m mb b mb = scale which separates effects from long- and short-distance dynamics r = mc/mb; z0(r), d(r): phase space factors; AEW = EW corrections; Apert = pert. corrections (asj , askb0) contains b- and c-quark masses, mb and mc p2 related to kinetic energy of b-quark G2 related to chromomagnetic operator: B / B* mass splitting Darwin term (ρD3) and spin-orbit interaction (ρLS3) enter at 1/mb3 No 1/mb term! Several HQE schemes exist; op’s and coeff’s are scheme dependent Inclusive bcℓν Measure electron momentum spectrum and mass of hadronic system in SL decay Determine moments to allow comparison with partonlevel calculations (duality assumed) Calculations exist for the following: Lepton energy spectrum Eln El E 0 Gambino & Uraltsev (hep-ph/0401063, 0403166) 3 B Eln d f n ( E0 , mb , mc , G2 , p2 , r D3 , r LS ) E0 Mass of hadronic system M xn El E 0 3 B M Xn d f nx ( E0 , mb , mc , G2 , p2 , r D3 , r LS ) E0 Fit for HQE parameters and |Vcb| BABAR PRL 93:011803 Fit Results mX moments ● = used, ○ = unused in the nominal fit BABAR c 2/ndf = 20/15 Eℓ moments Red line: OPE fit Yellow band: theory errors BABAR PRL 93:011803 Fit Results precision on |Vcb| = 2% precision on mb = 1.5% Vcb (41.4 0.4exp 0.4HQE 0.6 th ) 10 3 Bc n (10.61 0.16exp 0.06HQE )% mb (4.61 0.05exp 0.04 HQE 0.02as ) GeV mc (1.18 0.07 exp 0.06HQE 0.02as ) GeV p2 (0.45 0.04exp 0.04HQE 0.01a ) GeV 2 s G2 (0.27 0.06exp 0.03HQE 0.02a ) GeV 2 s r D3 (0.20 0.02exp 0.02HQE 0.00a ) GeV 3 s 3 r LS (0.09 0.04exp 0.07 HQE 0.01a ) GeV 3 Uncalculated corrections to kinetic mass scheme with μ=1 GeV Fitted values consistent with external knowledge c 2/ndf = 20/15 s Impressive agreement between data and theory ≈ identical results obtained in another renorm. scheme: Bauer, Ligeti, Luke, Manohar, Trott in hep-ph/0408002 Inclusive |Vcb| status BaBar result compared with previous measurements: Agrees with value coming from exclusive BD* ℓ ν 3 V (41.4 1.0 1.8 ) 10 decays (from HFAG): cb expt theo Inclusive bu Limiting factor in CKM precision tests; known much less well than |Vcb| CKM suppressed – therefore harder to measure Challenge for experiment and theory Starting point: HQE Just like bcℓν…, and with similar accuracy G F2 mb5 p2 G2 2 pert ( B X u n ) 1 AEW | Vub | 1 A3 ( ) 1 3 192 p 2mb2 1 G2 pert (1 A5 ( )) 2 2 O 3 mb mb = scale which separates effects from long- and short-distance dynamics AEW = EW corrections; Apert = pert. corrections (asj , askb0) …until limited expt’l acceptance is considered Poor convergence of OPE in region where bcℓν decays are kinematically forbidden Non-perturbative Shape Function must be used to calculate partial rates Theory input • Reference (ICHEP04, HFAG) results based on triple differential decay rate (Ee, mX, q2) computed to O(as, mb-2) over the entire phase space by de Fazio and Neubert (DFN, JHEP 06:17 (1999)) • Use as input the shape function parameters determined by a fit (hep-ex/0407052) to the Belle b→sg spectrum: Λ = 0.66 GeV, λ1 = -0.40 GeV2 + covariance δΛ ~ δmb ≈ 80 MeV Eg spectrum in b → sg • f(k+) Acceptance in b → uℓv q2 vs mX analysis: take acceptances from Bauer, Ligeti and Luke (BLL, hep-ph/0111387), OPE calculation in a region of the phase space where SF effects are small. Inclusive Vub measurements with BaBar method S/B 0.050.2 •High statistics •Duality valid for tight Ee cuts? •Bkg subtraction 4.40 ± 0.24exp ± 0.35theo ~0.5 •High statistics •Lower syst. on shape functions •Bkg subtraction 4.99 ± 0.48exp ± 0.29theo ~1.7 •Low background •High resolution •Low statistics •Shape func. syst. 5.22 ± 0.43exp ± 0.33theo ~2 •Low background •Very small syst. on SF param. •Small statistics 5.18 ± 0.57exp ± 0.34theo Untagged Electron spectrum endpoint Ee>2.0GeV Total rate using DeFazio-Neubert Untagged Ee vs q2 and neutrino reconstruction Ee>2.0GeV and sh<3.5 GeV2/c4 Total rate using DeFazio-Neubert Breco Tags mX analysis (1-D) mX<1.55 GeV/c2 Total rate using DeFazio-Neubert Breco Tags mX vs q2 analysis mX<1.7 GeV/c2 and q2 >8.0 GeV2/c4 Vub using Bauer et al. Partial Tags Vub(x10-3) Pros&Cons •Very small bkg Currentexclusive Vub errors: 10-15% •~no cut on kinem ( B( B p l n ) (1.22 0.26) 10 120 Breco Tags •Small statistics Total experimental syst @250-500 ifb: 3-6% Total rate using Form Factors calc. 0 4 ) Vub measurements A different theory approach • Bosch, Lange, Neubert and Paz (BLNP) Nucl. Phys. B 699, 335 (2004) • Acceptances computed in BLNP using SF parameters from – Belle b→sg hep-ex/0407052 – BaBar b→cℓn moments (hadronic and leptonic) hep-ex/0404017 • Proper translation into shape function scheme of BLNP hep-ph/0412241 Courtesy of Henning Flächer Results with BLNP and BaBar b→cℓn moments Using mb = 4.63±0.08 GeV and μπ2 = 0.15±0.07 GeV2 (SF scheme) with correlation coefficient -0.4. Errors are: expt ± SF ± theory expt ± (SF+theory) Method Endpoint q2-Ee ∆B × 104 5.31±0.59 4.46±0.93 q2-mx 8.96±2.04 Average |Vub| (BLNP) SF params from bcℓν 3.93 ± 0.34 ± 0.38 ± 0.18 (8.7 ± 9.7 ± 4.6)% 3.89 ± 0.40 ± 0.45 ± 0.21 (10.3 ±11.5 ± 5.4)% 4.45 ± 0.49 ± 0.40 ± 0.22 (11.1 ± 9.0 ± 4.9)% |Vub| (BLNP) (Belle SF) |Vub| ICHEP (DFN, Belle SF) 4.55 4.40 ± 0.24 ± 0.35 ( ± 6.4 ± 8.6) % 4.53 4.99 ± 0.48 ± 0.29 ( ± 9.6 ± 5.8) % 5.00 5.18 ± 0.57 ± 0.34 ( ±11.0 ± 6.5) % 4.07 ± 0.51 b→cℓn moments: significant change in inclusive |Vub| values BLNP: increased sensitivity to SF 4.61 ± 0.46 Misure di Vub esclusive Exclusive B Xuln Decays Breco Tags p Y(4S) n l- Xu = p+, p0, r+, r0, w, h, h’, a00, a0+ low bkg, low stat.: 27p,… (ICHEP’04) Semilep.Tags Balance between efficiency and purity Untagged High statistics, high hackground (b cln) 3 new pln results ▪ Goal : Measure Branching Fractions and |Vub| ▪ Need FF predictions to describe QCD effects 03/16/05 New unquenched LQCD calculations (HPQCD’04, FNAL’04) Try to measure q2 dependence of FF with data Jochen Dingfelder – CKM Workshop 2005 Semileptonic Tag Analyses Reconstruct B D(*)ln and study semileptonic recoil use both D and D* tags sizable BF Tagging efficiency measured with “Double Tags” (two D(*)ln) D(*)ln decays Correct sl. decay |cosqBY| < 1 ( tag side: cosqBY, signal side: cosqB,pl ) 03/16/05 cos2fB < 1 for signal, bkg flat Jochen Dingfelder – CKM Workshop 2005 p0ln with SL Tag : Signal Extraction Cut-and-count analysis in cosqB,pl and mD 82 fb-1 Signal region: -1.1 < cosqBpl < 1.0 Subtract mD sidebands remove cominatoric background Subtract other background using MC normalized in -10 < cosqBpl < -1.5 45 p0 03/16/05 Jochen Dingfelder – CKM Workshop 2005 p+ln with SL Tag : Signal Extraction Extract signal yields by binned c2 fit to cos2fB in 3 bins of q2: Fit parameters = signal and background normalizations 26 p+ 21 p+ 14 p+ 211 fb-1 Mainly B0B0 bkg ≈ 30% rln X-feed 03/16/05 Jochen Dingfelder – CKM Workshop 2005 p+ln with SL Tag : Branching Fractions and q2 SL tag analyses statistically limited. Yields not yet large enough to discriminate between FF models. 03/16/05 Jochen Dingfelder – CKM Workshop 2005 Untagged B pln and B rln Neutrino Reconstruction: Reconstruct n from full event & ensure good reco. quality Cut on missing mass: |M2miss / 2Emiss| < 0.4 GeV Harsh suppression of b cln bkg (kinem. cuts, mainly for rln) e+e- qq bkg (topological cuts) Max-LH fit of signal and background in DE, mES, and q2 Fit all 4 signal modes simultaneously (p+, p0, r+, r0) Use isospin relations to reduce number of signal parameters: (B0 p-l+n) = 2 (B+ p0l+n) (B0 r-l+n) = 2 (B+ r0l+n) 03/16/05 Jochen Dingfelder – CKM Workshop 2005 Untagged pln: Fitted DE and mES 76 fb-1 427 p, 147 p0 03/16/05 Jochen Dingfelder – CKM Workshop 2005 5 bins for pln 3 bins for rln Untagged pln: Fitted DE and mES 76 fb-1 101 r, 104 r0 03/16/05 Jochen Dingfelder – CKM Workshop 2005 5 bins for pln 3 bins for rln Measured q2 Distributions and Form Factors pln Recent LQCD and LCSR calculations agree well with data ISGW2 shows marginal agreement for pln Errors for rln still too large to study 3 form factors. 03/16/05 Jochen Dingfelder – CKM Workshop 2005 rln Systematic Uncertainties (Untagged) Better statistical precision than previous measurements Syst. error dominated by n reconstruction. Will decrease with improved track/neutral reconstruction. Results less dependent on theoretical predictions (own FF measurement) 03/16/05 Jochen Dingfelder – CKM Workshop 2005 Overview: Branching Fraction Measurements pln rln Testing isospin symmetry: Measure p+ln, p0ln separately (untagged) 03/16/05 Jochen Dingfelder – CKM Workshop 2005 Extraction of |Vub| Measurement in bins of q2 allows extraction of |Vub| for various q2 regimes and FF calculations : LCSR q2 <15 GeV2, LQCD q2 > 15 GeV2 extrapolation to whole q2 range or Quote LQCD2 as representative 03/16/05 Jochen Dingfelder – CKM Workshop 2005 Misure di Vcb esclusive Ultimate solution: combined measurement of form factors and Vcb! (work in progress in Trieste) Other ideas? • D*0ln (little/undermanned efforts) • Yet another measurement of D*+ln – D* partial reconstruction – On the recoil of a fully reconstructed hadronic decay Run1-4 Conclusioni • Mole impressionante di risultati sperimentali e teorici • Collaborazione virtuosa tra le due comunità • Effetto complessivo: – Vcb inclusivo: ~1.5% • Accordo impressionante teoria-esperimenti! – Vub inclusivo: 10% → 5% ? • Aggiornare misure con tutta la statistica disponibile • Ampio consenso teorico sulla validità delle relazioni b→cℓν b→sg b→uℓν • Un po’ meno sulle incertezze relative – Vub esclusivo: • Occorre più statistica e migliorare le sistematiche sperimentali • calcolo dei fattori di forma non ancora pienamente maturo – Vcb esclusivo: 4% → ? • Nuove misure (Dln) per limitare incertezze teoriche e per risolvere l’accordo marginale tra le misure esistenti (D*ln)