Spin Hamiltonian for a Pair H= B B.g1.S1+ S1.D1.S1+ j S1.A1j.Ij+.. + B B.g2.S2+ S2.D2.S2+ j S2.A2j.Ij+.. +S1.J12.S2 S1.J12.S2 = J12 S1.S2+ S1.D12.S2+ d12.S1xS2 isotropic anisotropic Spin-spin interaction antisymmetric Decomposizione di J12 J S A 1 1 S ( J J ); A ( J J ) 2 2 J J 1 (S J 1) A 1 J Tr (J ) 3 Spin totale S S1 S 2 S 2 S12 S 22 2S1S 2 1 2 S1 .S 2 (S S12 S 22 ) 2 J W ( S ) S ( S 1) S1 ( S1 1) S 2 ( S 2 1) 2 Energie degli stati S E(S)=(J/2)[S(S+1)-S1(S1+1)-S2(S2+1)] S= 5 S=0 Sa=1/2 E=Jex S= 4 S= 3 S=1 S= 2 S= 1 S= 0 Two spin 1/2 SM 11 00 1 10 2 1 2 1 1 Suscettività 2 2 S(S 1)(2S 1) exp( E(S) / kT) N Bg S = S (2S 1) exp( E(S) / kT) kT Sa=1/2 e Sb=1/2 S=0 Sa=1/2 E=Jex E(S=1)=1/2Jex(1*2-1/2*3/2-1/2*3/2)=-¼ Jex E(S=0)= 1/2Jex(-1/2*3/2-1/2*3/2)=3/4Jex E=Jex the energy of the four states are E(1,-1)=-gBH E(1,0)=0 E(1,1)=+gBH E(0,0)=Jex S=1 Sb=1/2 Sa=1/2 e Sb=1/2 S=0 Sa=1/2 E=Jex E(S=1)=1/2Jex(1*2-1/2*3/2-1/2*3/2)=-¼ Jex E(S=0)= 1/2Jex(-1/2*3/2-1/2*3/2)=3/4Jex E=Jex 2Ng2B2 =-----------------kT[3+exp(Jex/kT)] eq. Bleaney - Bowers S=1 Sb=1/2 S=1 T= S=0 Magnetic field S=1 T J/kB S=0 Magnetic field Cu2(CH3COO)4.2H2O Il modello di Anderson A-C-B →A+-C-B- b122 J J12 U 2 e * * J12 A1(1) B 2 A1(2) B 2 (1)d 1d 2 r12 Lo scambio cinetico favorisce il singoletto Lo scambio potenziale il tripletto Regole di Goodenough-Kanamori • Se gli orbitali magnetici si sovrappongono l’accoppiamento è antiferromagnetico • Se gli orbitali magnetici sono ortogonali ed hanno ragionevoli zone di sovrapposizione lo scambio è ferromagnetico • Se un orbitale magnetico sovrappone con un orbitale vuoto l’accoppiamento è ferromagnetico Interazione di scambio Orbitali magnetici (quelli che hanno l’elettrone spaiato) con sovrapposizione diversa da zero: accoppiamento antiferromagnetico Interazione di scambio (2) Orbitali magnetici ortogonali: interazione ferromagnetica (regola di Hund) Interazione di superscambio Interazione di superscambio (2) Interazione di superscambio (3) La frazione di elettrone trasferita nell’orbitale z2 polarizza gli spin degli altri elettroni spaiati, tenendoli paralleli a sé: accoppiamento ferromagnetico Alcuni Esempi: Dimeri di Rame(II) > 96° < 96° R.D.Willett, D.Gatteschi,O.Kahn, Magneto-Structural Correlations in Exchange Coupled Systems, NATO ASI C140,Reidel, 1985 Rame(II)-Vanadile(IV) Indipendente dall’angolo J> 100 cm-1 Un po’ di MO - Hay-Thibeault-Hoffman ( ) J 2 j' k0 k 2 J’ è l’integrale di scambio, k sono integrali coulombiani + Il modello di Kahn J=j-ks2 J integrale di scambio s integrale di sovrapposizione Prussian Blue Type Compounds CnAp[B(CN)6]q.xH2O C monovalent cation A is N coordinated B is C coordinated The sign of the coupling can be easily understood considering the magnetic orbitals: if they are orthogonal the coupling is ferromagnetic, otherwise antiferromagnetic Ion Dependence of TC Doppio Scambio Mn3+ Mn4+ L’elettrone passa dal Mn(III) al Mn(IV) mantenendo lo spin parallelo a quello degli altri elettroni: accoppiamento ferromagnetico Doppio Scambio Mn3+ Mn4+ Un sistema a valenza mista di nichel Formalmente Ni(II)-Ni(I) Br N N N N N Ni Ni N N N Br Stato fondamentale S= 3/2. Nessuna evidenza di S= 1/2 Interazione spin-spin anisotropa Operatori di shift S S x i S y S S x iS y 1 i S x S S S y S S 2 2 1 2 1 2 2 2 2 S x S S S S S S ; S y S S S S S S 2 4 4 S S , M ( S M )( S M 1) S , M 1 S S , M ( S M )( S M 1) S , M 1 Altre relazioni importanti D XX DYY DZZ 1 DE 3 1 DE 3 2 D 3 Zero field splitting S=1 [11> <11] Dzz+(Dxx+Dyy)/2 D/3 [1-1> (Dxx-Dyy)/2 E (Dxx+Dyy) -2D/3 <10] <1-1] [10> (Dxx-Dyy)/2 E Dzz+(Dxx+Dyy)/2 D/3 Zero field splitting S=1 [> < ] D12zz/4 D12/6 (D12xx-D12yy)/4 E12/2 (-D12zz +D12xx+D12yy) -D12/3 {<β]+<β ]}/2 < ββ] {[β>+[β>}/2 [ββ> (D12xx-D12yy)/4 E12/2 D12zz/4 D12/6 Ancora operatori di shift 1 Six S jx Si S j Si S j Si S j Si S j 4 1 Siy S jy Si S j Si S j Si S j Si S j 4 Origin of the Spin-spin interaction • Through space (magnetic dipolar) • Through bonds (exchange) Magnetic Dipolar J12dip= (B2/r3) [g1.g2- 3(g1.r)(g2.r)/r2] y Mn x Cu z Dipolar matrix in B2/r3 units gxxge 0 0 0 gyyge(1-3sin2) -3sin cos gzzge 0 -3sin cos gyyge gzzge(1-3cos2) Decomposition of the interaction matrix J= (1/3)(Jxx+Jyy+Jzz) dxx=(Jyz-Jzy)/2 Dij=(Jij+Jji)/2 Dipolar interaction calculated r=2.5 Å r=3.5 Å r=4.5 Å 7 3 J 18 D -3519 E 28 11 5 dx -83 -30 -14 -1283 -603 The values are given in 10-4 cm-1. gxx=gyy=2.2; gzz=2.0. The principal direction of D is parallel to the Mn-Cu direction Origin of the Exchange Contributions J<g1g2Hexg1g2> D <n1g2Hexn1g2>2/2 D(g/g)2J d <n1g2Hexg1g2>/ d(g/g)J Spin-orbit coupling J ( x y , xy ) Dex / 32 2 2 2 2 2 2 2 J ( x y , xz ) y 2 J ( x y , yz ) x 2 2 2 z Dex __(g / g e ) 2 SH Parameters for Pairs In the strong exchange limit, J>>D,d the total spin S=S1+S2 is a good quantum number: gS= c1 g1+ c2 g2 AS= c1 A1+ c2 A2 DS= d1 D1+ d2 D2+ d12 D12 c1=(1+c)/2; c2= (1-c)/2; d1= (c++c-)/2;d2= (c+-c-)/2; d12= (1-c+)/2 Zeeman 11 S z 11 1 1 2 s1z 1 2 1 c1 c2 2 1 2 1 2 s2 z 1 2 1 2 Coupling coefficients S1 (S1 1) S2 (S2 1) c S(S 1) 3S1 (S1 1) S2 (S2 1)2 S(S 1)3S(S 1) 3 2S1 (S1 1) 2S2 (S2 1) c (2S 3)(2S 1)S(S 1) 4S(S 1)S1 (S1 1) S2 (S2 1) 3S1 (S1 1) S2 (S2 1) c (2S 3)(2S 1)S(S 1) Some numerical coefficients S1 S2 S c1 c2 d1 d2 d12 1/2 1/2 1 1/2 1/2 0 0 1/2 1 1 1 1/2 1/2 -1/2 -1/2 1 1 1 2 1/2 1/2 1/6 1/6 1/3 3/2 3/2 1 1/2 1/2 -6/5 -6/5 17/10 3/2 3/2 2 1/2 1/2 0 0 1/2 3/2 3/2 3 1/2 1/2 1/5 1/5 3/10 More coefficients S1 S2 S c1 c2 d1 d2 d12 2 2 1 1/2 1/2 -21/10 -21/10 13/5 2 2 2 1/2 1/2 -3/14 -3/14 5/7 2 2 3 1/2 1/2 1/10 1/10 2/5 2 2 4 1/2 1/2 3/14 3/14 2/7 5/2 5/2 1 1/2 1/2 -16/5 -16/5 37/10 5/2 5/2 2 1/2 1/2 -10/21 -10/21 41/42 5/2 5/2 3 1/2 1/2 -1/45 -1/45 47/90 5/2 5/2 4 1/2 1/2 1/7 1/7 5/14 5/2 5/2 5 1/2 1/2 2/9 2/9 5/18 And More S1 S2 S c1 c2 d1 d2 d12 1/2 1 1/2 -1/3 4/3 0 0 0 1/2 1 3/2 1/3 2/3 0 1/3 1/3 1/2 3/2 1 -1/4 5/4 0 3/2 -1/4 1/2 3/2 2 1/4 3/4 0 1/2 1/4 1/2 2 3/2 -1/5 6/5 0 7/5 -1/5 1/2 2 5/2 1/5 4/5 0 3/5 1/5 1/2 5/2 2 -1/6 7/6 0 8/6 -1/6 1/2 5/2 3 1/6 5/6 0 4/6 1/6 A test ground pair AF coupling J> 500 cm-1 Single Xtal spectra of Mn(II) doped Spin Hamiltonian Parameters gi= -1/6 g1i + 7/6 g2i D tensor g Tensor Origin of the Spin-spin interaction • Through space (magnetic dipolar) • Through bonds (exchange) Magnetic Dipolar J12dip= (B2/r3) [g1.g2- 3(g1.r)(g2.r)/r2] y Mn x Cu z Dipolar matrix in B2/r3 units gxxge 0 0 0 gyyge(1-3sin2) -3sin cos gzzge 0 -3sin cos gyyge gzzge(1-3cos2) Decomposition of the interaction matrix J= (1/3)(Jxx+Jyy+Jzz) dx=(Jyz-Jzy)/2 Dij=(Jij+Jji)/2 Dipolar interaction calculated r=2.5 Å r=3.5 Å r=4.5 Å 7 3 J 18 D -3519 E 28 11 5 dx -83 -30 -14 -1283 -603 The values are given in 10-4 cm-1. gxx=gyy=2.2; gzz=2.0. The principal direction of D is parallel to the Mn-Cu direction Coefficients for Clusters In the assumption of dominant isotropic exchange the coefficients for the spin hamiltonian in an S multiplet can be obtained using recurrence formulae The coefficients depend on the intermediate spins A trinuclear cluster c1(S1S2S12S3S)=c1(S12S3S)c1(S1S2S12) c2(S1S2S12S3S)=c1(S12S3S)c2(S1S2S12) c3(S1S2S12S3S)=c2(S12S3S) d1(S1S2S12S3S)=d1(S12S3S)d1(S1S2S12) d2(S1S2S12S3S)=d1(S12S3S)d2(S1S2S12) d3(S1S2S12S3S)=d2(S12S3S) d12(S1S2S12S3S)=d1(S12S3S)d12(S1S2S12) d13(S1S2S12S3S)=d12(S12S3S)c1(S1S2S12) d23(S1S2S12S3S)=d12(S12S3S)c2(S1S2S12) Problemi di Calcolo Il numero degli stati da calcolare sale rapidamente con il numero di centri. Infatti per N centri con spin S gli stati da calcolare sono (2S+1)N Stati per 8 spin 5/2 S n S n S n 20 17 1 84 19 16 7 210 18 15 28 462 14 11 8 916 4,333 11,200 13 10 7 1,660 6,328 13,600 12 9 6 2,779 8,680 15,520 5 2 16,576 11,900 4 1 16,429 7,700 3 0 14,875 2,666 Zfs parameters for three iron(III) rings LiFe6 NaFe6 Fe10 S=1 1.16(1) 4.32(3) 2.24(2) S=2 0.30(1) -------- 0.599(3) S=3 ------- -------- 0.291(1) S=4 ------- -------- 0.180(1) S=5 ------- -------- 0.123(1) Dipolar Contribution to zfs of six membered rings Spin states: |S1 S3 S13 S5 S135 S2 S4 S24 S6 S246 SM> 5/2 5/2 5 5/2 15/2 5/25/2 5 5/2 15/2 Dipolar Sum D is axial with D> 0 Coefficients for Fe6 Rings S ci di di,i+1 di,i+2 di,i+3 1 .16667 -2.4 2.856 -3.00 2.856 2 .16667 -0.54 0.690 -0.68 0.690 3 .16667 -0.235 0.330 -0.29 0.330 [NaFe6(OCH3)12(pmdbm)6]ClO4 Dipolar Interactions Inelastic Neutron Scattering 2K D1= 4.57(2) cm-1 15.31(1) cm-1 S=1 S=0 dipolar interactions (1.16 cm-1) [NaGa6-xFex(OCH3)12(pmdbm)6]ClO4 x = 0.1 (Fe/Ga = 1.7%) [NaGa5Fe] = 9.3% [NaGa6] = 90.3% Bulk Susceptibility H B S g B DFe [S 2z SS 1 / 3] E Fe [S 2x S 2y ] —— DFe = 0 0.3 T ( 1.0 T ( 2.0 T ( 3.0 T ( 4.0 T ( ) ) ) ) ) B = 0.0255 T —— DFe = 0.45 cm-1 - - - - DFe = -0.42 cm-1 High-Frequency EPR (240 GHz) H B S g B DFe [S 2z SS 1 / 3] E Fe [S 2x S 2y ] 15 K DFe = 0.43(1) cm-1 EFe = 0.066(3) cm-1 g = 2.003