Logica & Linguaggio: Grammatiche Categoriali Raffaella Bernardi Università degli Studi di Trento P.zza Venezia, Room: 2.05, e-mail: [email protected] Contents First Last Prev Next J Contents 1 2 3 4 5 6 7 Syntax-Semantics: Parallel vs. Non-parallel . . . . . . . . . . . . . . . . . . . 1.0.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Montague Universal Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Categorial Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 CG Lexicon: Toy Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Categorie Sintattiche: complesse . . . . . . . . . . . . . . . . . . . . . . Intermezzo: Inferenze Logiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CG: Analisi Sintattica come Inferenza Logica . . . . . . . . . . . . . . . . . 5.1 Esempi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Relative Pronoun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Pronome Relativo: Alberi sintattici . . . . . . . . . . . . . . . . . . . 5.4 Pronome Relativo: Inferenza . . . . . . . . . . . . . . . . . . . . . . . . . Riassunto: Regole di Inferenze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Riassunto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Proprietà delle Strutture sintattiche . . . . . . . . . . . . . . . . . . . 6.3 Linguistica e Matematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sintassi-Semantica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents First Last Prev 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Next J 8 9 7.1 Teoria degli Insiemi: Lessico . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Categorie sintattiche e Tipi semantici . . . . . . . . . . . . . . . . . . 7.4 DP e i Quantificatori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 ‘Type Raising’ come inferenza . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Logica e Linguaggio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CG: categories and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 DP and quantified DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Administrativa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents First Last Prev 21 22 23 24 25 26 27 28 Next J 1. Syntax-Semantics: Parallel vs. Non-parallel We could build the meaning representation of an expression either (a) in parallel with the construction of its syntactic structure, or (b) after having built the syntactic analysis. (a) is the method followed by most formal grammar frameworks as Categorial Grammar (CG), Head-Driven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree-Adjoining Grammar (TAG). (b) is used by the Government and Binding Theory and the Minimalist Program (both due to Chomsky). Contents First Last Prev Next J 1.0.1. wing: Advantages The reasons for preferring the first approach are the follo- Psycholinguistic works suggest that human processing proceeds incrementally through the simultaneous application of syntactic, semantics, and phonological constraints to resolve syntactic ambiguity. (Though, note that these systems are models of linguistic competence rather than performance. Hence, these results could not provide direct support of either of the approaches.) Computational approach requires a way to rule out a semantically ill-formed phrase as soon as it is encountered. Therefore, (a) offers a more efficient architecture for implementing constraint satisfaction. For instance, 1. The delegates met for an hour. 2. The committee met for an hour. 3. *The woman met for an hour. The use of “met” as intransitive verb requires a subject denoting a plural entity. Contents First Last Prev Next J 2. Montague Universal Grammar The rule-to-rule and lambda techniques are used in the approach to natural language semantics developed by Richard Montague. In his theory, there are I syntactic rules which show how constituents maybe combined to form other constituents. I translation rules (associated with each such syntax rule) which show how the logical expressions for the constituents have to be joined together to form the logical form of the whole. For instance, the syntactic and semantics rule for composing and DP with and IV: S2: If δ ∈ PIV and α ∈ PDP , then F1 (α, δ) ∈ PS and F1 (α, δ) = αδ 0 , where δ 0 is the result of replacing the main verb in δ by its third-person singular present form. T2: If δ ∈ PIV and α ∈ PDP and δ| → δ 0 and α| → α0 , then F1 (α, δ)| → α0 (δ 0 ). As grammar, he used Categorial Grammar. Contents First Last Prev Next J 3. Categorial Grammar I Who: Lesniewski (1929), Ajdukiewicz (1935), Bar-Hillel (1953). I Aim: To build a language recognition device. I How: Linguistic strings are seen as the result of concatenation obtained by means of syntactic rules starting from the categories assigned to lexical items. The grammar is known as Classical Categorial Grammar (CG). I Connection with Type Theory: The syntax of type theory closely resembles the one of categorial grammar. The links between types (and lambda terms) with models, and types (and lambda terms) with syntactic categories, gives an interesting framework in which syntax and semantic are strictly related. (We will come back on this later.) Categories: Given a set of basic categories ATOM, the set of categories CAT is the smallest set such that: CAT := ATOM | CAT\CAT | CAT/CAT Contents First Last Prev Next J 3.1. CG Lexicon: Toy Fragment Let ATOM be {n, s, dp} (for nouns, sentences and noun phrases, respectively) and LEX as given below. Lexicon Sara student wrote dp n (dp\s)/dp Sara walks ∈ s? ; the walks dp/n dp\s dp , dp\s ∈ s? |{z} |{z} Sara Yes walks simply [BA] s dp dp\s Sara walks Contents First Last Prev Next J 3.2. Categorie Sintattiche: complesse Visto: S S DP VP DP sara IV sara cammina Nuovo: dp\s sara cammina TV DP conosce ilaria s s dp VP dp dp\s sara (dp\s)/dp conosce dp ilaria Grammatiche Categoriali: categorie sintattiche piú complesse! Contents First Last Prev Next J 4. Intermezzo: Inferenze Logiche Già visto (inferenza): I Premesse: 1. Roberto verrà oppure Massimo verrà. 2. Se Roberto non ha trovato una baby sitter, Roberto non verrà. 3. Roberto non ha trovato una baby sitter I Conclusione: 1. Massimo verrà. Nuovo: {p ∨ q, r → ¬p, r} ⇒ {z } | premesse p∨q q |{z} conclusione r → ¬p r ¬p q Contents First Last Prev Next J 5. CG: Analisi Sintattica come Inferenza Logica Regole di inferenza: Modus Ponens. B B/A, A ⇒ B B/A A (/E) B A, A\B ⇒ B A A\B (\E) B B/A A β α B A A\B α β Contents First Last Prev Next J 5.1. Esempi Dato ATOM = {dp, s, n}, possiamo costruire il lessico: Lessico John, Mary student walks sees ∈ ∈ ∈ ∈ dp n dp\s (dp\s)/dp Analisi Sintattica John walks ∈ s? the ∈ dp/n ; dp, dp\s ⇒ s dp Si dp\s (\E) s John sees Mary ∈ s? ; dp, (dp\s)/dp, dp ⇒ s dp Si (dp\s)/dp dp (/E) dp\s (\E) s Contents First Last Prev Next J 5.2. Relative Pronoun Question Which would be the syntactic category of a relative pronoun in subject position? E.g. “the student who knows Lori” [the [[student]n [who [knows Lori](dp\s) ]? ]n who knows Lori ∈ n\n? ; (n\n)/(dp\s), (dp\s)/dp, dp ⇒ n\n? knows Lori (dp\s)/dp dp who (MPr ) (n\n)/(dp\s) dp\s (MPr ) n\n n\n (n\n)/(dp\s) who (dp\s) (dp\s)/dp dp knows Lori Contents First Last Prev Next J 5.3. Pronome Relativo: Alberi sintattici The book which [Sara wrote [. . .]]s is interesting . {z } {z }| | dp\s dp s s Sara dp\s dp\s dp (dp\s)/dp dp wrote x dp (dp\s)/dp Sara s/dp s dp\s dp (dp\s)/dp Sara wrote dp x wrote [. . .] dp x Contents First Last Prev Next J 5.4. Pronome Relativo: Inferenza Ragionamento ipotetico (regole di introduzione dell’implicazione) cattura l’idea della “traccia” proposta in Linguistica. The book which [Sara wrote [. . .]]s is interesting . {z } {z }| | dp dp\s wrote ` (dp\s)/dp [x ` dp]1 (/E) Sara ` dp wrote x ` dp\s (\E) Sara wrote x ` s (/I)1 which ` (n\n)/(s/dp) Sara wrote ` s/dp (/E) which Sara wrote ` n\n (n\s)/(s/dp), dp, (dp\s)/dp ⇒ n\n Contents First Last Prev Next J 6. Riassunto: Regole di Inferenze (np\s) (np\s)/np conosce ∆ ` B/A Γ ` A (/E) ∆◦Γ`B np ilaria (np\s)/np (np\s) (np\s)/np conosce [...] np x ∆ ◦ A ` B (/I) ∆ ` B/A I (/E) MP cattura le dipendenze locali I (/I) Ragionamento Ipotetico cattura le dipendenze a distanza. Contents First Last Prev Next J 6.1. Riassunto Premessa: Le parole possono essere interpretate come insiemi, e quindi come funzioni. Domande: I Categorie Sintattiche: Come si riflette ciò sulle categorie sintattiche? I Costituenti: Come si riflette ciò sulle strutture sintattiche? Risposte I Usiamo categorie sintattiche più complesse, correspondenti alla semantica. I Usiamo Modus Ponens e Ragionamento Ipotetico. Metodo Abbiamo usato una logica per analizzare le strutture sintattiche e catturare il legame tra sintassi e semantica del linguaggio naturale. Qual è la logica dietro le strutture linguistiche? Contents First Last Prev Next J 6.2. Proprietà delle Strutture sintattiche I non commutativa: mary walks ` s ma walks mary 6` s. I non associativa [thedet studentn ]dp walksvp ` s ma [thedet [studentn walksvp ]? 6` s. I importanza del numero delle occorrenze: mary walks ` s but mary mary walks 6` s, and mary walks ` s but walks 6` s. I ... Contents First Last Prev Next J 6.3. Linguistica e Matematica In Matematica: 2 ≤ 94 iff 2×4 ≤ 9 iff 4 ≤ 29 × è commutativo. In Linguistica: dp : sara ` s/iv iff dp : sara◦iv : cammina ` s iff cammina : iv ` dp\s ◦ non è commutativo. Contents First Last Prev Next J 7. Sintassi-Semantica Syntactic Categories and Semantic Types Let us define a function type : CAT → TYPE which maps syntactic categories to semantic types. type(np) = e; type(s) = t; type(n) = (e → t). type(A/B) = (type(B) → type(A)); type(B\A) = (type(B) → type(A)); Contents First Last Prev Next J 7.1. Teoria degli Insiemi: Lessico Già visto (semantica –interpretazione): [[tommaso]] [[valerio]] [[roberto]] [[raffaella]] [[studente]] [[docente]] [[italiano]] [[parla]] [[ascolta]] [[conosce]] = = = = = = = = = = tommy; valerio; roby; raffa; {tommy, valerio}; {roby}; {tommy, valerio, raffa, roby}; {raffa}. {tommy, valerio, roby}; {hroby, raffai, hraffa,robyi}; Qual è il significato di “Ogni studente”? [[ogni studente]] = = = {X ⊆ E | [[student]] ⊆ X} {{tommy, valerio}, {tommy, valerio, raffa, roby}, {tommy, valerio, roby}} {[[studente]], [[italiano]], [[ascolta]]} ie. un insieme di proprietà. Nuovo: Tutto ciò si riflette sulla sintassi? Quali sono le categorie sintattiche del lessico? Contents First Last Prev Next J 7.2. Categorie sintattiche e Tipi semantici Parola Roberto parla conosce ogni studente CAT dp dp\s (dp\s)/dp s/(dp\s) TIPO e e→t e → (e → t) (e → t) → t RAP. SEMA r λx.Parla(x) λx.Conosce(x) λX.∀x.Studente(x) → X(x) Contents First Last Prev Next J 7.4. DP e i Quantificatori Problema: Es. “Roberto and every student left”. I “And” coordina costituenti della stessa categoria sintattica. I Roberto: dp I every student: s/(dp\s) Soluzione proposta da Linguisti (Partee): “Type raising” [[roberto]] [[roberto]] = roby; = {X|X(roby) = 1} = {[[italiano]], [[docente]], [[ascolta raffa]]} Contents First Last Prev Next J 7.5. ‘Type Raising’ come inferenza Portendo dall’assegnare a “Roberto” la categoria dp, le regole di inferenza dimostrano: john ` dp [P ` dp\s]1 (\E) roberto P ` s (/I)1 roberto ` s/(dp\s) dp ⇒ s/(dp\s) Per cui può essere coordinato con un QP, senza bisogno di postulare il “type raising”. Contents First Last Prev Next J 7.6. Logica e Linguaggio Già visto: I Il significato di una frase è il suo valore di verità. (Tarski) I Il significato di una frase è ottenuto composizionalmente partendo dal significato delle parole. (Frege) I Il significato delle parole è catturato dalla teoria degli insiemi Nuovo: Possiamo definire formalmente il legame tra Sintassi e Semantica del Linguaggio Naturale? Contents First Last Prev Next J 8. CG: categories and terms Modus ponens corresponds to functional application. B/A : t A : r (/E) B : t(r) A : r A\B : t (\E) B : t(r) Example dp : john dp\s : walk (\E) s : walk(john) dp\s : λx.walk(x) (λx.walk(x))(john) ;λ−conv. walk(john) (dp\s)/dp : know dp : mary (/E) dp : john dp\s : know(mary) (\E) s : know(mary)(john) Contents First Last Prev Next J 8.1. DP and quantified DP John and one student left. We can assign to John the category dp and term assignment john and derive the category and term of quantified dp. roberto ` dp : roby [P ` dp\s : P ]1 (\E) roberto P ` s : P (roby) (/I)1 roberto ` s/(dp\s) : λP.P (roby) We have proved: dp ` s/(dp\s). This means, we can assign John the category dp (considering it an entity, i.e. a term of type e) and derive from it the higher order category of quantified DP as it would be necessary for, e.g. coordination of a DP and a QP. [[roberto]] = roby; [[roberto]] = {X|X(roby) = 1} = {[[italiano]], [[docente]], [[ascolta raffa]]} Contents First Last Prev Next J 9. Administrativa Esame di Giugno (forse il 6): scritto ad Aprile. Quando? Giugno: discussione esercizi svolti. Contents First Last Prev Next J