Strong coupling (teoria classica) Trasmissione FP con risonanza TC tC 2 T 2 e 1 R e i 2 r 2 e e 1 F sin 2 ( r / 2) 4R F 2 1 R Trascurando r la condizione di risonanza è 2n nB nR 2 c m nB nR m Posizione picco r c Calcolo posizione risonanze 2 nB nR ( ) 2 nB -1,0 Posizione picco -0,5 2 nB nR ( ) m n B nB nR ( ) nB R 2 m 2 m 2 R nB m nB nR ( ) nB R Cavità ben accordata Metodo grafico 0,0 R 0,5 1,0 Metodo grafico, cavità vuota 0,8 Transmission nB 0 nB R 1,0 0,6 0,4 0,2 0,0 829 R 830 831 832 Lambda (nm) 833 834 1,0 Transmission Metodo grafico, cavità con eccitone nB nR ( ) nB 3 soluzioni R 0,8 0,6 0,4 0,2 0,0 829 830 831 832 Lambda (nm) 833 834 Spettri cavità con eccitone TC T 2 e 1 R e i 2 r 2 e 2 modi normali Resta un piccolo assorbimento sulle code della banda eccitonica Picco centrale trova un forte assorbimento e non compare negli spettri Se la cavità è fuori sintonia R 3,64 eccitone cavità vuota n 3,62 3,60 3,58 829 830 831 832 Lambda (nm) 833 834 Al variare del tuning eccitone nudo 3,64 n 3,62 3,60 3,58 829 830 831 832 Lambda (nm) 833 834 Transmission (a.u) Al variare del tuning 826 828 830 Lamba (nm) 832 834 Anticrossing ( 0 ) 2 2 00G / nB ( X Ph ) 2 bare photon bare exciton 0 2 00G / nB Polariton Half-photon, half-exciton 0 Al crescere della forza di oscillatore (ovvero del coupling) 3,66 G 3,64 n 3,62 3,60 3,58 3,56 829 830 831 832 Lambda (nm) 833 834 Eccitone nudo Al crescere della forza di oscillatore lo splitting aumenta Modi normali Al crescere dell’ allargamento 3,64 3,62 n 3,60 3,58 829 830 831 832 Lambda (nm) 833 834 Eccitone nudo Al crescere dello allargamento lo splitting diminuisce fino a sparire Modi normali Fononi distruggono strong coupling Exciton scattering distrugge strong coupling Esistenza polaritone Coupling regimes WC:VCSEL SC:Polariton Broadening distrugge Strong coupling Teoria quantistica: Polaritone Teoria quantistica: Polaritone Photon state in second quantization and k space Electromagnetic Vacuum VPh nPh 0 a VPh nPh 1, k ak nPh 1, k nPh 0 k a , a k k' k ,k ' H phot a a ) k ( cav k k k Exciton state in second quantization and k space Exciton Vacuum VX n X 0 b VX n X 1, k bk n X 1, k n X 0 k b , b k k' k ,k ' H exc b b ) k ( exc k k k Half-photon, half-exciton Anticrossing k//=0 Accordo in frequenza Controllo deterministico del tuning a posteriori Cavità con gradiente GaAs Effetti quantistici BEC polaritoni Anticrossing k//=0 Bose-Einstein condensation (BEC) of an ideal Bose gas1 •The Bose-Einstein distribution function: f B k ,T , 1 , 0 E k E 0 exp 1 k BT •In a d-dimensional system with a parabolic dispersion around k=0: 2 2 / d ) nc (T ) Tc (n) 4 n (d / 2) 2 / d 2m •In a 3D (d=3) system with a parabolic dispersion around k=0: 2 2 2/3 Tc n 1.897mkb 1 S.N. Bose, Z. Phys. 26, 178 (1924), A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss (1924). Esistenza polaritone Coupling regimes Broadening distrugge Strong coupling Trappola in k space per polaritoni Phase diagram of exciton-polaritons Weak coupling Weak coupling Strong coupling Solid lines show the critical concentration Nc versus temperature of the polariton KT phase transition. Dotted and dashed lines show the critical concentration Nc for quasi condensation in 100 µm and 1 meter lateral size systems, respectively. Phase diagrams of exciton-polaritons in different materials Solid lines show the critical concentration Nc versus temperature of the polariton KT phase transition. Dotted and dashed lines show the critical concentration Nc for quasi condensation in 100 µm and 1 meter lateral size systems, respectively. CdTe T=5K GaN Polaritons at T=300K BEC in GaN @ 300K Polariton laser Laser history... 1917 Einstein derived the Plank formula, spontaneous + stimulated emission 1950 W. Lamb: idea of light amplification 1950 A. Kastler, optical pumping 1953 Weber, Twones, Basov, Prokhorov, maser 1959 T.H.Maiman, laser on rubis 1960s gaz lasers 1969 first semiconductor lasers (pn-junction) 1972 Zh. Alferov, laser on heterostructures 1990s lasers on semiconductor nanostructures, VCSELs 1996, Imamoglou, idea of polariton lasing 2007, RT polariton laser To make a polariton laser one should have a microcavity in the strong-coupling regime Coherent spontaneous emission from polariton BEC Optically or electronically excited exciton-polaritons relax towards the ground state and Bose-condense there. Their relaxation is stimulated by final state population. The condensate emits spontaneously a coherent light “Normal” semiconductor laser: “Polariton” laser: The threshold to lasing is given by the inversion of population condition. The threshold condition: population of the k=0 state larger than 1. The absorption must be balanced by stimulated emission. The emission occurs at the energy lower than the absorption edge. Photon Bose condensation. Bose condensation of a half matter-half light particle. Stimulated light Spontaneous emission of light emission of Escape of polaritons from cavity