X-ray diffraction in polymer science • 1) Identification of semicrystalline polymers and Recognition of crystalline phases (polymorphism) of polymers • 2)Polymers are never 100% crystalline. XRD is a primary technique to determine the degree of crystallinity in polymers. • 3) Microstructure: Crystallite size in polymers is usually on the nanoscale in the thickness direction. The size of crystallites can be determined using variants of the Scherrer equation. • 4) Orientation: Polymers, due to their long chain structure, are highly susceptible to orientation. XRD is a primary tool for the determination of crystalline orientation through the Hermans orientation function. 1) Identification of semicrystalline polymers Positions and Intensities of the peaks are used for identifying the material. Unoriented PE The diffraction of unoriented samples in reflection 110 2θ = 21.4° I PE polyethylene 200 2θ = 23.9° The diffraction of unoriented samples in transmission by using a flat film is characterized by concentric circles called “Debye Scherrer Rings” 5 10 15 20 25 30 35 40 2θ (deg) 110 (2θ θ=21.4°) Rhkl = D tan 2θhkl 200 (2θ θ=23.9°) Unoriented PE X ray diffraction of semicrystalline and amorphous polymer 211 (20.3°) I 300 110 (11.8°) (6.2°) 310 220 amorphous s-PS syndiotattic polystyrene I s-PS syndiotactic polystyrene 400 210 5 10 15 20 25 30 35 40 2θ (deg) 5 10 15 20 25 30 35 40 2θ (deg) 1) Identification of crystalline phases of polymers Position and Relative intensities are the fingerprint of crystalline phases of polymer 211 s-PS 110 300 a 220 310 410 400 510 600 210 200 030 121 Intensity 220 041 331 020 210 111 _ 410 _301 321 _101 111 132 020 210 111 _ 121 _ _230 321 211 301 δ 102 _ 112 _ 302 322 δ 121 _ 421 _ 411 220 030 212 _302 322 _ 010 210 10 15 γ _ 421 _ 411 _ 210 5 α 040 420 231 401 410 010 002 031 131 200 020 210 α 20 25 2θ (deg) 30 230 040 35 δDCE 40 b Identification of crystalline phases of polymers also if they are present in mixture. s-PS (110)I i-PB Intensity β (211)I tmax = 5 min β (300)I Tmax = 320 °C β e I (220)I Forma I βα Tmax = 310 °C β d Forma I + II α α +β Tmax = 300 °C β c β α Forma I + II α (200)II Tmax = 290 °C b α α (220)II Tmax = 280 °C a 0 (311)II β 5 10 15 20 25 2ϑ (deg) 30 35 40 Forma II 5 10 15 20 2θ (deg) 25 30 X ray diffraction of semicrystalline polymer and inorganic compound inorganic compound Polymer 211 (20.3°) I KBr I 300 110 (11.8°) (6.2°) 310 220 s-PS syndiotattic polystyrene 400 210 5 10 15 20 25 30 35 40 2θ (deg) 5 10 15 20 25 30 35 40 45 2 θ (deg) 50 55 60 65 70 75 80 30000 What about this spectra? 9.5 25000 28.6 Intensity (a.u.) 20000 15000 10000 17 5000 19 18.6 14.1 21.6 48.7 25.6 59.3 38.5 0 5 10 15 20 25 30 2θ(°) 35 40 45 50 55 60 Diffrazione dei raggi X del campione prima TGA polimero Diffrazione dei raggi X del campione dopo TGA Carica inorganica The peak positions, intensities, widths and shapes provide important information about the structure of the material • amorphous / crystalline • (polymer, inorganic/organic compound) • crystalline phases 2)XRD a primary technique to determine the degree of crystallinity in polymers. The determination of the degree of crystallinity implies use of a two-phase model, i.e. the sample is composed of crystals and amorphous and no regions of semi-crystalline organization. I = I crystalline + I amorphous I degree of crystallinity : xc xc = I crystalline I crystalline + I amorphous 5 10 15 20 2θ 25 30 35 2) XRD : determination of degree of crystallinity in polymers. The diffraction profile is divided in 2 parts: peaks are related to diffraction of crystallites, broad alone is related to scattering of amorphous phase. The assumption is that the areas are proportional to the scattering intensities of crystalline and amorphous phases Ia = diffracted amorphous phase Ib = diffracted background Ic = diffracted crystalline phase PE Ic Ia Ib intensity of intensity of intensity of Acr xc = Acr + KAam K is a constant related to the different scattering factors of crystalline and amorphous phases. For relative measures K = 1. 3) Microstructure: Crystallite size in polymers The half-width of peaks is related to crystallite dimensions. Half-width large correspond to smaller crystallites Intensity Contribution to broadening can be due to lattice distortion, structural disorder as well as instrumental effects. 5 10 15 20 25 2θ (deg) 30 Intensity Half-width narrow correspond to bigger crystallites 5 10 15 20 25 2θ (deg) 30 Intensity 3) Microstructure: Crystallite size in polymers B = half-width of peaks B = ∆2θ = 2θ2 – 2θ1 Imax Imax/2 b = broadening instrumental β= broadening due to crystallites dimensions B 2θ 2θ1 β=B−b 2θ2 2θ (deg) b can be measured by the half-width of a peak of crystalline compounds low molecular weight. Crystallite size in polymers : Lhkl = Kλ β ⋅ cosθ Scherrer’s Equation Lhkl = crystallite dimensions (in Å) along the direction perpendicular to the crystallographic plane hkl. β = half-width of peak related to the crystallographic plane hkl (rad). K = constant (usually K = 0.89) θ = diffraction angle of the hkl reflection. λ = wavelength used ( λCukα = 1.5418 Å.) 4)Orientation: Polymers, due to their long chain structure,are highly susceptible to orientation Fiber axes Draw direction X-ray c fiber X-ray diffraction of oriented polymer: fiber pattern y meridian 360 x -1 y cos 2θ = cos cos tan 2 π R R Second layer l=2 (hk2) First layer l=1 (hk1) equator l=0 (hk0) x i-PP fiber c= lλ sen(tan -1 ( y/R )) c = periodicity along the chain axes λ = wavelength used (CuKα = 1.5418 Å) l = layer x, y = distance of reflections from the center along equatorial and meridian lines R = chamber radius X-ray diffraction of fibers annealed at different T Distance from layers correspond to c axes Helical conformation c=7.8 Å Trans-planar conformation c=5.1Å Oriented sPP fiber stretched at different ε First layer l=1 (hk1) equator l=0 (hk0) ε = 50 % ε = 100 % ε = 200 % ε=100(Lf-Li)/Li Lf = final length Li = initial length ε = 500 % The degree of orientation can be determined from the intensity distribution of the corresponding diffraction on the Debye ring by using the Hermans’ Orientation Function fφ = Azimutal scan: measuring the intensity at 2θ constant, by varying the χ angle. ( ) 1 3 cos 2φ − 1 2 Average cosine squared value of φ angle Z = draw axes φc,Z φa,Z c φb,Z b a If the radiation is perpendicular to the fiber axes χ cos 2φhkl = cos 2 χhkl 2 χ π/2 < cos 2χ hkl >= 2 ( ) I χ sen χ cos χ dχ ∫ 0 π/2 ∫ I(χ)senχ dχ 0 Orientation with respect to draw direction parameter parallel random perpendicular <cos2φ> f 1 1 1/3 0 0 -1/2 If χ = 0 for meridian reflection (00l) <cos2φ00l> = 1 e fc = 1 The fiber is perfected oriented: fc = 1 Types of Orientation in polymers Types of ORIENTATION GEOMETRY (Heffelfinger & Burton)1 PREFERRED ORIENTATION Crystallographic elements Reference elements 1 Random - - - 2 Axial Crystallographic Axes parallel to reference axes c draw axes 3 Planar Crystallographic Axes on a reference plane c film plane 4 Planar-axial Crystallographic plane Parallel to a reference axes (100) draw axes 5 Uniplanar Crystallographic plane Parallel to a a reference plane (100) film plane c draw axes Uniplanaraxial Crystallographic Axes parallel to reference axes and a Crystallographic plane Parallel to a a reference plane (100) film plane 6 C. J. Heffelfinger, R. L. Burton J. Polym. Sci. 47, 289 (1960). Uniplanar orientation: sps film 110 211 220 300 β 200 220 300 310 410 400 β 210 040 Intensity 220 E 101 111 410 040 25 2θ (deg) Figure 1 C 010 δ 020 _ 322 B B 010 _ 230 DCE clathrate 302 20 D γ 030 _ 411 _ 111 β 240 170 δ 030 15 150 060 130 020 C _ 321 020 111 10 D γ 132 _ 411 _ 2_30 321 600 110 002 040 _ 420 231 410 401 041 331 _ 210 5 E 020 031 410 131 _ 111 _ 010 210 400 210 410 β 040 β '' 240 170 020 210 111 010 002 101 111 140 030 121 200 020 210 600 150 060 α 211 200 041 131 120 130 110 020 510 Intensity 110 β α '' 30 020 111 040 35 030 A 40 DCE clathrate A 040 5 10 15 20 25 2θ (deg) Figure 2 30 35 40 Types of Orientation in polymers Through direction End direction MD TD Edge direction end through Uniplanar orientation : (010) 010 edge Rizzo, Lamberti, Albunia, Ruiz de Ballesteros, Guerra Macromol. 2002, 35, 5854 Albunia, Rizzo, Guerra Chem. Mat. 2009, 21,3370 Along the chain projections of packing of δ forms of s-PS showing (010) planes parallel to the film surface Film surface 010 planes 8.70Å (010) planes correspond to rows of parallel helices with minimum interchain distances (8.70Å) and maximum interplanar distances (10.56Å) s-PS co-crystals a/2 R L 0.87 nm a c a c b L R L R De Rosa, C.; Rizzo, P.; Ruiz de Ballesteros, O.; Petraccone, V.; Guerra G. Polymer, 1999, 40, 2103. Chatani, Y.; Shimane, Y.; Inagaki, T.; Ijitsu, T.; Yukinari, T.; Shikuma, H. Polymer, 1993, 34, 1620. Unique feature of s-PS: three uniplanar orientations a c b L R L R Solvent induced crystallization on amorphous film Bp < 110°C Bp > 140°C Rizzo, Spatola, Del Mauro, Guerra Rizzo, Della Guardia, Guerra Macromolecules 2005, 38, 10089 Macromolecules 2004, 37, 8043 a// c// THF, CHCl3 a// c⊥ p-xylene, dichloroethane Rizzo, Lamberti, Albunia, Ruiz, Guerra Macromolecules 2002, 35, 5854 Rizzo, Costabile, Guerra a⊥ c// Film thickness Albunia, Rizzo, Tarallo, Petraccone, Guerra Macromolecules 2008, 41, 8632 Macromolecules 2004, 37, 3071 Solution casting; Spin-coating sPS Films: Orientation Upon Biaxial Balanced Drawing E D2 biaxial stretch (sPS)syndiotactic polystyrene E I E L E M R 2.5x2.5 a// c// Film surface c a a// c010 planes // Planes 8.70Å a// c// planes correspond to rows of parallel helices with minimum interchain distances (8.70Å) and maximum interplanar distances (10.56Å) Paola Rizzo*, Alexandra R. Albunia Macromolecular Chemistry and Physics 2011, 212,1419-26 D1 Uniplanar orientation E D2 biaxial stretch E I E L E M R 2.5x2.5 (PET) polyethylene terephthalate (100) uniplanar orientation (a=4.56Å b=5.94Å c=10.75Å α=98.5° β=118° γ=112°) triclinic lattice Bin, Y.; Oishi,K.; Yoshida, K.; Nakashima T.; Matsuo, M.; J. Polymer, 2004, 36,394-402 D1 Uniplanar orientation E (i-PP) polypropylene D2 biaxial stretch E I E L E M R 2.5x2.5 A crystalline plane preferentially parallel to the film plane Primary slip-plane: - containing the chain axis - and having the highest density Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. D1 Uniplanar orientation A E D2 biaxial stretch E I E L E M R D1 2.5x2.5 B MD (i-PP) polypropylene TD MD C ND TD MD Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. In the Schulz reflection method the goniometer is set at the Bragg angle corresponding to the crystallographic planes of interest. A special specimen holder tilted the sample with the horizontal axis (y rotation axis), while rotating it in its own plane about an axis normal to its surface (j rotation axis) . The y rotation can be varied from 0°to 90°, whereas the j rotation can be varied from 0°to 360°. The pole figures are plotted on a polar stereographic projection using linear intensity scale. Uniplanar orientation (i-PP) polypropylene E D2 biaxial stretch E I E L E M R 2.5x2.5 D1 Iso-intensity lines indicate the relative intensity of the pole related to the maximum diffracted intensity (assumed equal to 10). The presence on the diffraction rings of the pole figures of the (110) and (130) reflection of intensity maxima along MD indicates some preferential c-axis orientation along TD. It is worth noting that this minor axial orientation, which is related to a not perfect balancing of draw ratios between the two drawing directions. Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. iPP:uniplanar-axial orientation A B MD TD MD ND TD MD Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. C iPP:uniplanar-axial orientation The pole figure of the (040) reflection shows a strong maximum in ND. Correspondingly, the (110) and (130) pole figures show rings at latitude 72° and 46°, respectively. These rings present more intense maxima along MD and less intense maxima along TD, indicate the occurrence of a bimodal axial orientation, with prevailing orientation along TD. Crystallites presenting (110) planes parallel to the film surface, associated with a c-axis orientation along TD, can account for the two weak reflections at latitude of 72° along MD, which are present on the (040) pole figure Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. iPP:uniplanar-axial orientation The bimodal axial orientation, associated with a major uniplanar orientation relative to the (0k0) planes and minor uniplanar orientations relative to the (110) and (130) planes, can rationalize all the diffraction peaks which occur in photographic patterns, like those shown previously Paola Rizzo, Vincenzo Venditto, Gaetano Guerra, Antonio Vecchione Macromolecular Symposia 2002, 185, 53-63. Blown film of PE (PE) polyethylene a-axis (200) is preferentially oriented along the MD It is evident that the a-axis (200) is preferentially oriented along the MD, because poles with highest intensity are concentrated at the north and south ends of the (200) pole figure. In the (020) pole figure, poles with the highest intensity are concentrated in the center, and spread along the TD. This suggests that b-axis is oriented in the ND-TD plane. Chen, H. Y.; Bishop, M. T.; Landes, B. G.; Chum, S. P.; J. App. Polym. Sci., 2006, 101, 898-907 sPS:uniplanar-axial orientation sPS:uniplanar-axial orientation a⊥c ax a// c ax cax sPS: uniplanar-axial orientation