BÈ‚ÏÈÔÁÚ·ÊÈ΋ AÓ·ÛÎfiËÛË
Literature Review
∑ÈÚÎÔÓ›·: ™‡Á¯ÚÔÓ˜ ·fi„ÂȘ ÂÓfi˜ ÔÏ˘Û˘˙ËÙË̤ÓÔ˘ ˘ÏÈÎÔ‡.
¢ÔÌ‹, ÂÊ·ÚÌÔÁ¤˜ Î·È ÎÏÈÓÈÎÔ› ÚÔ‚ÏËÌ·ÙÈÛÌÔ›
∂. Δ˙·Ó·Î¿Î˘*, π. Δ˙Ô‡Ù˙·˜**, ∂. ∫ÔÓÙÔÓ·Û¿ÎË***
Zirconia: Contemporary views of a much talked material:
Structure, applications and clinical considerations
E. Tzanakakis*, I. Tzoutzas**, E. Kontonasaki***
¶EPI§HæH
SUMMARY
T· ÙÂÏÂ˘Ù·›· ¯ÚfiÓÈ·, Â˘Ú‡Ù·ÙË ı¤ÛË ÛÙËÓ Â·ÓÔÚıˆÙÈ΋ Ô‰ÔÓÙÈ·ÙÚÈ΋ η٤¯Ô˘Ó Ù· ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜. H ˙ÈÚÎÔÓ›· (ηı·Úfi ÔÍ›‰ÈÔ ZrO2), ÚÔ¤Ú¯ÂÙ·È
·fi ÙÔ˘˜ ÔχÙÈÌÔ˘˜ Ï›ıÔ˘˜ ˙ÈÚÎÔÓ›ÙË Î·È ‚·‰‰ÂÏÂ˚ÙË. H ¯Ú‹ÛË Ù˘ ˙ÈÚÎÔÓ›·˜ ÛÙȘ ‚ÈÔ˚·ÙÚÈΤ˜ ÂÊ·ÚÌÔÁ¤˜ ÍÂΛÓËÛ ˆ˜ ˘ÏÈÎfi ÛÙËÓ ÔÏÈ΋ ·ÚıÚÔÏ·ÛÙÈ΋
ÎÂÊ·Ï‹˜ ÌËÚÈ·›Ô˘ ÔÛÙÔ‡. H ˙ÈÚÎÔÓ›· ÎÚ˘ÛÙ·ÏÏÒÓÂÙ·È Û ΢‚È΋, ÙÂÙÚ·ÁˆÓÈ΋ Î·È ÌÔÓÔÎÏÈÓ‹ ÌÔÚÊ‹ ·Ó¿ÏÔÁ· Ì ÙË ıÂÚÌÔÎÚ·Û›·. °È· ÙËÓ ÂÍ·ÛÊ¿ÏÈÛË ÙˆÓ
‚¤ÏÙÈÛÙˆÓ Ì˯·ÓÈÎÒÓ È‰ÈÔًوÓ, ··ÈÙÂ›Ù·È Ë ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ ÙÂÙÚ·ÁˆÓÈ΋˜ Ê¿Û˘ Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘, Ë ÔÔ›· Ú·ÁÌ·ÙÔÔÈÂ›Ù·È Ì ‰È¿ÊÔÚ· ÔÍ›‰È· .¯. ˘ÙÙÚ›Ô˘ Î·È ‰ËÌËÙÚ›Ô˘ (Y2O3, CeO2).
™ÙËÓ O‰ÔÓÙÈ·ÙÚÈ΋ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ÙÚÂȘ Ù‡ÔÈ
˙ÈÚÎÔÓ›·˜, Ë Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ÙÂÙÚ·ÁˆÓÈ΋
˙ÈÚÎÔÓ›·, Ë ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›· Î·È Ë
·ÏÔ˘Ì›Ó· ÂÓÈÛ¯˘Ì¤ÓË Ì ˙ÈÚÎÔÓ›·. T· ÎÂÚ·ÌÈο ÙÔ˘
ÚÒÙÔ˘ Ù‡Ô˘, ·ÚÔ˘ÛÈ¿˙Ô˘Ó ˘„ËϤ˜ Ì˯·ÓÈΤ˜ È-
In recent years, zirconia ceramics hold a remarkable place in restorative dentistry. Zirconia (pure ZrO2),
is derived from the gemstones zirconite and baddeleyite. The use of zirconia in biomedical applications started in total hip femoral head replacement.
Zirconia crystallizes in cubic, tetragonal and monoclinic form depending on temperature. For ceramics with the optimum mechanical properties the
stabilization of the tetragonal phase at room
temperature is a prerequisite, and is performed with
various stabilizing oxides e.g. cerium and yttrium
(Y2O3, CeO2). Three types of zirconia are used in
Dentistry, the fully stabilized tetragonal zirconia, the
partially stabilized zirconia and the alumina -reinforced zirconia. Fully stabilized tetragonal zirconia
ceramics exhibit high mechanical properties, but
present two main drawbacks: uncontrolled growth
of the monoclinic phase, which can lead to prema-
* O‰ÔÓÙ›·ÙÚÔ˜, ¶ÚÔÛıÂÙÔÏfiÁÔ˜ À¢ μÈÔ¸ÏÈÎÒÓ ∂∫¶∞
** O‰ÔÓÙ›·ÙÚÔ˜, ∞Ó. ∫·ıËÁËÙ‹˜ O‰ÔÓ. ÃÂÈÚÔ˘ÚÁÈ΋˜ ∂∫¶∞
*** O‰ÔÓÙ›·ÙÚÔ˜, E. K·ıËÁ‹ÙÚÈ· ¶ÚÔÛıÂÙÔÏÔÁ›·˜ ∞ΛÓËÙ˘
¶ÚÔÛıÂÙÈ΋˜ ∞¶£
ÂÏÏËÓÈο ÛÙÔÌ·ÙÔÏÔÁÈο ¯ÚÔÓÈο 57: 101-137, 2013
·ÚÂÏ‹ÊıË 2/1/2014 - ÂÎÚ›ıË 13/1/2014
* Prosthodontist, MSc Phd cand Biomaterials UOA
** Associate Professor Operative Dentistry UOA
*** Assistant Professor AUTH
Hellenic Stomatological Review 57: 101-137, 2013
paper received 2/1/2014 - accepted 13/1/2014
101
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
‰ÈfiÙËÙ˜, Ì ‚·ÛÈÎfiÙÂÚ· ÌÂÈÔÓÂÎÙ‹Ì·Ù¿ ÙÔ˘˜ ÙË ÌË
ÂÏÂÁ¯fiÌÂÓË ·Ó¿Ù˘ÍË Ù˘ ÌÔÓÔÎÏÈÓÔ‡˜ Ê¿Û˘ Ô˘
ÌÔÚ› Ó· Ô‰ËÁ‹ÛÂÈ ÙÔ ˘ÏÈÎfi Û ÚÒÈÌË ·ÛÙÔ¯›·, ηÈ
ÙËÓ ·˘ÍË̤ÓË ·‰È·Ê¿ÓÂÈ·. ™ÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ¤¯Ô˘Ó
¯ÚËÛÈÌÔÔÈËı› ÁÈ· ÙËÓ Î·Ù·Û΢‹ ·Î›ÓËÙˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ÛÙÂÊ·ÓÒÓ Î·È ÁÂÊ˘ÚÒÓ, ÂÓ‰ÔÚÚÈ˙ÈÎÒÓ ·ÍfiÓˆÓ, ÁÂÊ˘ÚÒÓ ÛÙËÚÈ˙fiÌÂÓ˜ Û ¤ÓıÂÙ· ‹ Ù‡Ô˘
Maryland, ÂÌÊ˘ÙÂ˘Ì¿ÙˆÓ Î·È ÂÈÂÌÊ˘ÙÂ˘Ì·ÙÈÎÒÓ
ÎÔÏÔ‚ˆÌ¿ÙˆÓ. OÈ ÚÒÙ˜ 3ÂÙ›˜ Î·È 5ÂÙ›˜ ÎÏÈÓÈΤ˜
ÌÂϤÙ˜ Â›Ó·È ÂÓı·ÚÚ˘ÓÙÈΤ˜ ÁÈ· ÙË Û˘ÌÂÚÈÊÔÚ¿
ÙÔ˘ ˘ÏÈÎÔ‡ ÛÙÔ ÛÙÔÌ·ÙÈÎfi ÂÚÈ‚¿ÏÏÔÓ, Ì ΢ڛ·Ú¯Â˜
ÂÈÏÔΤ˜ ÙËÓ ·ÔÎfiÏÏËÛË ÙˆÓ ·ÔηٷÛÙ¿ÛˆÓ,
ÙËÓ ·ÔÊÏÔ›ˆÛË ÙˆÓ ÂÈÎ·Ï˘ÙÈÎÒÓ ÎÂÚ·ÌÈÎÒÓ ·ÏÏ¿ Î·È ÙË ıÚ·‡ÛË ÙˆÓ Û˘Ó‰¤ÛÌˆÓ Ì ÌÈÎÚ¤˜ ‰È·ÛÙ¿ÛÂȘ. TÔ ÁÂÁÔÓfi˜ fiÙÈ ‰ÂÓ ˘¿Ú¯Ô˘Ó Ì·ÎÚfi¯ÚÔÓ˜
ÌÂϤÙ˜ ÂÈ‚›ˆÛ˘ ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ ˙ÈÚÎÔÓ›·˜,
ηıÈÛÙ¿ ÂÏÏÈ‹ ÙËÓ ÙÂÎÌËÚ›ˆÛË ÁÈ· ÙËÓ Î·ıÔÏÈ΋ ‹
ÌÂÚÈ΋ ·Ô‰Ô¯‹ ÙÔ˘ ˆ˜ ·ÍÈfiÈÛÙ˘ ÂÓ·ÏÏ·ÎÙÈ΋˜
χÛ˘ ÙˆÓ ÎÏ·ÛÈÎÒÓ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈÎÒÓ ·ÔηٷÛÙ¿ÛˆÓ.
§¤ÍÂȘ ÎÏÂȉȿ: ˙ÈÚÎÔÓ›·, ˙ÈÚÎfiÓÈÔ, ÌÔÓÔÎÏÈÓ‹˜ Ê¿ÛË, ȉÈfiÙËÙ˜,
ÂÊ·ÚÌÔÁ¤˜.
EI™A°ø°H
TȘ ÙÂÏÂ˘Ù·›Â˜ ‰ÂηÂٛ˜ ¤¯Ô˘Ó Â¤ÏıÂÈ ÛËÌ·ÓÙÈΤ˜ ·ÏÏ·Á¤˜ ÛÙÔ ¯ÒÚÔ Ù˘ Ô‰ÔÓÙÈ·ÙÚÈ΋˜ ÂÈÛÙ‹Ì˘. H ‚·ı‡ÙÂÚË
‰ÈÂÚ‡ÓËÛË Ê·ÈÓÔÌ¤ÓˆÓ Î·È Ì˯·ÓÈÛÌÒÓ Ô˘ ·ÊÔÚÔ‡Ó
ÛÙË ÏÂÈÙÔ˘ÚÁ›· ÙÔ˘ ÛÙÔÌ·ÙÔÁÓ·ıÈÎÔ‡ Û˘ÛÙ‹Ì·ÙÔ˜ ¤‰ˆÛ·Ó ÒıËÛË Û ÔÏÏ¿ ÂÈÛÙËÌÔÓÈο ‰›·, ÛÙËÓ ÚfiÏË„Ë,
ÛÙË ıÂÚ·›· ·ÏÏ¿ Î·È ÛÙËÓ ¤ÌÊ˘ÙË ·Ó¿ÁÎË ÙÔ˘ ·ÓıÚÒÔ˘ ÁÈ· ηχÙÂÚË ·ÈÛıËÙÈ΋. ™ÙÔÓ ÙÔ̤· Ù˘ ıÂÚ·›·˜,
‚·ÛÈÎfi˜ ÛÙfi¯Ô˜ Ù˘ Ô‰ÔÓÙÈ·ÙÚÈ΋˜ Â›Ó·È Ë ·ÔηٿÛÙ·ÛË
Î·È Ë ‰È·Ù‹ÚËÛË ÙÔ˘ ıÂÚ·¢ÙÈÎÔ‡ ·ÔÙÂϤÛÌ·ÙÔ˜. ™ÙÔ
¯ÒÚÔ ·˘Ùfi ȉȷ›ÙÂÚÔ ÚfiÏÔ Î·Ù¤¯Ô˘Ó Ù· ˘ÏÈο ·ÔηٿÛÙ·Û˘ Ù· ÔÔ›· ˆ˜ ÙÌ‹Ì· ÙˆÓ Ô‰ÔÓÙÈ·ÙÚÈÎÒÓ ‚ÈÔ¸ÏÈÎÒÓ
‚Ú›ÛÎÔÓÙ·È Û ‰È·Ú΋ ÂͤÏÈÍË Î·È ¤Ú¢ӷ. AÔÙ¤ÏÂÛÌ· ÌÂÏÂÙÒÓ Î·È Ì·ÎÚÔ¯ÚfiÓÈˆÓ ÂÈÚ·Ì¿ÙˆÓ Â›Ó·È Ô ¤ÏÂÁ¯Ô˜ Ù˘
·ÍÈÔÈÛÙ›·˜ ÙˆÓ Ô‰ÔÓÙÈ·ÙÚÈÎÒÓ ˘ÏÈÎÒÓ. ™‹ÌÂÚ· ˘¿Ú¯Ô˘Ó ˘ÏÈο Ù· ÔÔ›· ¤‰ˆÛ·Ó ÁÈ· ÔÏÏ¿ ¯ÚfiÓÈ· ˘ËÚÂۛ˜
ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ Î·È ÂÍ·ÎÔÏÔ˘ıÔ‡Ó Ó· ·Ú¿ÁÔÓÙ·È Î·È
Ó· ıˆÚÔ‡ÓÙ·È ·ÍÈfiÈÛÙ·. ŒÓ·˜ ÌÂÁ¿ÏÔ˜ ÂÚ¢ÓËÙÈÎfi˜
¯ÒÚÔ˜ ÂÚÈÎÏ›ÂÈ Ó¤· ˘ÏÈο Ù· ÔÔ›· Û˘ÓÙ›ıÂÓÙ·È ÛÙËÚÈ˙fiÌÂÓ· Û ˘¿Ú¯Ô˘Û˜ ‚·ÛÈΤ˜ ‰Ô̤˜ Î·È ·ÔÙÂÏÔ‡Ó ÙËÓ ÂͤÏÈÍ‹ ÙÔ˘˜, ›Ù ¤¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› Û ‰È·ÊÔÚÂÙÈΤ˜ ÂÊ·ÚÌÔÁ¤˜ ¿ÏÏˆÓ ÂÈÛÙËÌÒÓ. ŒÓ· ¯·Ú·ÎÙËÚÈÛÙÈÎfi ·Ú¿‰ÂÈÁÌ· Â›Ó·È Ù· ·ÓıÚ·ÎÔÓ‹Ì·Ù·, Ù· ÔÔ›· ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È Û ‰È¿ÊÔÚ˜ ÂÊ·ÚÌÔÁ¤˜ ÁÈ· Ì˯·ÓÈ΋ ‹ ıÂÚÌÈ΋ ÂÓ›Û¯˘ÛË Û‡ÓıÂÙˆÓ ˘ÏÈÎÒÓ1 Î·È ÛÙËÓ ·˘ÙÔÎÈÓËÙÔ‚ÈÔÌ˯·Ó›·.
™ÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ‰ÔÎÈÌ¿ÛÙËÎ·Ó Û·Ó ˘ÏÈÎfi ÚÔηٷÛ΢·ÛÌ¤ÓˆÓ ·ÍfiÓˆÓ. ™ÙÔ ¯ÒÚÔ ÙˆÓ Ó¤ˆÓ ˘ÏÈÎÒÓ Á›ÓÔÓÙ·È ÌÂϤÙ˜ ÁÈ· Ó· ÂÍ·¯ıÔ‡Ó Û˘ÌÂÚ¿ÛÌ·Ù· Û¯ÂÙÈο ÌÂ
ÙËÓ ·ÓÙÈηٿÛÙ·ÛË ‹ ÌË ·Ï·ÈÔÙ¤ÚˆÓ ˘ÏÈÎÒÓ. T· Ô‰Ô102
ture failure, and increased opacity. In dentistry they
have been used for the construction of all ceramic
crowns and fixed partial dentures, aesthetic posts,
inlay-supported or Maryland type partial dentures,
as dental implants and abutments. The first 3- and 5year clinical studies are encouraging for the behavior of the material in the oral environment, with main
complications being the restoration decementation,
the chipping of the ceramic veneer and the fracture
of connectors with small dimensions. The fact that
there are no long-term studies on the clinical survival of zirconia restorations makes incomplete the
documentation of the material for its total or partial
acceptance as a viable alternative to the classic
metal-ceramic restorations
Key Words: zirconia, zirconium, monoclinic, properties,
applications.
INTRODUCTION
In recent decades there have been significant changes in
the field of dental science. A deeper investigation of
phenomena and mechanisms related to the function of
the stomatognathic system promoted many scientific
fields such as prevention and treatment, and satisfied the
innate human need for better aesthetics. The main
treatment goal in dentistry, is to restore and maintain the
therapeutic effect. Under this perspective, special role for
many years hold restorative materials which as part of
dental biomaterials are constantly evolving. Scientific
results and long-term experiments are needed to test the
reliability of dental materials. Today, there are materials
that have provided services for many years in dentistry
and continue to be considered reliable. A large research
area in dental materials includes newly synthesized materials relying on existing basic structures that consist either
evolutionary products is, or existing products that have
been tested in different applications. Typical examples
are the carbon fibers, which are used in various applications for mechanical or thermal reinforcement composites1 and the automotive industry. In dentistry they have
been used as prefabricated posts. A lot of new studies
continuously provide evidence-based knowledge concerning the need for replacement of older or current materials. Dental materials follow the rules dictated by their
chemical composition and differ in physical, chemical,
optical and mechanical properties. The deep knowledge
of materials’ properties is the most important prerequisite
for their correct application.
In the field of restorative dentistry ceramic materials hold
important position. A basic property but at the same time
disadvantage of ceramics is their brittle nature which
makes them brittle when they are deformed by more than
0,1%2. This led researchers to attempt to strengthen the
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÓÙÈ·ÙÚÈο ˘ÏÈο ·ÎÔÏÔ˘ıÔ‡Ó ÙÔ˘˜ ηÓfiÓ˜ Ô˘ ˘·ÁÔÚ‡ÂÈ Ë ¯ËÌÈ΋ ÙÔ˘˜ Û‡ÓıÂÛË Î·È ‰È·Ê¤ÚÔ˘Ó ÌÂٷ͇ ÙÔ˘˜
ÛÂ Ê˘ÛÈΤ˜, ¯ËÌÈΤ˜, ÔÙÈΤ˜ Î·È Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜. H
‚·ıÈ¿ ÁÓÒÛË ÙˆÓ È‰ÈÔÙ‹ÙˆÓ ÙˆÓ ˘ÏÈÎÒÓ Â›Ó·È Ë ‚·ÛÈÎfiÙÂÚË ÚÔ¸fiıÂÛË ÁÈ· ÙË ÛˆÛÙ‹ ÂÊ·ÚÌÔÁ‹ ÙÔ˘˜.
™ÙÔ ¯ÒÚÔ Ù˘ Â·ÓÔÚıˆÙÈ΋˜ Ô‰ÔÓÙÈ·ÙÚÈ΋˜ ÛËÌ·ÓÙÈ΋
ı¤ÛË Î·Ù¤¯ÂÈ Ë ¯Ú‹ÛË ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ˘ÏÈÎÒÓ. B·ÛÈÎfi ¯·Ú·ÎÙËÚÈÛÙÈÎfi ·ÏÏ¿ Î·È ÌÂÈÔÓ¤ÎÙËÌ· ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Â›Ó·È
Ë „·ı˘Ú‹ ÙÔ˘˜ ʇÛË, Ô˘ Ù· ηıÈÛÙ¿ ‡ıÚ·˘ÛÙ· fiÙ·Ó
·Ú·ÌÔÚʈıÔ‡Ó Û ÔÛÔÛÙfi ÌÂÁ·Ï‡ÙÂÚÔ ÙÔ˘ 0,1%2.
A˘Ùfi Ô‰‹ÁËÛ ÙÔ˘˜ ÂÚ¢ÓËÙ¤˜ ÛÙËÓ ÚÔÛ¿ıÂÈ· ÂÓ›Û¯˘Û˘ ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Ì ٤ÙÔÈÔ ÙÚfiÔ ÒÛÙ ӷ ÌËÓ Ô‰ËÁÔ‡ÓÙ·È Û ıÚ·‡ÛË Î·È Ó· ‰È·ÙËÚÔ‡Ó fiϘ ÙȘ ¿ÏϘ ȉÈfiÙËÙ˜ Ô˘ Ù· ηıÈÛÙÔ‡Ó ÌÔÓ·‰Èο. H ÂͤÏÈÍË ÙˆÓ ˘ÏÈÎÒÓ
·˘ÙÒÓ ˘‹ÚÍ ڷÁ‰·›· Ù· ÙÂÏÂ˘Ù·›· ¯ÚfiÓÈ· Î·È ÙÔ ˙ËÙÔ‡ÌÂÓÔ ‹Ù·Ó Ë ·˘ÍË̤ÓË ·ÓÙÔ¯‹ Î·È Ë ‚ÂÏÙȈ̤ÓË ·ÈÛıËÙÈ΋ ÙÔ˘˜. O ÌÂÙ·ÏÏÈÎfi˜ ÛÎÂÏÂÙfi˜ ÙˆÓ ·Î›ÓËÙˆÓ ÚÔÛıÂÙÈÎÒÓ ·ÔηٷÛÙ¿ÛÂˆÓ ÂÍ·ÎÔÏÔ˘ı› ̤¯ÚÈ Û‹ÌÂÚ·
Ó· ·ÔÙÂÏ› ÌÈ· ·ÍÈfiÈÛÙË Ï‡ÛË ÁÈ· ÙËÓ ˘ÔÛÙ‹ÚÈÍË ÙˆÓ
ÎÂÚ·ÌÈÎÒÓ ˘ÏÈÎÒÓ. ¶·ÚfiÏ· ·˘Ù¿ Ë ·Ó¿ÁÎË ÁÈ· ηχÙÂÚË
·ÈÛıËÙÈ΋ ·fi‰ÔÛË ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ·ÔηٷÛÙ¿ÛˆÓ, Ô‰‹ÁËÛ Û ÚÔÛ¿ıÂȘ ·ÓÙÈηٿÛÙ·Û˘ ÙÔ˘ ·‰È·Ê·ÓÔ‡˜ ÌÂÙ·ÏÏÈÎÔ‡ ˘Ú‹Ó·, Ô ÔÔ›Ô˜ ‰˘Û¯ÂÚ·›ÓÂÈ ÙË ¯ÚˆÌ·ÙÈ΋ ·fi‰ÔÛË ÙÔ˘ Ê˘ÛÈÎÔ‡ ‰ÔÓÙÈÔ‡. M ·˘Ùfi ÙÔ ÛÎÂÙÈÎfi ·Ó·Ù‡¯ıËÎ·Ó Ù· ÔÏÔÎÂÚ·ÌÈο Û˘ÛÙ‹Ì·Ù· ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ Ì ÔÏϤ˜ Î·È ‰È·ÊÔÚÂÙÈΤ˜ ÚÔÛÂÁÁ›ÛÂȘ
ÛÙËÓ Û‡ÛÙ·ÛË ÙˆÓ Û˘ÁÎÂÎÚÈÌ¤ÓˆÓ ˘ÏÈÎÒÓ3, 4. H ÈÔ ÚfiÛÊ·ÙË ·fi ·˘Ù¤˜ Â›Ó·È Ë ¯Ú‹ÛË ÎÂÚ·ÌÈÎÒÓ ˙ÈÚÎÔÓ›·˜
(ZrO2), ˘ÏÈÎÔ‡ Ô˘ ¤¯ÂÈ ¯ÚËÛÈÌÔÔÈËı› ÛÙË ‚ÈÔÌ˯·Ó›·,
ÛÙËÓ ËÏÂÎÙÚÔÓÈ΋ ·ÏÏ¿ Î·È ÛÙÔÓ ÙÔ̤· Ù˘ È·ÙÚÈ΋˜ ˆ˜ ˘ÏÈÎfi Ù˘ ÔÚıÔ‰È΋˜5. H ˙ÈÚÎÔÓ›· Û‹ÌÂÚ· η٤¯ÂÈ È‰È·›ÙÂÚË ı¤ÛË ÛÙÔÓ ÙÔ̤· Ù˘ Ô‰ÔÓÙÈ·ÙÚÈ΋˜ ηıÒ˜ ¤¯ÂÈ ·ÍÈÔÔÈËı› ÙfiÛÔ ÛÙÔÓ ÙÔ̤· Ù˘ ·ÔηٿÛÙ·Û˘ Û ‰È¿ÊÔÚ˜ ηٷÛ΢¤˜ -΢ڛˆ˜ ˆ˜ ˘ÏÈÎfi ˘Ú‹Ó· ·Î›ÓËÙˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ·ÔηٷÛÙ¿ÛˆÓ-, fiÛÔ Î·È Ì ÙË ÌÔÚÊ‹
‚ÈÔ¸ÏÈÎÔ‡ ÔÛÙÂÔÂÓۈ̷ÙÔ‡ÌÂÓˆÓ Ô‰ÔÓÙÈÎÒÓ ÂÌÊ˘ÙÂ˘Ì¿ÙˆÓ. OÈ ·ÔηٷÛÙ¿ÛÂȘ Ì ˙ÈÚÎÔÓ›· ÂÌÊ·Ó›˙ÔÓÙ·È
ÛÙÔÓ Ô‰ÔÓÙÈ·ÙÚÈÎfi ¯ÒÚÔ ÌÂÙ¿ ÙÔ 2000 Ì ¢ڇÙÂÚË ·Ô‰Ô¯‹ ÌÂÙ¿ ÙÔ 20105.
I™TOPIKH ANA¢POMH
TÔ ˙ÈÚÎfiÓÈÔ Â›Ó·È ÁÓˆÛÙfi ˆ˜ ÔχÙÈÌÔ˜ Ï›ıÔ˜ ·fi ·Ú¯·ÈÔÙ¿ÙˆÓ ¯ÚfiÓˆÓ. TÔ Ì¤Ù·ÏÏÔ ˙ÈÚÎfiÓÈÔ Ì ·ÙÔÌÈÎfi ·ÚÈıÌfi
40, ¤¯ÂÈ ¿ÚÂÈ ÙËÓ ÔÓÔÌ·Û›· ÙÔ˘ ·fi ÙËÓ ·Ú·‚È΋ ϤÍË
zargon Ô˘ ÛËÌ·›ÓÂÈ ¯Ú˘Ûfi Û ¯ÚÒÌ· Î·È ÚÔ¤Ú¯ÂÙ·È ·fi ÙȘ ÂÚÛÈΤ˜ ϤÍÂȘ zar (¯Ú˘Ûfi˜) Î·È gun (¯ÚÒÌ·). TÔ
‰ÈÔÍ›‰ÈÔ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘ (ZrO2), ÙÔ ÔÔ›Ô ÔÓÔÌ¿˙ÂÙ·È ˙ÈÚÎÔÓ›· ·Ó·Î·Ï‡ÊıËΠ·fi ÙÔÓ °ÂÚÌ·Ófi ¯ËÌÈÎfi Martin
Heirich Klaproth ÙÔ 1789, Ô ÔÔ›Ô˜ ÙÔ ¯·Ú·ÎÙ‹ÚÈÛ ˆ˜ ͯˆÚÈÛÙfi ÛÙÔÈ¯Â›Ô ¯ˆÚ›˜ ·ÎfiÌË Ó· ÙÔ ¤¯ÂÈ ÛÙË ‰È¿ıÂÛ‹
ÙÔ˘ Û ηı·Ú‹ ÌÂÙ·ÏÏÈ΋ ÌÔÚÊ‹6.
H ˙ÈÚÎÔÓ›· ÚԤ΢„ ·fi ÙËÓ fiÙËÛË ÔÚÈÛÌ¤ÓˆÓ ÔχÙÈÌˆÓ Ï›ıˆÓ Î·È ¯ÚËÛÈÌÔÔÈ‹ıËΠÁÈ· ÔÏÏ¿ ¯ÚfiÓÈ· Ì ÔÍ›‰È· Û¿ÓÈˆÓ Á·ÈÒÓ ˆ˜ ¯ÚˆÛÙÈÎÒÓ ÁÈ· ÙËÓ ÎÂÚ·ÌÈ΋7.
™ÙË Ê‡ÛË ˘¿Ú¯ÂÈ Û ÌÔÚÊ‹ ÂÓfi˜ Û¿ÓÈÔ˘ ÂÙÚÒÌ·ÙÔ˜
Î·È Ë ÔÓÔÌ·Û›· ÚÔ¤Ú¯ÂÙ·È ·fi ÙÔÓ Joseph Baddeley8
Ô˘ ·Ó·Î¿Ï˘„ ÙÔ ÚÒÙÔ ¤Ùڈ̷ ÛÙË Sri Lanka ÙÔ
Hellenic Stomatological Review 57: 101-137, 2013
ceramics so as to avoid fracture and keep all the other
qualities that make them unique. The development of
these materials has been rapid in recent years and the
aim was to increase the strength and improve the aesthetics. The metal core of fixed prosthetic restorations continues to this day to be the most reliable solution to support
ceramics. However, the need for better aesthetic performance of ceramic restorations led to efforts to replace the
opaque metal core, which makes difficult to adapt the
color of the natural tooth. For these reasons, all-ceramic
systems were developed in dentistry with many different
approaches3. The most recent approach is the use of
zirconia ceramic (ZrO2),- materials that have been used in
industry, in electronics and in medicine as a material of
orthopedics4. Zirconia today holds a special position in
the field of dentistry as it has exploited both in the field of
restorative dentistry - mainly as a core material of ceramic
restorations, as well as a biomaterial of osseointegrated
dental implants. It began to spread in the dental field since
2000 with wider acceptance after 20105.
HISTORY
Zirconium is known as a gemstone since ancient times.
The zirconium metal with atomic number 40, has taken its
name from the Arabic word zargon which means gold in
color and comes from the Persian words zar (gold) and gun
(color). The zirconium dioxide called zirconia ZrO2 was
discovered by the German chemist Martin Heirich Klaproth
in 1789, who described it as a separate item without even
have it in pure metallic form6 (Encyclopedia Britannica).
Zirconia was isolated by firing certain gems and used for
many years with rare earth oxides as pigments for
ceramics7. In nature ZrO2 (Zirconia) is present in the form
of a rare rock and derives its name from Joseph Baddeley8
who discovered the first rock in Sri Lanka in 1892. The
isolation of the pure oxide (ZrO2) was achieved in 1824 by
the Swedish chemist Jons Jakob Barzelius by heating a
mixture of potassium chloride and zirconium. In pure
metallic form it was introduced in 19249.
Another rock is also zirconitis (ZrSiO4) found in rounded or
prismatic brown crystals. Transparent and blue varieties
used as gems are produced by heating natural zirconitis.
Therefore, because the source of zirconium by vaddeleyitis
from South Africa was insufficient for industrial production,
manufacturers utilized the sand rich of zirconitis8.
In 1899 Walther Nerst (Nobel Chemistry 1920) observed
that the mixed oxide 15% by weight Y2O3-ZrO2 behaved as
an oxygen ion conductor (O2-) at elevated temperatures.
The industrial application of the solid oxide electrolyte fuel
cells (SOFC) began with the discovery and the use of
stabilized cubic zirconia as a semiconductor. Before 1975,
its use was restricted to a very limited refractory uses, today
it is used in a very wide range of applications in industry,
household appliances, medicine and dentistry10. Since
1980 zirconia ceramics became popular due to their very
low thermal conductivity and specific crystal structure,
since major difficulties in their processing have overcome11.
103
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
1892. H ·ÔÌfiÓˆÛË ÙÔ˘ ηı·ÚÔ‡ ÔÍÂȉ›Ô˘ ZrO2 ‹ ˙ÈÚÎÔÓ›·˜ ÂÂÙ‡¯ıË ÙÔ 1824 ·fi ÙÔÓ ™Ô˘Ë‰fi XËÌÈÎfi Jons
Jakob Barzelius Ì ÙËÓ ı¤ÚÌ·ÓÛË ÂÓfi˜ Ì›ÁÌ·ÙÔ˜ Î·Ï›Ô˘
Î·È ¯ÏˆÚȉ›Ô˘ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘. ™Â ηı·Ú‹ ÌÂÙ·ÏÏÈ΋ ÌÔÚÊ‹ ·ÚÔ˘ÛÈ¿ÛÙËΠÙÔ 19249.
ŒÓ· ¿ÏÏÔ ¤Ùڈ̷ Â›Ó·È Î·È Ô ˙ÈÚÎÔÓ›Ù˘ (ZrSiO4) Ô˘
‚Ú›ÛÎÂÙ·È Û ÚÈÛÌ·ÙÈÎÔ‡˜ ‹ Û ÛÙÚÔÁÁ˘ÏÂ̤ÓÔ˘˜ ÎÚ˘ÛÙ¿ÏÏÔ˘˜ ηʤ ¯ÚÒÌ·ÙÔ˜. ¢È·Ê·Ó›˜ Î·È ÌÏ ÔÈÎÈϛ˜
Ô˘ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ˆ˜ ÔχÙÈÌÔÈ Ï›ıÔÈ ·Ú¿ÁÔÓÙ·È ·fi ÙË ı¤ÚÌ·ÓÛË ÙÔ˘ Ê˘ÛÈÎÔ‡ ˙ÈÚÎÔÓ›ÙË. EÂȉ‹ ÏÔÈfiÓ Ë
ËÁ‹ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘ ·fi ÙÔÓ ‚·‰‰ÂÏÂ˚ÙË Ù˘ NÔÙ›Ô˘ AÊÚÈ΋˜ ‰ÂÓ Â·ÚÎÔ‡Û ÁÈ· ÙË ‚ÈÔÌ˯·ÓÈ΋ ·Ú·ÁˆÁ‹, ·ÍÈÔÔÈ‹ıËÎÂ Ë ¿ÌÌÔ˜ ÏÔ‡ÛÈ· Û ˙ÈÚÎÔÓ›ÙË8.
TÔ 1899 Ô Walther Nerst (Nobel XËÌ›·˜ 1920) ·Ú·Ù‹ÚËÛ fiÙÈ ÙÔ ÌÈÎÙfi ÔÍ›‰ÈÔ 15% Î.‚. Y2O3-ZrO2 Û˘ÌÂÚÈÊÂÚfiÙ·Ó ˆ˜ ·ÁˆÁfi˜ ÈfiÓÙˆÓ O-2 Û ˘„ËϤ˜ ıÂÚÌÔÎڷۛ˜. H
‚ÈÔÌ˯·ÓÈ΋ ÂÊ·ÚÌÔÁ‹ ÛÙȘ ΢„¤Ï˜ η˘Û›ÌÔ˘ ÛÙÂÚÂÔ‡
ËÏÂÎÙÚÔχÙË (High temperature solid oxide fuel cells ‹
SOFC) ÍÂΛÓËÛ Ì ÙËÓ ·Ó·Î¿Ï˘„Ë ·˘Ù‹ Î·È ÙË ¯Ú‹ÛË
Ù˘ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ΢‚È΋˜ ˙ÈÚÎÔÓ›·˜ ˆ˜ ËÌÈ·ÁˆÁÔ‡. ¶ÚÈÓ ÙÔ 1975 Ë ¯Ú‹ÛË ÙÔ˘ ‹Ù·Ó ÂÚÈÔÚÈṲ̂ÓË Û ˘Ú›Ì·¯Â˜ ÂÊ·ÚÌÔÁ¤˜, ÂÓÒ Û‹ÌÂÚ· η٤¯ÂÈ ¤Ó· Â˘Ú‡Ù·ÙÔ
Ê¿ÛÌ· ÂÊ·ÚÌÔÁÒÓ ÛÙË ‚ÈÔÌ˯·Ó›·, Û ÔÈÎȷΤ˜ Û˘Û΢¤˜, Î·È ÛÙËÓ È·ÙÚÈ΋ Î·È Ô‰ÔÓÙÈ·ÙÚÈ΋10. Afi ÙÔ 1980 fï˜
Ù· ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜ ·Ó·Ù‡¯ıËÎ·Ó ÂÍ·ÈÚÂÙÈο ÏfiÁˆ
ÙÔ˘ Ôχ ÌÈÎÚÔ‡ Û˘ÓÙÂÏÂÛÙ‹ ·ÁˆÁÈÌfiÙËÙ·˜ Î·È Ù˘ ȉȷ›ÙÂÚ˘ ÎÚ˘ÛÙ·ÏÏÈ΋˜ ÙÔ˘˜ ‰ÔÌ‹˜, ·ÊÔ‡ ÍÂÂÚ¿ÛÙËηÓ
Ù· ÚÔ‚Ï‹Ì·Ù· ηٿ ÙËÓ Î·ÙÂÚÁ·Û›· ÙÔ˘˜11.
TÔ 1969 ÚÔÙ›ÓÂÙ·È Ë ¯Ú‹ÛË ‰ÈÔÍÂȉ›Ô˘ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘
ÛÙËÓ È·ÙÚÈ΋ Î·È ÈÔ Û˘ÁÎÂÎÚÈ̤ӷ ÛÙËÓ ÔÚıÔ·È‰È΋ ˆ˜
ÂÓ·ÏÏ·ÎÙÈÎÔ‡ ˘ÏÈÎÔ‡ ÁÈ· ÔÏÈ΋ ·ÚıÚÔÏ·ÛÙÈ΋ ÎÂÊ·Ï‹˜
ÌËÚÈ·›Ô˘ ÛÙË ı¤ÛË ÙÔ˘ ÙÈÙ·Ó›Ô˘ Î·È Ù˘ ·ÏÔ˘Ì›Ó·˜12. ™ÙË
Û˘Ó¤¯ÂÈ· ÚÔÙ¿ıËΠˆ˜ Ó¤Ô ˘ÏÈÎfi ÙÔ 1989 ÁÈ· ÙËÓ ÔÏÈ΋
·ÚıÚÔÏ·ÛÙÈ΋ ÈÛ¯›Ô˘. ŒÎÙÔÙ ÂÚÈÛÛfiÙÂÚ˜ ·fi
600.000 ÎÂʷϤ˜ ¤¯Ô˘Ó ÙÔÔıÂÙËı› ·ÁÎfiÛÌÈ·13, 14.
M¤¯ÚÈ Û‹ÌÂÚ· Ù· ÎÂÚ·ÌÈο ÎÚ¿Ì·Ù· ˙ÈÚÎÔÓ›·˜ ·ÔÙÂÏÔ‡Ó Ù· ÈÛ¯˘ÚfiÙÂÚ· ÌÔÓÔÊ·ÛÈο ÎÂÚ·ÌÈο ÔÍ›‰È· Ô˘
¤¯Ô˘Ó ·Ú·¯ı›10. EÓÙÔ‡ÙÔȘ, ÙÔ 2002 ‹Ù·Ó Ë ¯ÚÔÓÈ¿ ηٿ
ÙËÓ ÔÔ›· Ë ˙ÈÚÎÔÓ›· ˆ˜ ˘ÏÈÎfi Ù˘ ÔÚıÔ·È‰È΋˜ ‰¤¯ÙËÎÂ
‰ÚÈ̇ٷÙË ÎÚÈÙÈ΋ ηıÒ˜ ¤Ó·˜ ÛËÌ·ÓÙÈÎfi˜ ·ÚÈıÌfi˜ ÎÂÊ·ÏÒÓ ÌËÚÈ·›Ô˘ ÔÛÙÔ‡ (400) Ì ÙÔ ÂÌÔÚÈÎfi fiÓÔÌ·
Prozyr Zirconia14 ·¤Ù˘¯·Ó Û in vivo ÏÂÈÙÔ˘ÚÁ›· ÙÔ 2001.
TËÓ ›‰È· ¯ÚÔÓÈ¿ Ë ÂÙ·ÈÚ›· St. Gobain Desmarquest, Ô ÌÂÁ·Ï‡ÙÂÚÔ˜ ηٷÛ΢·ÛÙ‹˜ ÌËÚÈ·›ˆÓ ÎÂÊ·ÏÒÓ ˙ÈÚÎÔÓ›·˜, ·Ó·ÎÔ›ÓˆÛ ÙËÓ ·Ó¿ÎÏËÛË Û˘ÁÎÂÎÚÈÌ¤ÓˆÓ ·ÚÙ›‰ˆÓ ÏfiÁˆ ·ÔÎÏ›ÛÂˆÓ ÛÙË ıÂÚÌÈ΋ ηÙÂÚÁ·Û›· ηٿ ÙËÓ
·Ú·ÁˆÁ‹ ÙÔ˘˜. A˘Ù¤˜ ÔÈ ·ÚÙ›‰Â˜ Û˘Û¯ÂÙ›ÛÙËÎ·Ó ÌÂ
ÌÂÁ¿ÏÔ ·ÚÈıÌfi in vivo ηٷÁÌ¿ÙˆÓ15. AÓ Î·È Ë ¯Ú‹ÛË ˙ÈÚÎÔÓ›·˜ Û˘Ó¯›˙ÂÙ·È Û ÂÈÏÂÁ̤Ó˜ ·ÁÔÚ¤˜, fiˆ˜ Ë I·ˆÓ›·, Ë ·fiÛ˘ÚÛË Ù˘ Desmarquest ¤ÊÂÚ ·ÒÏÂÈ· Ù˘ ÂÌÈÛÙÔÛ‡Ó˘ Ù˘ ˙ÈÚÎÔÓ›·˜ ˆ˜ ·ÍÈfiÈÛÙÔ˘ ˘ÏÈÎÔ‡ ÛÙËÓ
E˘ÚÒË Î·È ÙȘ Eӈ̤Ó˜ ¶ÔÏÈÙ›˜15.
¶·Ú¿ ÙÔ ÁÂÁÔÓfi˜ fiÙÈ ‰ÈÂÚ¢ӋıËÎ·Ó Ù· ·›ÙÈ· ÙˆÓ ·ÔÙ˘¯ÈÒÓ, ÛÙË Û˘Ó¤¯ÂÈ· ‰È·ÊÔÚÔÔÈ‹ıËÎ·Ó ÔÈ ÚԉȷÁڷʤ˜
‰È·ÛÙ¿ÛÂˆÓ ÁÈ· ÙȘ ÎÂʷϤ˜, ·fi ÙÔ 2000 ¤ˆ˜ Û‹ÌÂÚ· ÂÁηٷÏ›ÂÙ·È Ë ¯Ú‹ÛË Ù˘ ˙ÈÚÎÔÓ›·˜ ÛÙËÓ ÔÚıÔ·È‰È΋.
°›ÓÔÓÙ·È ·ÚfiÏ· ·˘Ù¿ ÚÔÛ¿ıÂȘ ÁÈ· ηıȤڈÛË ¿ÏÏˆÓ Û‡ÓıÂÙˆÓ ˘ÏÈÎÒÓ ˙ÈÚÎÔÓ›·˜-·ÏÔ˘Ì›Ó·˜ ÛÙËÓ ÔÚıÔ104
In 1969 scientists proposed the use of zirconium dioxide
in medicine and more specifically in orthopedics as an
alternative material for replacing the femoral heads in
place of the alumina and titanium12. Consequently, it was
proposed as a new material in 1989 for total hip arthroplasty. Since then, more than 600,000 zirconia heads are
installed worldwide13, 14.
Hitherto zirconia ceramic alloys are the strongest single
phase oxide ceramics ever produced10. However in 2002
zirconia materials were heavily criticized in orthopedics.
The reason was that a substantial number of femoral
heads (400) under the brand name Prozyr Zirconia14 failed
in function in 2001. Despite the fact that the causes of
failures were investigated since then and the dimensional
specifications for the heads were differentiated, from 2000
to today clinicians abandoned the use of zirconia in
orthopedics. Nevertheless many efforts were made to
introduce other composites of zirconia - alumina in orthopedics, which retain the advantages of zirconia and do
not present the serious drawback of aging and low
temperature degradation16. Unlike its use in dentistry has
increased with an annual sales increase of 12%14.
Zirconium as an element of the periodic table belongs to
the IVB transition metals group. Characteristic of this
group is that ions in conventional oxidation state have
completed some subshell d17.The transition elements are
used in many alloys and often form colored compounds.
Their atoms have an unsupplemented inner cortex (layer)
which has electron vacancies. At ambient temperature, it
has a closed hexagonal crystal structure and physical and
chemical properties similar to the titanium18.
MATERIAL PRODUCTION
Zirconium is strong, lustrous and corrosion resistant with
atomic number 40 and atomic weight 91,229. It is abundant
in nature, it ranks 18th in the amount of crust and its
concentration is 130 mg/kg in the cortex and 0.026mg/L at
sea19. Pure zirconium is present in crystalline form as white
and malleable metal, and amorphous as a dark blue powder. There is no free pure zirconium in nature and it exists
only as oxide or in combination with silicas9. The zircon is
the main commercial source of zirconium and is found
primarily in Australia, South Wales, Brazil, India and South
Africa20. The annual world production of zirconium is
900.000 tonnes19.
Zirconium has many similarities with the element Hf
(Hafnium), which is attached to various minerals and their
separation becomes difficult21. As a metal has many uses
and applications in photographic flashes, surgical instruments and as a hardener of alloys in nuclear reactors18.
Zirconium dioxide presents a white crystalline form called
zirconia. Minerals that contain it are zircon (ZrSiO4) (Fig.1)
and baddeleyte (ZrO2) (Fig. 2). Zirconia is oxidation
resistable and does not react with acids and bases at
room temperature with the exception of hydrogen fluoride
(HF). It reacts with carbon, nitrogen and hydrogen at
temperatures above 2200ÆC14.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
·È‰È΋, Ô˘ ‰È·ÙËÚÔ‡Ó Ù· ÏÂÔÓÂÎÙ‹Ì·Ù· Ù˘ ˙ÈÚÎÔÓ›·˜
Î·È ‰ÂÓ ¤¯Ô˘Ó ÙÔ ÛÔ‚·Úfi ÌÂÈÔÓ¤ÎÙËÌ· Ù˘ Á‹Ú·ÓÛ˘16.
AÓÙ›ıÂÙ· Ë ¯Ú‹ÛË Ù˘ ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ·˘Í‹ıËΠ̠ÂÙ‹ÛÈ· ·‡ÍËÛË ˆÏ‹ÛÂˆÓ 12%14.
¶POE§EY™H - ¶APA°ø°H ZIPKONIOY - ZIPKONIA™
TÔ ˙ÈÚÎfiÓÈÔ ˆ˜ ÛÙÔÈ¯Â›Ô ÙÔ˘ ÂÚÈÔ‰ÈÎÔ‡ ›Ó·Î· ·Ó‹ÎÂÈ
ÛÙ· ̤ٷÏÏ· ÌÂÙ¿ÙˆÛ˘ ÛÙËÓ IVB ÔÌ¿‰·. X·Ú·ÎÙËÚÈÛÙÈÎfi ·˘Ù‹˜ Ù˘ ÔÌ¿‰·˜ Â›Ó·È fiÙÈ Ù· ÈfiÓÙ· ÙÔ˘˜ ÛÂ Û˘ÓËıÈṲ̂ÓË Î·Ù¿ÛÙ·ÛË ÔÍ›‰ˆÛ˘ ¤¯Ô˘Ó ÌÂÚÈο Û˘ÌÏËڈ̤ÓÔ ÙÔÓ ˘ÔÊÏÔÈfi d17. T· ÛÙÔȯ›· ÌÂÙ¿ÙˆÛ˘ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È Û ÔÏÏ¿ ÎÚ¿Ì·Ù· Î·È Û˘¯Ó¿ Û¯ËÌ·Ù›˙Ô˘Ó
¤Á¯ÚˆÌ˜ ÂÓÒÛÂȘ. T· ¿ÙÔÌ¿ ÙÔ˘˜ ‰È·ı¤ÙÔ˘Ó Î¿ÔÈÔ ÌË
Û˘ÌÏËڈ̤ÓÔ ÂÛˆÙÂÚÈÎfi ÊÏÔÈfi (ÛÙÈ‚¿‰·) Ô˘ ¤¯ÂÈ ÎÂÓ¤˜ ı¤ÛÂȘ ËÏÂÎÙÚÔÓ›ˆÓ. ™Â ıÂÚÌÔÎÚ·Û›· ÂÚÈ‚¿ÏÏÔÓÙÔ˜
¤¯ÂÈ ÎÏÂÈÛÙ‹ ÂÍ·ÁˆÓÈ΋ ÎÚ˘ÛÙ·ÏÏÈ΋ ‰ÔÌ‹ Î·È Ê˘ÛÈΤ˜
Î·È ¯ËÌÈΤ˜ ȉÈfiÙËÙ˜ ·ÚfiÌÔȘ Ì ÙÔ ÙÈÙ¿ÓÈÔ18.
TÔ ˙ÈÚÎfiÓÈÔ Â›Ó·È ÈÛ¯˘Úfi, ÛÙÈÏÓfi Î·È ÂÍ·ÈÚÂÙÈο ·ÓıÂÎÙÈÎfi
ÛÙË ‰È¿‚ÚˆÛË Ì ·ÙÔÌÈÎfi ·ÚÈıÌfi 40 Î·È ·ÙÔÌÈÎfi ‚¿ÚÔ˜
91,229. Y¿Ú¯ÂÈ ¿ÊıÔÓÔ ÛÙË Ê‡ÛË, η٤¯ÂÈ ÙËÓ 18Ë ı¤ÛË
Û ÔÛfiÙËÙ· ÛÙÔ ÊÏÔÈfi Ù˘ Á˘ Î·È ÔÈ Û˘ÁÎÂÓÙÚÒÛÂȘ ÙÔ˘
Â›Ó·È 130 mg/kg ÛÙÔ ÊÏÔÈfi Î·È 0.026Ìg/l ÛÙË ı¿Ï·ÛÛ·19.
TÔ Î·ı·Úfi ˙ÈÚÎfiÓÈÔ ˘¿Ú¯ÂÈ Û ÎÚ˘ÛÙ·ÏÏÈ΋ ÌÔÚÊ‹ ˆ˜
Ï¢Îfi Î·È ÂÏ·Ùfi ̤ٷÏÏÔ Î·È Û ¿ÌÔÚÊË ˆ˜ ÛÎÔ‡Ú· ÌÏÂ
ÛÎfiÓË. ¢ÂÓ ˘¿Ú¯ÂÈ ÂχıÂÚÔ Î·ı·Úfi ˙ÈÚÎfiÓÈÔ ÛÙË Ê‡ÛË
·Ú¿ ÌfiÓÔ ˆ˜ ÔÍ›‰ÈÔ ‹ ÛÂ Û˘Ó‰˘·ÛÌfi Ì ˘ÚÈÙÈο ÔÍ›‰È·9. O ˙ÈÚÎÔÓ›Ù˘ Â›Ó·È Ë Î‡ÚÈ· ÂÌÔÚÈ΋ ËÁ‹ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘ Î·È ‚Ú›ÛÎÂÙ·È ÚˆÙ›ÛÙˆ˜ Û A˘ÛÙÚ·Ï›·, NfiÙÈ· O˘·Ï›·, BÚ·˙ÈÏ›·, IÓ‰›· Î·È NfiÙÈ· AÊÚÈ΋20. H ÂÙ‹ÛÈ· ·ÁÎfiÛÌÈ· ·Ú·ÁˆÁ‹ ˙ÈÚÎÔÓ›Ô˘ Â›Ó·È 900.000 ÙfiÓÔÈ19.
TÔ ˙ÈÚÎfiÓÈÔ ¤¯ÂÈ ÔÏϤ˜ ÔÌÔÈfiÙËÙ˜ Ì ÙÔ ÛÙÔÈ¯Â›Ô Hf
(ÕÊÓÈÔ), Ì ÙÔ ÔÔ›Ô ‚Ú›ÛÎÂÙ·È Ì·˙› Û ‰È¿ÊÔÚ· ÔÚ˘ÎÙ¿
Î·È Ô ‰È·¯ˆÚÈÛÌfi˜ ÙÔ˘˜ ηı›ÛÙ·Ù·È ‰˘Û¯ÂÚ‹˜21. ø˜ ̤ٷÏÏÔ ¤¯ÂÈ ·ÚÎÂÙ¤˜ ¯Ú‹ÛÂȘ Î·È ÂÊ·ÚÌÔÁ¤˜ Û ʈÙÔÁÚ·ÊÈο ÊÏ·˜, ¯ÂÈÚÔ˘ÚÁÈο ÂÚÁ·Ï›·, ˆ˜ ÛÎÏËÚ˘ÓÙ‹˜ ÎÚ·Ì¿ÙˆÓ Î·È Û ˘ÚËÓÈÎÔ‡˜ ·ÓÙȉڷÛÙ‹Ú˜18.
TÔ ‰ÈÔÍ›‰ÈÔ ÙÔ˘ ˙ÈÚÎÔÓ›Ô˘ ¤¯ÂÈ Ï¢΋ ÎÚ˘ÛÙ·ÏÏÈ΋ ÌÔÚÊ‹ Î·È ÔÓÔÌ¿˙ÂÙ·È ˙ÈÚÎÔÓ›·. Ÿˆ˜ ·ÓÙ›ÛÙÔȯ· Î·È ÛÙÔ Î·ı·Úfi ˙ÈÚÎfiÓÈÔ ‰ÂÓ ˘Ê›ÛÙ·Ù·È Î·ı·Ú‹ ˙ÈÚÎÔÓ›· ÛÙË Ê‡ÛË.
T· ÔÚ˘ÎÙ¿ ÛÙ· ÔÔ›· ÂÌÂÚȤ¯ÂÙ·È fiˆ˜ ÚԷӷʤÚıËÎ·Ó Â›Ó·È Ô ˙ÈÚÎÔÓ›Ù˘ (ZrSiO4) (EÈÎ. 1) Î·È Ô ‚·‰‰ÂÏ½Ù˘
(ZrO2) (EÈÎ. 2). H ˙ÈÚÎÔÓ›· Â›Ó·È ÛÙ·ıÂÚ‹ ÛÙËÓ ÔÍ›‰ˆÛË
Î·È ‰ÂÓ ·ÓÙȉڿ Ì Ôͤ· Î·È ‚¿ÛÂȘ ÛÙË ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘ Ì ÂÍ·›ÚÂÛË ÙÔ ˘‰ÚÔÊıfiÚÈÔ (HF). AÓÙȉڿ Ì ÙÔÓ
¿Óıڷη, ÙÔ ¿˙ˆÙÔ Î·È ÙÔ ˘‰ÚÔÁfiÓÔ Û ıÂÚÌÔÎڷۛ˜ ¿Óˆ ÙˆÓ 2200ÆC14.
EÈÎ. 1: ZÈÚÎÔÓ›Ù˘ (ηʤ ¯ÚÒÌ·ÙÔ˜, ÚÈÛÌ·ÙÈÎfi˜)
Fig. 1: Zirkonitis (brown color, prismatic)
www.en.wikipedia.org/wiki.zircon
EÈÎ. 2: B·‰‰ÂÏÂ˚Ù˘
Fig. 2: Baddeleyte
www.en.wikipedia.org/wiki.baddeleyte
EÈÎ. 3: AÏÏÔÙÚÔÈΤ˜ ÌÔÚʤ˜ ˙ÈÚÎÔÓ›·˜ ·) ΢‚È΋ (c-phase)
‚) ÙÂÙÚ·ÁˆÓÈ΋ (t-phase) Á) ÌÔÓÔÎÏÈÓ‹˜ (m-phase)
·fi ¶ÂÙÚfiÔ˘ÏÔ˜ 200111
Fig. 3: Allotropic forms of zirconia a) cubic b) tetragonal
c) monoclinic
from Petropoulos 200111
Microstructure
MIKPO¢OMH - ATOMIKH ¢IEY£ETH™H - KPY™TA§§IKE™ MOPºE™
H ˙ÈÚÎÔÓ›· ·ÚÔ˘ÛÈ¿˙ÂÈ ÙÔ Ê·ÈÓfiÌÂÓÔ ÙÔ˘ ÔÏ˘ÌÔÚÊÈÛÌÔ‡ ‰ËÏ·‰‹ ÎÚ˘ÛÙ·ÏÏÒÓÂÙ·È Ì ÙÚÂȘ ‰È·ÊÔÚÂÙÈÎÔ‡˜
ÙÚfiÔ˘˜. OÈ ÙÚÂȘ ÎÚ˘ÛÙ·ÏÏÈΤ˜ ÌÔÚʤ˜ Ù˘ ˙ÈÚÎÔÓ›·˜
›ӷÈ: ·) Ë Î˘‚È΋, ¤Ó· ¢ı‡ ϤÁÌ· Ì ÙÂÙÚ¿ÁˆÓ˜ Ï¢ڤ˜ ‚) Ë ÙÂÙÚ·ÁˆÓÈ΋, ¤Ó· ¢ı‡ ϤÁÌ· Ì ÔÚıÔÁÒÓÈÔ
Û¯‹Ì· Î·È Ë Á) Ë ÌÔÓÔÎÏÈÓ‹˜, ¤Ó· ·Ú·ÌÔÚʈ̤ÓÔ ϤÁÌ· Û ۯ‹Ì· ·Ú·ÏÏËÏÂÈ¤‰Ô˘ (EÈÎ. 3).
Hellenic Stomatological Review 57: 101-137, 2013
Zirconia exhibits the phenomenon of polymorphism and
is crystallized in three different ways. The three crystallographic forms of zirconia are: a) the cubic, a rectangular
grid with straight sides b) the tetragonal, a rectangular
grid with a straight shape, and c) the monoclinic, a deformed grid parallelepiped-shaped (Fig. 3).
Each crystallographic form has different properties.
During heating, changes of the zirconia crystal structure
take place. The monoclinic is stable at room temperature
105
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
K¿ı ÎÚ˘ÛÙ·ÏÏÈ΋ ÌÔÚÊ‹ ¤¯ÂÈ ‰È·ÊÔÚÂÙÈΤ˜ ȉÈfiÙËÙ˜.
K·Ù¿ ÙË ı¤ÚÌ·ÓÛË Ù˘ ˙ÈÚÎÔÓ›·˜ ·Ú·ÙËÚÔ‡ÓÙ·È ·ÏÏ·Á¤˜ ÙˆÓ ÎÚ˘ÛÙ·ÏÏÈÎÒÓ ‰ÔÌÒÓ. H ÌÔÓÔÎÏÈÓ‹˜ Â›Ó·È ÛÙ·ıÂÚ‹ Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘ Î·È ‰È·ÙËÚÂ›Ù·È Ì¤¯ÚÈ ÙÔ˘˜
1170ÆC, ¤¯ÂÈ ÌÂȈ̤Ó˜ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ Û ۯ¤ÛË ÌÂ
ÙËÓ ÙÂÙÚ·ÁˆÓÈ΋ Î·È ÂËÚ¿˙ÂÈ ÙË Û˘ÓÔ¯‹ ÙˆÓ ÎÂÚ·ÌÈÎÒÓ
ÎÚ˘ÛÙ¿ÏÏˆÓ Î·È ÙËÓ ˘ÎÓfiÙËÙ·. H ÙÂÙÚ·ÁˆÓÈ΋ ›ӷÈ
ÛÙ·ıÂÚ‹ ÌÂٷ͇ 1170ÆC Î·È 2370ÆC Î·È ÚÔÛ‰›‰ÂÈ ÛÙÔ ˘ÏÈÎfi ‚ÂÏÙȈ̤Ó˜ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜. H ΢‚È΋ ›ӷÈ
ÛÙ·ıÂÚ‹ Û ıÂÚÌÔÎڷۛ˜ ¿Óˆ ÙˆÓ 2370ÆC ̤¯ÚÈ ÙÔ ÛËÌÂ›Ô Ù‹Í˘22 Î·È ¤¯ÂÈ Ì¤ÙÚȘ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜. K·Ù¿
ÙË ‰È¿ÚÎÂÈ· Ù˘ „‡Í˘ ÙÔ˘ ˘ÏÈÎÔ‡ ÙÔ Ê·ÈÓfiÌÂÓÔ ·ÓÙÈÛÙÚ¤ÊÂÙ·È Î·È Û ıÂÚÌÔÎÚ·Û›· 950ÆC ÍÂÎÈÓ¿ÂÈ Ë ÌÂÙ·ÙÚÔ‹ Ù˘ ÙÂÙÚ·ÁˆÓÈ΋˜ Û ÌÔÓÔÎÏÈÓ‹7, 8. H ÌÂÙ·‚ÔÏ‹
Ê¿ÛÂˆÓ ·ÎÔÏÔ˘ıÂ›Ù·È Î·È ·fi ÌÂÙ·‚ÔÏ‹ fiÁÎÔ˘ ÙÔ˘ ˘ÏÈÎÔ‡. K·Ù¿ ÙËÓ ÌÂÙ·ÙÚÔ‹ Ù˘ ÙÂÙÚ·ÁˆÓÈ΋˜ Û ÌÔÓÔÎÏÈÓ‹ (t->m) ·Ú·ÙËÚÂ›Ù·È ·‡ÍËÛË ÙÔ˘ fiÁÎÔ˘ ηٿ 4,5% ÂÚ›Ô˘ ÂÓÒ Ù˘ ΢‚È΋˜ Û ÙÂÙÚ·ÁˆÓÈ΋ (c->t) 2,31%23.
ŒÓ·˜ ‰È·ÊÔÚÂÙÈÎfi˜ ÌÂÙ·Û¯ËÌ·ÙÈÛÌfi˜ (c—>t) ÌÔÚ› Ó·
ÚÔηϤÛÂÈ ÙË ‰ËÌÈÔ˘ÚÁ›· ÌÈ·˜ ‰È·ÊÔÚÂÙÈ΋˜ t Ê¿Û˘.
A˘Ù‹ Ë Ê¿ÛË t, ÁÓˆÛÙ‹ ˆ˜ t’, ıˆÚÂ›Ù·È fiÌÔÈ· Ù˘ t, ·ÏÏ¿
Ì ÂÚÈÛÛfiÙÂÚË ÂÚÈÂÎÙÈÎfiÙËÙ· Û ‡ÙÙÚÈÔ, ÌÈÎÚfiÙÂÚÔ Ì¤ÁÂıÔ˜ ÎÚ˘ÛÙ¿ÏÏˆÓ Î·È È‰È·›ÙÂÚË ·ÓÙ›ÛÙ·ÛË ÛÙË ÌÂÙ·ÙÚÔ‹ Ù˘ Û ʿÛË m24. O ÌÂÙ·Û¯ËÌ·ÙÈÛÌfi˜ ·˘ÙÔ‡ ÙÔ˘ Ù‡Ô˘ Ê·›ÓÂÙ·È Ó· ÂÚÈÔÚ›˙ÂÈ ÙȘ ÁÓˆÛÙ¤˜ ·ÚÓËÙÈΤ˜ Û˘Ó¤ÂȘ Ù˘ ·Ó¿Ù˘Í˘ Ù˘ Ê¿Û˘ m, ηٿ ÙË Á‹Ú·ÓÛË Ù˘
˙ÈÚÎÔÓ›·˜ ÛÂ ıÂÚÌÔÎÚ·Û›· ÂÚÈ‚¿ÏÏÔÓÙÔ˜.
A˘Ù¤˜ ÔÈ ÌÂÙ·ÙÚÔ¤˜ ÙÔ˘ ϤÁÌ·ÙÔ˜ Â›Ó·È Ì·ÚÙÂÓÛÈÙÈÎÔ‡
Ù‡Ô˘ Î·È ¯·Ú·ÎÙËÚ›˙ÔÓÙ·È ·fi ÙÚ›· ÛËÌ›·. ¶ÚÒÙÔ, ÙËÓ
¤ÏÏÂÈ„Ë ‰È¿¯˘Û˘ (ÂÚÈÏ·Ì‚¿ÓÔ˘Ó ÌfiÓÔ Û˘ÓÙÔÓÈṲ̂Ó˜
·ÏÏ·Á¤˜ ÛÙȘ ı¤ÛÂȘ ÙÔ˘ ϤÁÌ·ÙÔ˜ ¯ˆÚ›˜ ÌÂٷΛÓËÛË ·ÙfïÓ). ¢Â‡ÙÂÚÔ, fiÙÈ ÔÈ ÌÂÙ·ÙÚÔ¤˜ ·˘Ù¤˜ Û˘Ì‚·›ÓÔ˘Ó
ηٿ ÙË ‰È¿ÚÎÂÈ· ÌÂÙ·‚ÔÏ‹˜ Û ¤Ó· ıÂÚÌÔÎÚ·ÛÈ·Îfi ‰È¿ÛÙËÌ· ·Ú¿ Û ̛· Û˘ÁÎÂÎÚÈ̤ÓË ıÂÚÌÔÎÚ·Û›· Î·È ÙÚ›ÙÔ
Ë ·Ú·ÌfiÚʈÛË ÙÔ˘ Û¯‹Ì·ÙÔ˜25. TÔ Ê·ÈÓfiÌÂÓÔ ·˘Ùfi
ÚÒÙË ÊÔÚ¿ ·Ú·ÙËÚ‹ıËΠÛÙ· ÎÚ¿Ì·Ù· Ûȉ‹ÚÔ˘-¯·ÏÎÔ‡ Ì ÙË ÌÂÙ·ÙÚÔ‹ ÙÔ˘ ÔÛÙÂÓ›ÙË Û ̷ÚÙÂÓÛ›ÙË Î·È ÙËÓ
·ÓÙ›ÛÙÔÈ¯Ë ÂÍ·ÈÚÂÙÈ΋ ‚ÂÏÙ›ˆÛË ÙˆÓ Ì˯·ÓÈÎÒÓ È‰ÈÔÙ‹ÙˆÓ ÙÔ˘ ÎÚ¿Ì·ÙÔ˜26.
O•EI¢IA ™TA£EPO¶OIH™H™ ºA™EøN
H ˙ÈÚÎÔÓ›· ÁÈ· Ó· ÌÔÚ¤ÛÂÈ Ó· Ì·˜ ·Ú¤¯ÂÈ ÙȘ ··ÈÙÔ‡ÌÂÓ˜ ȉÈfiÙËÙ˜ ÚÔ¸Ôı¤ÙÂÈ ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ t-Ê¿Û˘ Û ıÂÚÌÔÎÚ·Û›· ÂÚÈ‚¿ÏÏÔÓÙÔ˜. H ÌÔÓÔÎÏÈÓ‹˜ ÌÔÚÊ‹ Ù˘ ˙ÈÚÎÔÓ›·˜ ·ÔÙÂÏÔ‡Û ÂÌfi‰ÈÔ ÛÙË ‰ËÌÈÔ˘ÚÁ›· ÂÓfi˜ ·ÓıÂÎÙÈÎÔ‡ ÎÂÚ·ÌÈÎÔ‡ Ô˘ ı· ÌÔÚÔ‡Û ӷ ¯ÚËÛÈÌÔÔÈËı› Û ‰È¿ÊÔÚ˜ ÂÊ·ÚÌÔÁ¤˜. OÈ ÂÓ·ÏÏ·Á¤˜ fiÁÎÔ˘
ÏfiÁˆ ÌÂÙ·ÙÚÔ‹˜ Ê¿ÛÂˆÓ ÂÈÛ¿ÁÔ˘Ó Ù¿ÛÂȘ Î·È ‰ËÌÈÔ˘ÚÁÔ‡Ó ÚˆÁ̤˜ ÛÙË Ì¿˙· ÙÔ˘ ˘ÏÈÎÔ‡ ÌÂÈÒÓÔÓÙ·˜ ÙȘ Ì˯·ÓÈΤ˜ ·ÓÙÔ¯¤˜ ÙÔ˘ ˘ÏÈÎÔ‡26. OÈ ÚÔÛ¿ıÂȘ ÙˆÓ ¯ËÌÈÎÒÓ
Ì˯·ÓÈÎÒÓ ÍÂΛÓËÛ·Ó Á‡Úˆ ÛÙÔ 1972 fiÙ·Ó ·Ó·Î¿Ï˘„·Ó
fiÙÈ Î·Ù¿ ÙË ‰ËÌÈÔ˘ÚÁ›· ÎÚ·Ì¿ÙˆÓ ˙ÈÚÎÔÓ›·˜ Ì ÚÔÛı‹ÎË ÔÍÂȉ›ˆÓ ¯·ÌËÏfiÙÂÚÔ˘ Ûı¤ÓÔ˘˜ (CaO, MgO, La2O3,
Y2O3) ¢ÓÔÔ‡ÓÙ·Ó Ë Î˘‚È΋ Î·È Ë ÙÂÙÚ·ÁˆÓÈ΋ ÌÔÚÊ‹23.
H ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ ˙ÈÚÎÔÓ›·˜ Á›ÓÂÙ·È Ì ÙËÓ ·ÓÙÈηٿÛÙ·ÛË ÙÔ˘ Zr4+ ·fi ÙÔ Y3+ ÛÙÔ ϤÁÌ·. TÔ ·Ú·¿Óˆ Ô‰ËÁ› ÙÔ Û¯ËÌ·ÙÈÛÌfi ÎÂÓÒÓ ÂÓ‰ÔÏÂÁÌ·ÙÈÎÒÓ ı¤ÛÂˆÓ Èfi106
and kept up to 1170ÆC, has reduced mechanical properties compared to the tetragonal and influences the consistency of the ceramic crystal and density. The tetragonal
is constant between 1170ÆC and 2370ÆC and gives the
material improved mechanical properties. The cubic is
stable at temperatures in excess of 2370ÆC until the
melting point22 and has moderate mechanical properties.
During the cooling of the material the phenomenon is
reversed, and at the temperature 950ÆC the conversion of
the tetragonal to monoclinic form starts7, 8. This phase
transformation is followed by a change in volume of the
material. During the conversion of the tetragonal to
monoclinic (t-> m) phase a volume increase of about
4.5% is observed, while the respective volume change for
the transformation of cubic to tetragonal (c-> t) is 2,31%29.
A different transformation (c -> t) can cause the creation
of a different t phase. This is known as t’, it is considered
like t, but contains more yttrium, attains smaller crystal
size and presents higher resistance to t->m phase transformation24. This type of transformation appears to limit
the known negative consequences of the m phase development, during aging of zirconia at room temperature.
First, there is lack of diffusion (they include coordinated
changes in the positions of the crystal matrix without
atomic moving). Second, they take place in a temperature
range instead of a specific temperature and third, there is
distortion of the shape25.This phenomenon was first
observed in the iron - copper alloys by converting ostenite
to martensite and the corresponding outstanding improvement of the mechanical properties of the alloy26 .
PHASE STABILIZATION OXIDES
Zirconia in order to provide the required properties needs
the stabilization of the t- phase at ambient temperature.
The presence of monoclinic zirconia is an obstacle to the
creation of a durable ceramic that could be used in
various applications. The volume variation due to the
phase transformation creates cracks in the mass of the
material by reducing its mechanical strength26. Efforts of
chemical engineers began around 1972 when they
discovered that alloying with lower valence oxides (CaO,
MgO, La2O3, Y2O3) favored the cubic and quadratic form23.
The stabilization of t zirconia is achieved by the replacement of Zr4 + ions from Y3 + in the matrix. The above leads
to the formation of oxygen voids inside the crystal matrix
which are known as oxygen vacancies and their mobility
in the matrix causes ionic conductivity. In essence, with
the addition of Y3 + lattice defects are generated.
The phases formed are now similar to those of pure
zirconia with the difference that the impurity - ion stabilizers replace Zr +4 ions create intracellular positions of
oxygen ions in order to maintain neutrality when it comes
to trivalent stabilizer (Fig. 4).
A total of three mechanisms are taking place for the
stabilization of the t- phase and the most common
impurities or stabilizers are cerium dioxide (CeO2) and
yttrium trioxide (Y2O3): a) trivalent ions which create
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÓÙˆÓ Ô͢ÁfiÓÔ˘ Ô˘ ·ÔÙÂÏÔ‡Ó ÙÔ˘˜ ÊÔÚ›˜ Ù˘ ·ÁˆÁÈÌfiÙËÙ·˜, Ë ÎÈÓËÙÈÎfiÙËÙ¿ ÙÔ˘˜ ÛÙÔ ϤÁÌ· ·ÔÙÂÏ› ÙËÓ
ÈÔÓÙÈ΋ ·ÁˆÁÈÌfiÙËÙ·. ™ÙËÓ Ô˘Û›· Ì ÙËÓ ÚÔÛı‹ÎË ÙÔ˘
Y3+ ‰ËÌÈÔ˘ÚÁÔ‡ÓÙ·È ·Ù¤ÏÂȘ ÛÙÔ ϤÁÌ·.
OÈ Ê¿ÛÂȘ Ô˘ ‰ËÌÈÔ˘ÚÁÔ‡ÓÙ·È ϤÔÓ Â›Ó·È ·Ó¿ÏÔÁ˜ ÌÂ
·˘Ù¤˜ Ù˘ ηı·Ú‹˜ ˙ÈÚÎÔÓ›·˜ Ì ÙË ‰È·ÊÔÚ¿ fiÙÈ Ù· ÈfiÓÙ·
ÚfiÛÌÈ͢-ÛÙ·ıÂÚÔÔÈËÙÒÓ ·ÓÙÈηıÈÛÙÔ‡Ó Ù· Zr+4 ÈfiÓÙ·
Î·È ‰ËÌÈÔ˘ÚÁÔ‡Ó ÙÔ Û¯ËÌ·ÙÈÛÌfi ÎÂÓÒÓ ÂÓ‰ÔÏÂÁÌ·ÙÈÎÒÓ
ı¤ÛÂˆÓ ÈfiÓÙˆÓ Ô͢ÁfiÓÔ˘ ÚÔÎÂÈ̤ÓÔ˘ Ó· ‰È·ÙËÚËı› Ë
Ô˘‰ÂÙÂÚfiÙËÙ·, fiÙ·Ó ÚfiÎÂÈÙ·È ÁÈ· ÙÚÈÛıÂÓ‹ ÛÙ·ıÂÚÔÔÈËÙ‹ (EÈÎ. 4).
™˘ÓÔÏÈο ÙÚÂȘ Ì˯·ÓÈÛÌÔ› ÏÂÈÙÔ˘ÚÁÔ‡Ó ÁÈ· ÙË ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ t-Ê¿Û˘ Î·È ÔÈ ϤÔÓ Û˘Ó‹ıÂȘ ÚÔÛÌ›ÍÂȘÛÙ·ıÂÚÔÔÈËÙ¤˜ Â›Ó·È ÙÔ ‰ÈÔÍ›‰ÈÔ ÙÔ˘ ‰ËÌËÙÚ›Ô˘ (CeO2)
Î·È ÙÔ ÙÚÈÔÍ›‰ÈÔ ÙÔ˘ ˘ÙÙÚ›Ô˘ (Y2O3): ·) ÙÚÈÛıÂÓ‹ ÈfiÓÙ· Ù·
ÔÔ›· ‰ËÌÈÔ˘ÚÁÔ‡Ó Ô¤˜ Ô͢ÁfiÓÔ˘ Fe+3, Ga+3, Y+3 ‚) ÙÂÙÚ·ÛıÂÓ‹ ÈfiÓÙ· Ì ÌÈÎÚfiÙÂÚÔ ‹ ÌÂÁ·Ï‡ÙÂÚÔ fiÁÎÔ (Ti+4,
Ce+4) Á) ÚÔÛÌ›ÍÂȘ ÊÔÚÙ›Ô˘ ·ÓÙÈÛÙ¿ıÌÈÛ˘23. ™ËÌ·ÓÙÈ΋
¿ÓÙˆ˜ ¤Ú¢ӷ ¤¯ÂÈ Á›ÓÂÈ ÛÙ· ÎÂÚ·ÌÈο Ô˘ ÛÙËÚ›˙ÔÓÙ·È
ÛÙË ˙ÈÚÎÔÓ›·. Œ¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› ‰È·ÊÔÚÂÙÈΤ˜ ̤ıÔ‰ÔÈ
Û‡ÓıÂÛ˘ Î·È ÁÈ· ÙË ÛÙ·ıÂÚÔÔ›ËÛ‹ Ù˘ ¤¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› Ù· ÔÍ›‰È· Ì·ÁÓËÛ›Ô˘, ·Û‚ÂÛÙ›Ô˘, ‰ËÌËÙÚ›Ô˘ Î·È ˘ÙÙÚ›Ô˘ (MgO, CaO, CeO2, Y2O3) ηıÒ˜ Î·È ÔÍ›‰È· Û¿ÓÈˆÓ Á·ÈÒÓ27.
T· Ó¤· ·˘Ù¿ ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜ Î·È ÈÔ Û˘ÁÎÂÎÚÈ̤ӷ Ë
ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›· (PSZ) ¯·Ú·ÎÙËÚ›ÛÙËÎ·Ó ·fi ÙÔ˘˜ Garvie Î·È Û˘Ó28 ˆ˜ «ÎÂÚ·ÌÈÎfi˜ ¯¿Ï˘‚·˜» ÁÈ·Ù› ÂÌÊ·Ó›˙Ô˘Ó ·ÚÎÂÙ¤˜ ÔÌÔÈfiÙËÙ˜ Ì ÙÔ ¯¿Ï˘‚·
ηıÒ˜ ¤¯Ô˘Ó ÙÚÂȘ ·ÏÏÔÙÚÔÈΤ˜ ÌÔÚʤ˜, Ì·ÚÙÂÓÛÈÙÈÎÔ‡
Ù‡Ô˘ ÌÂÙ·ÙÚÔ‹ Ê¿Û˘, Î·È ÌÂÙ·‚ÏËÙ¤˜ Ê¿ÛÂȘ.
MOPºE™ ENI™XYMENH™ ZIPKONIA™ A¶O METATPO¶H
ºA™H™
O fiÚÔ˜ ÂÓÈÛ¯˘Ì¤Ó· ÎÂÚ·ÌÈο ÂÌÂÚȤ¯ÂÈ ÌÈ· ¢Ú›· Ù¿ÍË
˘ÏÈÎÒÓ Î·È ÌÈÎÚÔ‰ÔÌÒÓ29. H ÂÓÈÛ¯˘Ì¤ÓË ˙ÈÚÎÔÓ›· ¯ˆÚ›˙ÂÙ·È Û ÙÚÂȘ ‚·ÛÈΤ˜ ηÙËÁÔڛ˜. ™ÙȘ ‰˘Ô ÚÒÙ˜ ·ÔÙÂÏÂ›Ù·È ·fi ˘ÏÈο ÙÔ˘Ï¿¯ÈÛÙÔÓ ‰˘Ô Ê¿ÛÂˆÓ Ì ÙËÓ ÙÂÙÚ·ÁˆÓÈ΋ ˙ÈÚÎÔÓ›· Ó· ·ÔÙÂÏ› ÙË ÌÈÎÚfiÙÂÚË Ê¿ÛË ÂÓÒ
Ë ÙÚ›ÙË Î·ÙËÁÔÚ›· ÂÚÈÏ·Ì‚¿ÓÂÈ Î·Ù¿ ·ÚÈÔ ÏfiÁÔ ÌÔÓÔÊ·ÛÈ΋ t-˙ÈÚÎÔÓ›·23. ™˘ÓÂÒ˜ ‰È·ÎÚ›ÓÔ˘ÌÂ: 1. Ù· ÎÂÚ·ÌÈο
ÂÓÈÛ¯˘Ì¤Ó· Ì ˙ÈÚÎÔÓ›·, 2. T· ÎÂÚ·ÌÈο Ì ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ÙÂÙÚ·ÁˆÓÈ΋ ˙ÈÚÎÔÓ›· Î·È 3. T· ÎÂÚ·ÌÈο
Ì Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ÙÂÙÚ·ÁˆÓÈ΋ ˙ÈÚÎÔÓ›·.
1. KEPAMIKA ENI™XYMENA ME ZIPKONIA
™Â ·˘Ù¿ Ù· ˘ÏÈο ·Ú·ÙËÚÂ›Ù·È ‰È¿¯˘ÛË ÎÚ˘ÛÙ¿ÏÏˆÓ ˙ÈÚÎÔÓ›·˜ ̤۷ Û ̛· ¿ÏÏË ÎÚ˘ÛÙ·ÏÏÈ΋ Ì‹ÙÚ·. E›Ó·È Ù· ÏÈÁfiÙÂÚÔ ÌÂÏÂÙË̤ӷ, ·ÏÏ¿ Î·È Ì ÌÈÎÚfiÙÂÚÔ ÂÌÔÚÈÎfi ÂӉȷʤÚÔÓ ÂÓÈÛ¯˘Ì¤Ó· ÎÂÚ·ÌÈο. X·Ú·ÎÙËÚÈÛÙÈο ·Ú·‰Â›ÁÌ·Ù· Â›Ó·È Ë ÂÓÈÛ¯˘Ì¤ÓË Ì ˙ÈÚÎÔÓ›· ·ÏÔ˘Ì›Ó·
(Zirconia toughened alumina ‹ ZTA) Î·È Ô ÂÓÈÛ¯˘Ì¤ÓÔ˜ ÌÂ
˙ÈÚÎÔÓ›· ÌÔ˘Ï›Ù˘ (3Al2O3.2SiO2 ‹ ZTM)31 Y¿Ú¯Ô˘Ó ‚¤‚·È· Î·È ¿Ú· ÔÏÏÔ› ¿ÏÏÔÈ Û˘Ó‰˘·ÛÌÔ› ˘ÏÈÎÒÓ ·ÏÔ˘Ì›Ó·˜ Î·È ˙ÈÚÎÔÓ›·˜, fiÔ˘ ÙÔ ÔÛÔÛÙfi Ù˘ ˙ÈÚÎÔÓ›·˜ ›ӷÈ
ÌÂÁ·Ï‡ÙÂÚÔ ·fi ·˘Ùfi Ù˘ ·ÏÔ˘Ì›Ó·˜ ÔfiÙ ϤÔÓ ÚÔ·ÙÂÈ ÌÈ· ¿ÏÏË ÛÂÈÚ¿ ˘ÏÈÎÒÓ Ë ÂÓÈÛ¯˘Ì¤ÓË Ì ·ÏÔ˘Ì›Ó·
Hellenic Stomatological Review 57: 101-137, 2013
EÈÎ. 4 : H ‰ËÌÈÔ˘ÚÁ›· ÔÒÓ Ô͢ÁfiÓÔ˘ (oxygen vacancies) ÙÔ˘
ÎÚ˘ÛÙ¿ÏÏÔ˘ Ù˘ ˘ÙÙÚ›·˜ ÛÙËÓ YSZ Û ΢‚È΋ ÎÚ˘ÛÙ·ÏÏÈ΋ ‰ÔÌ‹
Fig. 4: Oxygen vacancies of yttria crystal in cubic YSZ’s crystal
www.wikipedia.org/wiki/yttria-stabilised_zirconia
oxygen vacancies Fe +3, Ga +3, Y +3 b) tetravalent ions with
smaller or larger atomic volume (Ti +4, Ce +4) c) compensation load impurities29. Considerable research has been
done, however, in ceramics based on zirconia. Many
different methods of synthesis and stabilization have been
proposed and many oxides have beem tested suvh as
magnesium, calcium, cerium and yttrium (MgO, CaO,
CeO2, Y2O3) as well as rare earth oxides27.
These new zirconia ceramics and specifically the partially
stabilized zirconia (PSZ) were characterized by Garvie as
“ceramic steel” because they show several similarities
with steel as having three allotropic forms, martensinic
type phase transformation and variable phases28.
FORMS OF REINFORCED ZIRCONIA CERAMICS
The term reinforced ceramics includes a wide class of
materials and microstructures29. Reinforced zirconia is
divided into three main categories. In the first two, materials consist of at least two phases with the t-phase to be
the smallest one, while the third category includes primarily monophase t- zirconia29. Therefore we distinguish: 1.
Zirconia reinforced ceramics, 2. Ceramics with partially
stabilized tetragonal zirconia and 3. Ceramics with fully
stabilized tetragonal zirconia.
1. ZIRCONIA REINFORCED CERAMICS
In these materials zirconia crystals diffuseinto another
crystal matrix. they are the least studied but with the less
commercial interest reinforced ceramics. Typical examples are alumina reinforced with zirconia (Zirconia toughened alumina or ZTA) and zirconia reinforced mullite
(3Al2O3.2SiO2 or ZTM)31. There are many other combinations of alumina and zirconia, where the proportion of
zirconia is greater than that of alumina and constitute
107
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
˙ÈÚÎÔÓ›· (AZT)28. T· Û˘ÁÎÂÎÚÈ̤ӷ ÎÂÚ·ÌÈο ÌÔÚÔ‡Ó Ó·
ÏÂÈÙÔ˘ÚÁ‹ÛÔ˘Ó ˆ˜ ˘ÏÈο ·ÎfiÌ· Î·È ¯ˆÚ›˜ ÙËÓ ·ÚÔ˘Û›·
οÔÈÔ˘ ÛÙ·ıÂÚÔÔÈËÙ‹ ηıÒ˜ Ë ÛÙ·ıÂÚfiÙËÙ· Ù˘ t-Ê¿Û˘ ÂϤÁ¯ÂÙ·È ·fi ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ, ÙË ÌÔÚÊÔÏÔÁ›· ÙÔ˘ Î·È ı¤ÛË ÙÔ˘ (ÂÚÈÎÚ˘ÛÙ·ÏÏÈο ‹ ÂÓ‰ÔÎÚ˘ÛÙ·ÏÏÈο)22. O˘ÛÈ·ÛÙÈο ÚfiÎÂÈÙ·È ÁÈ· ¤Ó· Ê·ÈÓfiÌÂÓÔ ·Ó¿ÏÔÁÔ
Ù˘ ÌÂÙ·ÙfiÈÛ˘ ÙÔ˘ ıÂÚÌÔÎÚ·ÛÈ·ÎÔ‡ ‰È·ÛÙ‹Ì·ÙÔ˜ ¤Ó·Ú͢ Ù˘ Ì·ÚÙÂÓÛÈÙÈ΋˜ ÌÂÙ·ÙÚÔ‹˜ οو ·fi ÙË ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘31. H ÚÔÛı‹ÎË ˙ÈÚÎÔÓ›·˜ ÌÔÚ› Ó·
Á›ÓÂÈ Â›Ù Û ÌÔÚÊ‹ ηı·Ú‹˜ ˙ÈÚÎÔÓ›·˜ ‹ ˆ˜ PSZ Û ÛÎfiÓË ·ÏÔ˘Ì›Ó·˜. M ·˘ÙfiÓ ÙÔÓ ÙÚfiÔ ÂÓÈÛ¯‡ÂÙ·È ÙfiÛÔ Ë ‰˘ÛıÚ·˘ÛÙfiÙËÙ· (Kic) fiÛÔ Î·È Ë ·ÓÙÔ¯‹ ο̄˘ ÙÔ˘ ˘ÏÈÎÔ‡,
·ÚΛ Ô ÎfiÎÎÔ˜ Ù˘ ηı·Ú‹˜ ˙ÈÚÎÔÓ›·˜ Ó· Â›Ó·È Ù˘ Ù¿Í˘
ÙˆÓ 1-2 Ìm Î·È Ù˘ ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ˙ÈÚÎÔÓ›·˜
2-5 Ìm Û ÔÛÔÛÙfi ¤ˆ˜ 15%32. TÔ ÔÚ҉˜ ÙˆÓ ÌÈÎÙÒÓ
ÎÂÚ·ÌÈÎÒÓ ZTA ÊÙ¿ÓÂÈ ÙÔ 8-11% Î·È Â›Ó·È ÌÂÁ·Ï‡ÙÂÚÔ
ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ÙÂÙÚ·ÁˆÓÈ΋˜
˙ÈÚÎÔÓ›·˜ Ì ˘ÙÙÚ›· (Y-TZP). A˘Ùfi ÂÍËÁ› ÂÓ Ì¤ÚÂÈ Î·È ÙȘ
¯·ÌËÏfiÙÂÚ˜ Ì˯·ÓÈΤ˜ ·ÓÙÔ¯¤˜ Û ۯ¤ÛË Ì ÙËÓ ˙ÈÚÎÔÓ›·
Y-TZP22. H ηٷÛ΢‹˜ ÎÂÚ·ÌÈÎÒÓ Ù¤ÙÔÈÔ˘ Ù‡Ô˘ Â›Ó·È ‰˘Ó·ÙfiÓ Ó· Á›ÓÂÈ Â›Ù Ì Ù¯ÓÈ΋ «slip-cast» ›Ù Ì ÂÎÙÚÔ¯ÈÛÌfi
Û «Ì·Ï·Îfi ÛÙ¿‰ÈÔ» ÙÔ˘ ˘ÏÈÎÔ‡ (soft machining)23.
T· ÎÂÚ·ÌÈο ZTA Ê·›ÓÔÓÙ·È ÔÏÏ¿ ˘ÔÛ¯fiÌÂÓ· ÁÈ· ‚ÈÔ˚·ÙÚÈΤ˜ ÂÊ·ÚÌÔÁ¤˜. EÏ¿¯ÈÛÙ· ›¯·Ó ‰ËÌÔÛÈ¢ı› ̤¯ÚÈ
ÚfiÛÊ·Ù· ÁÈ· ÙË ¯Ú‹ÛË ÙÔ˘˜ ˆ˜ ÎÂÚ·ÌÈÎÒÓ ‚ÈÔ¸ÏÈÎÒÓ33.
TÔ ÁÂÁÔÓfi˜ fï˜ fiÙÈ Ë ÚÔÛı‹ÎË ·ÏÔ˘Ì›Ó·˜ ÛÙË ˙ÈÚÎÔÓ›· ÂÌÔ‰›˙ÂÈ ÙË Á‹Ú·ÓÛË ÙÔ˘ ˘ÏÈÎÔ‡ ‹ ÙÔ˘Ï¿¯ÈÛÙÔÓ ÌÂÈÒÓÂÈ ‰Ú·ÛÙÈο ÙËÓ ÎÈÓËÙÈ΋ Ù˘ ı· Ú¤ÂÈ Ó· ‰›ÓÂÈ ÂÏ›‰Â˜
ÁÈ· ÙËÓ Î·Ù·Û΢‹ ÂÓfi˜ ÈÛ¯˘ÚÔ‡ ‚ÈÔ¸ÏÈÎÔ‡ ··ÏÏ·Á̤ÓÔ˘ ·fi ÙÔ Ê·ÈÓfiÌÂÓÔ Ù˘ Á‹Ú·ÓÛ˘14. §›Á˜ ¤Ú¢Ó˜ ¤¯Ô˘Ó Á›ÓÂÈ ÛÙÔ Ê·ÈÓfiÌÂÓÔ Ù˘ Á‹Ú·ÓÛ˘ ÙˆÓ Û˘ÛÙËÌ¿ÙˆÓ
·ÏÔ˘Ì›Ó·˜-˙ÈÚÎÔÓ›·˜. º·›ÓÂÙ·È fï˜ fiÙÈ ¤Ó· ÌÈÎÚfi ÔÛÔÛÙfi Á‹Ú·ÓÛ˘ ·Ú·ÙËÚÂ›Ù·È ·ÚfiÏ· ·˘Ù¿, ÂÍ·ÚÙÒÌÂÓÔ
·fi Ù· ¯·Ú·ÎÙËÚÈÛÙÈο ÌÈÎÚÔ‰ÔÌ‹˜ ÙˆÓ ‰‡Ô Ê¿ÛÂˆÓ ÙÔ˘
˘ÏÈÎÔ‡34. ¶ÈÔ Û˘ÁÎÂÎÚÈ̤ӷ Ô ‚·ıÌfi˜ ÌÂÙ·ÙÚÔ‹˜ Ê¿Û˘
ÛÙ· ÎÂÚ·ÌÈο ZTA ÂÍ·ÚÙ¿Ù·È ·fi ÙË ıÂÚÌÔÎÚ·Û›·, ÙË
‰È¿ÚÎÂÈ· Î·È ÙËÓ ›ÂÛË Ô˘ ˘Ê›ÛÙ·Ù·È ÙÔ ˘ÏÈÎfi Î·È Â›Ó·È ·ÓÙÈÛÙÚfiʈ˜ ·Ó¿ÏÔÁÔ˜ ÙÔ˘ ÌÂÁ¤ıÔ˘˜ ÙÔ˘ ÎfiÎÎÔ˘35. TÔ
ÏÂÔÓ¤ÎÙËÌ· Ù˘ ηχÙÂÚ˘ ·ÓÙ›ÛÙ·Û˘ ÛÙË Á‹Ú·ÓÛË
Û‹ÌÂÚ· ·ÌÊÈÛ‚ËÙ›ٷÈ36.
T· Û‡ÓıÂÙ· ÎÂÚ·ÌÈο ˘ÏÈο Ù‡Ô˘ ZTA ‰È·ÎÚ›ÓÔÓÙ·È ÛÂ
‰È¿ÊÔÚÔ˘˜ Ù‡Ô˘˜ ¤¯ÔÓÙ·˜ Ô Î·ı¤Ó·˜ ‰È·ÊÔÚÂÙÈ΋ Û‡ÓıÂÛË, ÔÛfi Î·È Â›‰Ô˜ ÛÙ·ıÂÚÔÔÈËÙ‹, ηıÒ˜ Î·È ÚÔÛı‹ÎË ¿ÏÏˆÓ ÔÍÂȉ›ˆÓ Î·È ÎÚ˘ÛÙ·ÏÏÈÎÒÓ Ê¿ÛˆÓ. EӉȷʤÚÔÓ Ê·›ÓÂÙ·È Ó· ¤¯ÂÈ Ë ZTA Ì ÚÔÛı‹ÎË ¯ÚˆÌ›·˜
(Cr2O3), Ë ÔÔ›· ÂÈÙ˘Á¯¿ÓÂÈ ·‡ÍËÛË Ù˘ ‰˘ÛıÚ·˘ÛÙfiÙËÙ·˜ ‰È·ÙËÚÒÓÙ·˜ ÛÙÔ ›‰ÈÔ Â›Â‰Ô ÙË ÛÎÏËÚfiÙËÙ· ÙÔ˘
˘ÏÈÎÔ‡37. º·›ÓÂÙ·È Ì¿ÏÈÛÙ· fiÙÈ ÙÔ ˘ÏÈÎfi ·˘Ùfi ¤¯ÂÈ ‹‰Ë ·ÔÙÂϤÛÂÈ ·ÓÙÈΛÌÂÓÔ ÌÂϤÙ˘ ÁÈ· ÙË ¯Ú‹ÛË ÙÔ˘ ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋38.
H Ù˘È΋ ÂÈÎfiÓ· ÙˆÓ ZTA Û ËÏÂÎÙÚÔÓÈÎfi ÌÈÎÚÔÛÎfiÈÔ ÂÚÈÏ·Ì‚¿ÓÂÈ ÙÔ˘˜ ÂÓÈÛ¯˘ÙÈÎÔ‡˜ t-ÎÚ˘ÛÙ¿ÏÏÔ˘˜ ˙ÈÚÎÔÓ›·˜
‰ÈÂÛ·Ṳ́ÓÔ˘˜ Û ̋ÙÚ· ÎÚ˘ÛÙ¿ÏÏˆÓ ·ÏÔ˘Ì›Ó·˜. ™ÙËÓ
Ô‰ÔÓÙÈ·ÙÚÈ΋ ¯ÚËÛÈÌÔÔÈÂ›Ù·È ÙÔ VITA In-Ceram® ZIRCONIA (VITA, Germany) ÙÔ ÔÔ›Ô ·ÔÙÂÏÂ›Ù·È ·fi 30%
Á˘·Ï› Î·È 70% ÔÏ˘ÎÚ˘ÛÙ·ÏÏÈÎfi ÎÂÚ·ÌÈÎfi. TÔ ˙ÈÚÎfiÓÈÔ ˆ˜
ÛÙÔÈ¯Â›Ô ÙÔ˘ ÂÚÈÔ‰ÈÎÔ‡ ›Ó·Î· ·Ó‹ÎÂÈ ÛÙ· ̤ٷÏÏ· ÌÂÙ¿ÙˆÛ˘ ÛÙËÓ IVB ÔÌ¿‰·. X·Ú·ÎÙËÚÈÛÙÈÎfi ·˘Ù‹˜ Ù˘ ÔÌ¿108
another group of materials ie the alumina reinforced
zirconia (AZT). These ceramics can serve as materials even without the presence of a stabilizers, as as the stability
of the t- phase is controlled by the grain size, morphology
and location (inter- or intra-granularly)22. Essentially it is a
phenomenon analogous to the displacement of the
temperature range of the martensitic transformation starting below room temperature31. The addition of zirconia
can be made either in the form of pure zirconia or PSZ
alumina powder. In this way both the fracture toughness
(Kic) and the flexural strength of the material are
enhanced, provided that the grain size of the pure zirconia
is 1-2 Ìm and that of the partially stabilized zirconia is 2-5
Ìm in proportion up to 15%32. The porosity of mixed ZTA
ceramics reaches 8-11% and is higher in fully stabilized
tetragonal zirconia ceramics with yttria (Y- TZP). This
partly explains the lower mechanical strength with respect
to zirconia Y-TZP22. The construction of the ceramic
restoration may be either with “slip-cast” technique or
milling in “green phase” of the material (soft machining)23.
The ZTA ceramics seem promising material for biomedical purposes. Few issues have been published until
recently for its use as a ceramic biomaterial33. Yet the fact
that the addition of alumina in zirconia prevents aging of
the material, or at least drastically reduces the kinetics,
should give hope for a strong biomaterial aging free14.
Few studies have been published on the phenomenon of
aging in alumina-zirconia composites. However, it seems
that a small percentage of aging observed, depends on
the characteristics of the microstructure of the two phases
of the material34. More particularly the degree of transformation in ZTA phases depends on the temperature,
duration and pressure on the material and is inversely
proportional to the grain size35. However, the advantage of
higher resistance to aging today is questioned36.
The ZTA composites are divided into several types having
each a different composition, amount and type of stabilizer as well as the addition of other oxides and crystalline
phases. Interest seems to have the cromia doped ZTA
which achieves increased toughness while maintaining
the same level of hardness of the material37. This material
has already been studied for use in dentistry38.
The typical image of ZTA ceramics with electron microscope includes the t- zirconia crystals dispersed in a
matrix of alumina crystals. In-Ceram Zirconia (In-Ceram®
ZIRCONIA, VITA, Germany) used in dentistry consists of
30% glass and 70 % zirconia polycrystalline alumina
ceramic with a ratio of about 70:30 by volume. According
to Chai et al, In Ceram Zirconia comes from adding 33 %
partially stabilized zirconia with 12% CeO2 to 67% In
Ceram alumina39.
2. CERAMICS WITH PARTIALLY STABILIZED ZIRCONIA
(PSZ)
This category is the most studied and exploited commercially. Features complex microstructure and magnesiastabilized materials are the strongest reinforced ceraHellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
‰·˜ Â›Ó·È fiÙÈ Ù· ÈfiÓÙ· ÙÔ˘˜ ÛÂ Û˘ÓËıÈṲ̂ÓË Î·Ù¿ÛÙ·ÛË ÔÍ›‰ˆÛ˘ ¤¯Ô˘Ó ÌÂÚÈο Û˘ÌÏËڈ̤ÓÔ ÙÔÓ ˘ÔÊÏÔÈfi d17.
T· ÛÙÔȯ›· ÌÂÙ¿ÙˆÛ˘ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È Û ÔÏÏ¿
ÎÚ¿Ì·Ù· Î·È Û˘¯Ó¿ Û¯ËÌ·Ù›˙Ô˘Ó ¤Á¯ÚˆÌ˜ ÂÓÒÛÂȘ. T· ¿ÙÔÌ¿ ÙÔ˘˜ ‰È·ı¤ÙÔ˘Ó Î¿ÔÈÔ ÌË Û˘ÌÏËڈ̤ÓÔ ÂÛˆÙÂÚÈÎfi ÊÏÔÈfi (ÛÙÈ‚¿‰·) Ô˘ ¤¯ÂÈ ÎÂÓ¤˜ ı¤ÛÂȘ ËÏÂÎÙÚÔÓ›ˆÓ. ™Â
ıÂÚÌÔÎÚ·Û›· ÂÚÈ‚¿ÏÏÔÓÙÔ˜ ¤¯ÂÈ ÎÏÂÈÛÙ‹ ÂÍ·ÁˆÓÈ΋ ÎÚ˘ÛÙ·ÏÏÈ΋ ‰ÔÌ‹ Î·È Ê˘ÛÈΤ˜ Î·È ¯ËÌÈΤ˜ ȉÈfiÙËÙ˜ ·ÚfiÌÔȘ Ì ÙÔ ÙÈÙ¿ÓÈÔ18 Ì ·Ó·ÏÔÁ›· ÂÚ›Ô˘ 70:30 ηٿ fiÁÎÔ. O Chai ·Ó·Ê¤ÚÂÈ fiÙÈ ÙÔ ˘ÏÈÎfi In Ceram Zirconia ÚÔ¤Ú¯ÂÙ·È ·fi ÙËÓ ÚÔÛı‹ÎË 33% ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ˙ÈÚÎÔÓ›·˜ Ì 12% CeO2 Û 67% In Ceram alumina39.
2. KEPAMIKA ME MEPIKø™ ™TA£EPO¶OIHMENH
ZIPKONIA (PARTIALLY STABILIZED ZIRCONIA H PSZ)
H ηÙËÁÔÚ›· ·˘Ù‹ Â›Ó·È Ë ϤÔÓ ÌÂÏÂÙË̤ÓË Î·È ·ÍÈÔÔÈË̤ÓË ÂÌÔÚÈο. ¢È·ı¤ÙÂÈ ÔχÏÔÎË ÌÈÎÚÔ‰ÔÌ‹ ηÈ
ÛÙËÓ ÂÚ›ÙˆÛË ˘ÏÈÎÒÓ Ì ÛÙ·ıÂÚÔÔÈËÙ‹ Ì·ÁÓËÛ›· Â›Ó·È ·fi Ù· ÈÛ¯˘ÚfiÙÂÚ· ÂÓÈÛ¯˘Ì¤Ó· ÎÂÚ·ÌÈο23. ™Â ·˘Ù¿
Ù· ÎÂÚ·ÌÈο Ë ÙÂÙÚ·ÁˆÓÈ΋ t-Ê¿ÛË Û¯ËÌ·Ù›˙ÂÙ·È Û ̋ÙÚ· ÛÙ·ıÂÚÔÔÈË̤Ó˘ ΢‚È΋˜ c-Ê¿Û˘. A˘Ùfi ÂÈÙ˘Á¯¿ÓÂÙ·È Ì ÚÔÛÌ›ÍÂȘ ‰È¿ÊÔÚˆÓ ÔÍÂȉ›ˆÓ (CaO, MgO,
La2O3, Y2O3) ÛÂ Û˘ÁÎÂÓÙÚÒÛÂȘ ¯·ÌËÏfiÙÂÚ˜ ·fi ·˘Ù¤˜
Ô˘ ¯ÚÂÈ¿˙ÔÓÙ·È ÁÈ· ÙËÓ Ï‹ÚË ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ ΢‚È΋˜ Ê¿Û˘. ŒÙÛÈ Ë t-Ê¿ÛË ‚Ú›ÛÎÂÙ·È ˆ˜ ›˙ËÌ· ÛÙÔ ÂÛˆÙÂÚÈÎfi ÙˆÓ ÎfiÎÎˆÓ Ì¤Û· Û ÌÈ· Ì‹ÙÚ· c-ÛÙ·ıÂÚÔÔÈË̤Ó˘ Ê¿Û˘. H t-Ê¿ÛË Â›Ó·È Û Ï‹ÚË Û˘ÓÔ¯‹ Ì ÙÔ˘˜ ΢‚ÈÎÔ‡˜ ÎÚ˘ÛÙ¿ÏÏÔ˘˜ Î·È ¤¯ÂÈ ÌÔÚÊ‹ ·ÙÚ·ÎÙÔÂȉ‹ Û Â›Â‰Ô Ó·ÓÔ̤ÙÚˆÓ. ¶ÈÔ ·Ï¿ Ù· ÎÂÚ·ÌÈο ·˘Ù¿ Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘ Â›Ó·È ÔÏ˘Ê·ÛÈο Î·È ÂÚÈÏ·Ì‚¿ÓÔ˘Ó
Û ÌÈÎÚ‹ Û˘ÁΤÓÙÚˆÛË ÌÔÓÔÎÏÈÓ‹ Î·È ÙÂÙÚ·ÁˆÓÈ΋ Ê¿ÛË
Û ˘fiÛÙڈ̷ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ΢‚È΋˜ ˙ÈÚÎÔÓ›·˜.
A˘Ù‹ Ë ÌÂÙ·ÛÙ·ı‹˜ ηٿÛÙ·ÛË Ù˘ t-Ê¿Û˘ ‰È·ÙËÚ›ٷÈ
¯¿ÚË ÛÙËÓ ·ÚÔ˘Û›· ÙˆÓ ÛÙ·ıÂÚÔÔÈËÙÒÓ. H ÌÂÙ·ÙÚÔ‹
Ù˘ Û m-Ê¿ÛË, Ë ÔÔ›· ı· Ô‰ËÁÔ‡Û Û ·‡ÍËÛË fiÁÎÔ˘
ÙÔ˘ ˘ÏÈÎÔ‡ ÂÌÔ‰›˙ÂÙ·È ·fi ÙȘ Û˘ÌÈÂÛÙÈΤ˜ Ù¿ÛÂȘ Ô˘
·ÛÎÔ‡ÓÙ·È Û ·˘ÙÔ‡˜ ÙÔ˘˜ ÎfiÎÎÔ˘˜ ·fi ÙÔ˘˜ ÁÂÈÙÔÓÈÎÔ‡˜ ÙÔ˘˜40. T· ‰È·ÁÚ¿ÌÌ·Ù· Ê¿ÛÂˆÓ ‰Â›¯ÓÔ˘Ó Ì›· Ì›ÍË
΢‚È΋˜, ÙÂÙÚ·ÁˆÓÈ΋˜ ‹ Î·È ÌÔÓÔÎÏÈÓÔ‡˜ Ê¿Û˘ Î·È ÁÈ·
Ó· ·Ú·¯ı› ÌÈ· ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›·
(PSZ) ¯ÚÂÈ¿˙ÔÓÙ·È ‰‡Ô ÚÔ¸Ôı¤ÛÂȘ. K·Ù·Ú¯‹Ó Ë Û˘ÁΤÓÙÚˆÛË ÙÔ˘ ÛÙ·ıÂÚÔÔÈËÙ‹ Ó· Â›Ó·È ÌÈÎÚfiÙÂÚË ·fi
fiÛË ¯ÚÂÈ¿˙ÂÙ·È ÁÈ· ÙËÓ Ï‹ÚË ÛÙ·ıÂÚÔÔ›ËÛË Ù˘ ΢‚È΋˜ Ê¿Û˘ Î·È Î·Ù¿ ‰Â‡ÙÂÚÔÓ Ë Î˘‚È΋ Ê¿ÛË Ó· ıÂÚÌ·Óı› ÒÛÙ ӷ ·Ó·Ù˘¯ı› ¤Ó· ‰ÈÊ·ÛÈÎfi ÎÂÚ·ÌÈÎfi32.
H PSZ ¯·Ú·ÎÙËÚ›ÛÙËΠ·fi ÙÔ˘˜ Garvie Î·È Nicholson28
ˆ˜ «ÎÂÚ·ÌÈÎfi˜ ¯¿Ï˘‚·˜» ·ÊÔ‡ ·Ú·Ù‹ÚËÛ·Ó fiÙÈ ÚfiÎÂÈÙ·È ÁÈ· ˘ÏÈÎfi ˘„ËÏ‹˜ Ì˯·ÓÈ΋˜ ·ÓÙÔ¯‹˜ Î·È ÛÎÏËÚfiÙËÙ·˜
Ì ÙÔ ÌÔÓ·‰ÈÎfi ¯·Ú·ÎÙËÚÈÛÙÈÎfi Ù˘ ÂÓ›Û¯˘Û‹˜ ÙÔ˘ ·fi ÙË
ÌÂÙ·ÙÚÔ‹ Ê¿Û˘ (Transformation toughening). H ÌÔÓ·‰È΋ ·˘Ù‹ ȉÈfiÙËÙ· «ÌÂÙ·ÛÙ¿ıÂÈ·» Â›Ó·È ‰˘Ó·ÙfiÓ Ó· ¯·ı› fiÙ·Ó ÔÈ ÎfiÎÎÔÈ Â›Ó·È Ôχ ÌÈÎÚÔ›, ÔfiÙ ‰ÂÓ ÌÂÙ·ÙÚ¤ÔÓÙ·È,
ηıÒ˜ Î·È fiÙ·Ó Â›Ó·È Ôχ ÌÂÁ¿ÏÔÈ, ‰Â ‰È·ÙËÚÔ‡ÓÙ·È ˆ˜
ÌÂÙ·ÙÚÂfiÌÂÓÔÈ ÎÚ‡ÛÙ·ÏÏÔÈ, ÁÈ·Ù› ηı›ÛÙ·ÓÙ·È ‰˘Ó·Ù¤˜
·˘ÙfiÌ·Ù˜ ÌÂÙ·ÙÚÔ¤˜ ÙÔ˘˜ Û ÌÔÓÔÎÏÈÓ‹ Ê¿ÛË Î·Ù¿
ÙËÓ „‡ÍË ÙÔ˘˜ Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘41, 42.
I‰È·›ÙÂÚË ÚÔÛÔ¯‹ ¯ÚÂÈ¿˙ÂÙ·È Û ‰‡Ô ‚·ÛÈο ÛÙ¿‰È· ·Hellenic Stomatological Review 57: 101-137, 2013
mics23. In these ceramics t-phase is formed in the matrix of
stabilized cubic c-phase. This is achieved with blends of
various oxides (CaO, MgO, La2O3, Y2O3) at concentrations lower than those needed to fully stabilize the cubic
phase. Thus, the t- phase is precipitated inside the grains
in a matrix c- stationary phase. T-phase is fully consistent
with the cubic crystals and has a fusiform shape at nanometer level. Simply these ceramics at room temperature
are multiphasic and include a short concentration of
monoclinic and tetragonal phase in cubic stabilized
zirconia substrate. This metastable state of the t- phase is
maintained thanks to the presence of stabilizers. The
transformation to the m- phase which would increase the
volume of the material is prevented by the compressive
stresses exerted on those grains from the adjacent
ones40.The phase diagrams show a mixing of cubic, tetragonal or monoclinic phase. To produce a partially stabilized zirconia (PSZ) two conditions are needed. First, the
concentration of the stabilizer should be less than needed
to fully stabilize the cubic phase and, secondly, the cubic
phase should be heated to develop a biphasic ceramic32.
PSZ was characterized by Garvie and Nicholson as
“ceramic steel”, since it was observed that this material is
of high mechanical strength and toughness with the
unique characteristics coming from the phase transformation (Transformation toughening). This unique property (metastability) may be lost when the grains are very
small, so they do not transform, and when they are too
large, so they are not stable as converted crystals, because they automatically convert to monoclinic phase during
cooling to ambient room temperature41, 42.
Particular care is needed in two main production steps of
such ceramics. First of all sintering must be carried out at
high temperatures (1680ÆC and 1800ÆC) and then the
velocity and the temperature range time of cooling cycles
must be tightly controlled. During the cooling step, at
about 1100ÆC, the tetragonal phase is developed, whose
volume fraction is decisive for the break strength of the
material31, 43.
There are two main types of partially stabilized zirconia
(PSZ) according to stabilizers and microstructure. The
first is a coarse structure containing 8% MgO and grain
size of 50-100 Ìm and is called Mg-PSZ. The second by
adding Y2O3 leading to a very fine ceramic structure with a
grain size <1Ìm. A commercial brand for Mg-PSZ is Denzir-M (Dentronic AB, Sweden)44. Two main disadvantages
of Denzir are the porosity and the large grain size (30-60
Ìm) which makes the material unsuitable for biomedical
purposes, as well as the presence of impurities such as
SiO2 which reduce the magnesium content of Mg
(through the creation of Mg-silicates) and spontaneous
cause aging of the material (t->m transformation)22.
3. YTTRIUM STABILIZED TETRAGONAL ZIRCONIA
(TZP) POLYCRYSTALS, Y-TZP AND CERIA STABILIZED
TETRAGONAL ZIRCONIA POLYCRYSTALS, Ce-TZP)
These constitute the single phase polycrystalline t-zirco109
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Ú·ÁˆÁ‹˜ Ù¤ÙÔÈÔ˘ ›‰Ô˘˜ ÎÂÚ·ÌÈÎÒÓ. ¶ÚÒÙ· ·fi fiÏ· Ë
˘ÚÔÛ˘Ûۈ̿وÛË Ú¤ÂÈ Ó· Ú·ÁÌ·ÙÔÔÈÂ›Ù·È Û ˘„ËϤ˜ ıÂÚÌÔÎڷۛ˜ (1680ÆC Î·È 1800ÆC) Î·È ÛÙË Û˘Ó¤¯ÂÈ· Ë Ù·¯‡ÙËÙ· Î·È Ù· ıÂÚÌÔÎÚ·Ûȷο ‰È·ÛÙ‹Ì·Ù· ÙÔ˘
·ÎÏÔ˘ „‡Í˘ Ú¤ÂÈ Ó· ÂϤÁ¯ÔÓÙ·È ·˘ÛÙËÚ¿. K·Ù¿ ÙÔ
ÛÙ¿‰ÈÔ Ù˘ „‡Í˘, Á‡Úˆ ÛÙÔ˘˜ 1100ÆC, ·Ó·Ù‡ÛÛÂÙ·È Ë
ÙÂÙÚ·ÁˆÓÈ΋ Ê¿ÛË, Ù˘ ÔÔ›·˜ ÙÔ ÎÏ¿ÛÌ· Û fiÁÎÔ Â›Ó·È
ηıÔÚÈÛÙÈÎfi ÁÈ· ÙËÓ ·ÓÙÔ¯‹ ıÚ·‡Û˘ ÙÔ˘ ˘ÏÈÎÔ‡30, 43.
¢‡Ô Â›Ó·È ÔÈ Î‡ÚÈÔÈ Ù‡ÔÈ ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘
˙ÈÚÎÔÓ›·˜ (PSZ) ·Ó¿ÏÔÁ· Ì ÙÔ˘˜ ÛÙ·ıÂÚÔÔÈËÙ¤˜ Î·È ÙË
ÌÈÎÚÔ‰ÔÌ‹ ÙÔ˘˜. O ÚÒÙÔ˜ Ì ·‰ÚfiÎÔÎÎË ‰ÔÌ‹ Â›Ó·È ÌÂ
ÂÚÈÂÎÙÈÎfiÙËÙ· 8% MgO Î·È Ì¤ÁÂıÔ˜ ÎfiÎÎÔ˘ 50-100 Ìm
Î·È ÔÓÔÌ¿˙ÂÙ·È Mg-PSZ. O ‰Â‡ÙÂÚÔ˜ Ì ÚÔÛı‹ÎË Y2O3
Ô˘ Ô‰ËÁ› Û ˘ÂÚÏÂÙfiÎÔÎη ÎÂÚ·ÌÈο Ì ̤ÁÂıÔ˜
ÎfiÎÎÔ˘ <1Ìm. ŒÓ· ÂÌÔÚÈÎfi Û··ÛÌ· ˙ÈÚÎÔÓ›·˜ MgPSZ Â›Ó·È ÙÔ Denzir-M (Dentronic AB, Sweden)44. ¢‡Ô Â›Ó·È Ù· ‚·ÛÈο ÚÔ‚Ï‹Ì·Ù· ÙˆÓ ˘ÏÈÎÒÓ: ·)ÙÔ ÔÚ҉˜
Î·È ‚) ÙÔ ÌÂÁ¿ÏÔ Ì¤ÁÂıÔ˜ ÎfiÎÎÔ˘ (30-60 Ìm) Ù· ÔÔ›·
ÌÔÚ› Ó· ÚÔηϤÛÔ˘Ó ·ÏÏÔ›ˆÛË ˘ÏÈÎÔ‡ ÒÛÙ ӷ ›ӷÈ
·Î·Ù¿ÏÏËÏÔ ϤÔÓ Û ‚ÈÔ˚·ÙÚÈΤ˜ ÂÊ·ÚÌÔÁ¤˜. E›Û˘ Ë
·ÚÔ˘Û›· ÚÔÛÌ›ÍÂˆÓ SiO2 ÔÈ Ôԛ˜ ÌÂÈÒÓÔ˘Ó ÙËÓ ÂÚÈÂÎÙÈÎfiÙËÙ· Û ̷ÁÓ‹ÛÈÔ Mg (Ì ÙË ‰ËÌÈÔ˘ÚÁ›· ˘ÚÈÙÈÎÒÓ ÂÓÒÛÂˆÓ ÙÔ˘ Mg) Î·È ÚÔηÏÔ‡Ó ·˘ıfiÚÌËÙË Á‹Ú·ÓÛË ÙÔ˘ ˘ÏÈÎÔ‡ (t-m transformation)22.
3. KPY™TA§§OI TETPA°øNIKH™ ZIPKONIA™ (YTTRIUM
STABILIZED TETRAGONAL ZIRCONIA POLYCRYSTALS,
Y-TZP AND CERIA STABILIZED TETRAGONAL ZIRCONIA POLYCRYSTALS, Ce-TZP)
T· ÎÂÚ·ÌÈο ·˘Ù‹˜ Ù˘ ηÙËÁÔÚ›·˜ ·ÔÙÂÏÔ‡ÓÙ·È ·fi
ÌÔÓÔÊ·ÛÈ΋ ÔÏ˘ÎÚ˘ÛÙ·ÏÏÈ΋ t-˙ÈÚÎÔÓ›· Î·È ‹‰Ë ·fi ÙÔ
1977 ÁÓÒÚÈ˙·Ó fiÙÈ Ì ÌÈÎÚ¤˜ Û˘ÁÎÂÓÙÚÒÛÂȘ ˘ÙÙÚ›Ô˘
ÌÔÚ› Ó· ηٷÛ΢·ÛÙ› ÌÈÎÚfiÎÔÎÎË ˙ÈÚÎÔÓ›· Î·È Ó· ÂÚȤ¯ÂÈ ¤ˆ˜ Î·È 98% t- Ê¿ÛË. H ˘„ËÏ‹ ·ÓÙÔ¯‹ (700 MPa
ÛÙËÓ Î¿Ì„Ë) Û˘Ì›ÙÂÈ Ì ˘„ËÏfi ÔÛÔÛÙfi ÙÂÙÚ·ÁˆÓÈ΋˜
Ê¿Û˘ Î·È Ë ¯·ÌËÏ‹ (50-100 MPa) Ì ·ÓÙ›ÛÙÔȯ· ˘„ËÏfi
ÔÛÔÛÙfi ÌÔÓÔÎÏÈÓÔ‡˜ Ê¿Û˘45. OÈ Ì¤ÁÈÛÙ˜ ÙÈ̤˜ ·ÓÙÔ¯‹˜ ÂÌÊ·Ó›˙ÔÓÙ·È fiÙ·Ó ÙÔ ÎÚ›ÛÈÌÔ Ì¤ÛÔ Ì¤ÁÂıÔ˜ ÎfiÎÎÔ˘
Â›Ó·È ÌÈÎÚfiÙÂÚÔ ÙÔ˘ 0,3 Ìm46. K¿Ùˆ ·fi ÙÔ 0,2 Ìm ÌÂÁ¤ıÔ˘˜ ÎfiÎÎÔ˘ ‰ÂÓ Â›Ó·È ‰˘Ó·Ùfi˜ Ô ÌÂÙ·Û¯ËÌ·ÙÈÛÌfi˜ Ê¿ÛÂˆÓ Î·È Û˘ÓÂÒ˜ ¤¯Ô˘Ì ¯·ÌËÏfiÙÂÚË ‰˘ÛıÚ·˘ÛÙfiÙËÙ·23. TÔ ÔÛÔÛÙfi Ù˘ ÙÂÙÚ·ÁˆÓÈ΋˜ Ê¿Û˘ Ô˘ ‰È·ÙËÚÂ›Ù·È Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘ ÂÍ·ÚÙ¿Ù·È ·fi ÙË ıÂÚÌÔÎÚ·Û›· ·Ú·Û΢‹˜, ÙÔ ÔÛÔÛÙfi ÙÔ˘ ÛÙ·ıÂÚÔÔÈËÙ‹
(Y2O3, CeO2), ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎÎˆÓ Î·ıÒ˜ Î·È ÙÔ ‚·ıÌfi Ù˘ Û˘Ì›ÂÛ˘ Ô˘ ÂÍ·ÛÎÂ›Ù·È Û ·˘ÙÔ‡˜ ·fi ÙÔ
ϤÁÌ·23. OÈ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ ÙˆÓ TZP ÂÍ·ÚÙÒÓÙ·È ·fi ·˘Ù¤˜ ÙȘ ·Ú·Ì¤ÙÚÔ˘˜7.
™Ù· ÎÂÚ·ÌÈο 3Y-TZP (3mol% Y2O3) Ô˘ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ÛÙË Ô‰ÔÓÙÈ·ÙÚÈ΋, ÛËÌ·ÓÙÈÎfiÙÂÚÔ ÚfiÏÔ ÛÙȘ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ ¤¯ÂÈ ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ23. ¶¤Ú·Ó ÂÓfi˜
ÎÚ›ÛÈÌÔ˘ ÌÂÁ¤ıÔ˘˜ ÎfiÎÎÔ˘, Ô˘ ΢ڛˆ˜ ÂÍ·ÚÙ¿Ù·È ·fi
ÙË Û˘ÁΤÓÙÚˆÛË ÔÍÂȉ›Ô˘ ÙÔ˘ ˘ÙÙÚ›Ô˘ (Y2O3), Ú·ÁÌ·ÙÔÔÈÂ›Ù·È ·˘ÙfiÌ·ÙË ÌÂÙ·ÙÚÔ‹ ·fi ÙÂÙÚ·ÁˆÓÈ΋ Û ÌÔÓÔÎÏÈÓ‹ Ê¿ÛË. H ÌÂÙ·ÙÚÔ‹ ·ÚÂÌÔ‰›˙ÂÙ·È Û Ôχ ÏÂÙfiÎÔÎΘ ‰Ô̤˜. EÏ¿ÙÙˆÛË ÙÔ˘ ÌÂÁ¤ıÔ˘˜ ÙˆÓ ÎfiÎÎˆÓ ‹
·‡ÍËÛË Ù˘ Û˘ÁΤÓÙÚˆÛ˘ ÙˆÓ ÛÙ·ıÂÚÔÔÈËÙÈÎÒÓ ÔÍÂÈ110
nia ceramics. Since 1977 it was found that adding small
concentrations of yttrium on zirconia powder micrograin
zirconia material can be produced, containing up to 98%
t- phase. The high strength (700 MPa flexural strength)
coincides with high tetragonal phase and the low one (50100 MPa) with high amount of monoclinic phase45. The
maximum strength values occur when the critical average
grain size is less than 0.3Ìm46. Below 0.2 Ìm grain size
phase transformation is not possible and fracture toughness is lowered22. The proportion of the tetragonal phase
at room temperature depends on the preparation temperature, the percentage of stabilizers (Y2O3, CeO2), the
grain size and the degree of compression exerted on
them by the grid22. The mechanical properties of TZP
depend on these parameters7. In 3Y- TZP (3mol% Y2O3)
used in dentistry, grain size plays the most important role
in mechanical properties22. Beyond a critical grain size,
which mainly depends on the concentration of yttrium
dioxide, an automatic transformation from tetragonal to
monoclinic phase can be observed. The conversion is
restricted in very fine structures. Reduction in the grain
size or increasing the concentration of the stabilizing oxides may reduce the transformation rate. Specifically drastic reduction in the grain size results in loss of metastability while increasing the concentration of the stabilizing
oxide more than 3,5% Y2O3 in Y-TZP probably allow
nucleation of stable cubic phase. Therefore in order to
achieve a metastable tetragonal phase at room temperature, the grain size must be less than 0.8 Ìm and the
proportion of the stabilizer oxide not exceeding 3mol%45.
Also the sintering conditions affect both the stability and
the final strength of the final product since they determine
the grain size47. It appears that changing the sintering
conditions from 1550ÆC to 1450ÆC develops cubic phase
which reduces Y from the adjacent crystals, causing
nucleation of t-m transformation sites and dramatically
reduces the resistance to aging of the material48.
A feature of Y-TZP ceramics is the formation of compressive layers on their surface. Tetragonal surface granules
are not limited by the crystal matrix and therefore can be
converted automatically into monoclinic because of the
abrasive procedures provoking compressive stresses at a
depth of some microns in the subsurface. This surface
hardening and transformation phase plays a role in
improving the mechanical properties and wear resistance
of the material, but the thickness of the converted surface
limits them. This phenomenon can be disastrous in the
mechanical behavior of the material, if the conversion
phase on the surface causes a surface cracking, followed
by detachment of surface grains and proceed to the bulk
of the material7.
Many factors play a role in controlling the mechanical
behavior of Y-TZP ceramics. The size and shape of the
grains, the type and amount of stabilizer, the size and
distribution of the internal stresses and the presence of
residual stresses (prestresses)49. One of the disadvantages of 3Y-TZP ceramics is the sensitivity to thermal
shocks. In such case there is depletion of yttrium from
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
‰›ˆÓ Â›Ó·È ‰˘Ó·ÙfiÓ Ó· ÂÏ·ÙÙÒÛÂÈ ÙÔ Ú˘ıÌfi ÌÂÙ·ÙÚÔ‹˜.
™˘ÁÎÂÎÚÈ̤ӷ ‰Ú·ÛÙÈ΋ Ì›ˆÛË ÙÔ˘ ÌÂÁ¤ıÔ˘˜ ÙˆÓ ÎfiÎÎˆÓ Ô‰ËÁ› Û ·ÒÏÂÈ· Ù˘ «ÌÂÙ·ÛÙ·ıÂÚfiÙËÙ·˜» ÂÓÒ ·‡ÍËÛË Ù˘ Û˘ÁΤÓÙÚˆÛ˘ ÙˆÓ ÛÙ·ıÂÚÔÔÈËÙÈÎÒÓ ÔÍÂȉ›ˆÓ ¿Óˆ ·fi 3,5% Y2O3 ÛÙÔ Y-TZP Èı·ÓÒ˜ Ó· ÂÈÙÚ¤„ÂÈ ‰ËÌÈÔ˘ÚÁ›· ˘Ú‹ÓˆÓ ÛÙ·ıÂÚ‹˜ ΢‚È΋˜ Ê¿Û˘. EÔ̤ӈ˜ ÚÔÎÂÈ̤ÓÔ˘ Ó· ÂÈÙ¢¯ı› ÙÂÙÚ·ÁˆÓÈ΋ ÌÂÙ·ÛÙ·ı‹˜ Ê¿ÛË Û ıÂÚÌÔÎÚ·Û›· ‰ˆÌ·Ù›Ô˘, ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ
ÎfiÎÎˆÓ Ú¤ÂÈ Ó· Â›Ó·È ÌÈÎÚfiÙÂÚÔ ·fi 0,8 Ìm Î·È ÙÔ ÔÛÔÛÙfi ÙÔ˘ ÛÙ·ıÂÚÔÔÈËÙÈÎÔ‡ ÔÍÂȉ›Ô˘ Ó· ÌËÓ ÍÂÂÚÓ¿
Ù· 3mol%.45.
E›Û˘ ÔÈ Û˘Óı‹Î˜ ˘ÚÔÛ˘Ûۈ̿وÛ˘ ÂËÚ¿˙Ô˘Ó
ÙfiÛÔ ÙË ÛÙ·ıÂÚfiÙËÙ· fiÛÔ Î·È ÙËÓ ÙÂÏÈ΋ ·ÓÙÔ¯‹ ÙÔ˘ ÙÂÏÈÎÔ‡ ÚÔ˚fiÓÙÔ˜, ηıÒ˜ ηıÔÚ›˙Ô˘Ó ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ47. º·›ÓÂÙ·È fiÙÈ ÛÂ Û˘Óı‹Î˜ ˘ÚÔÛ˘Ûۈ̿وÛ˘
1550ÆC ·ÓÙ› ÁÈ· 1450ÆC ·Ó·Ù‡ÛÛÂÙ·È Î˘‚È΋ Ê¿ÛË Ë ÔÔ›· ÌÂÈÒÓÂÈ ÙÔ Y ·fi ÙÔ˘˜ ÁÂÈÙÔÓÈÎÔ‡˜ ÎÚ˘ÛÙ¿ÏÏÔ˘˜,
ÚÔηÏ› ˘Ú‹Ó˜ ÌÂÙ·ÙÚÔ‹˜ t-m ÌÂÈÒÓÔÓÙ·˜ ‰Ú·Ì·ÙÈο ÙËÓ ·ÓÙ›ÛÙ·ÛË ÙÔ˘ ˘ÏÈÎÔ‡ ÛÙË Á‹Ú·ÓÛË48.
X·Ú·ÎÙËÚÈÛÙÈÎfi ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP Â›Ó·È Ô Û¯ËÌ·ÙÈÛÌfi˜ ıÏÈÙÈÎÒÓ ˙ˆÓÒÓ ÛÙËÓ ÂÈÊ¿ÓÂÈ¿ ÙÔ˘˜. OÈ ÂÈÊ·ÓÂÈ·ÎÔ› ÙÂÙÚ·ÁˆÓÈÎÔ› ÎfiÎÎÔÈ ‰ÂÓ ÂÚÈÔÚ›˙ÔÓÙ·È ·fi ÙÔ ϤÁÌ· Î·È ÁÈ· ÙÔ ÏfiÁÔ ·˘Ùfi ÌÔÚÔ‡Ó Ó· ÌÂÙ·ÙÚ·Ô‡Ó ·˘ÙÔÌ¿Ùˆ˜ Û ÌÔÓÔÎÏÈÓ›˜ ÂÍ·ÈÙ›·˜ ·ÔÙÚÈÙÈÎÒÓ ‰È·‰ÈηÛÈÒÓ Ô˘ ÚÔηÏÔ‡Ó ıÏÈÙÈΤ˜ Ù¿ÛÂȘ Û ‚¿ıÔ˜ ÔÚÈÛÌ¤ÓˆÓ Ìm ˘ÔÂÈÊ·ÓÂȷο. A˘Ù‹ Ë ÂÈÊ·ÓÂȷ΋ ÌÂÙ·ÙÚÔ‹
Ê¿ÛÂˆÓ Î·È ÛÎÏ‹Ú˘ÓÛË ·›˙ÂÈ ÚfiÏÔ ÛÙË ‚ÂÏÙ›ˆÛË ÙˆÓ
Ì˯·ÓÈÎÒÓ È‰ÈÔÙ‹ÙˆÓ Î·È Ù˘ ·ÓÙ›ÛÙ·Û˘ ÛÙË ÊıÔÚ¿ ÙÔ˘
˘ÏÈÎÔ‡, ÙÔ ¿¯Ô˜ fï˜ Ù˘ ÌÂÙ·ÙÚ·›۷˜ ÂÈÊ¿ÓÂÈ·˜
ÙȘ ÂÚÈÔÚ›˙ÂÈ. TÔ Ê·ÈÓfiÌÂÓÔ ·˘Ùfi ÌÔÚ› Ó· ·Ԃ› ηٷÛÙÚÔÊÈÎfi ÛÙË Ì˯·ÓÈ΋ Û˘ÌÂÚÈÊÔÚ¿ ÙÔ˘ ˘ÏÈÎÔ‡, ·Ó Ë
ÌÂÙ·ÙÚÔ‹ Ê¿ÛÂˆÓ ÛÙËÓ ÂÈÊ¿ÓÂÈ· ÚÔηϤÛÂÈ ÌÈ· ÂÈÊ·ÓÂȷ΋ ÚˆÁÌ‹, ·ÎÔÏÔ˘ıÔ‡ÌÂÓË ·fi ·fiÛ·ÛË ÂÈÊ·ÓÂÈ·ÎÒÓ ÎfiÎÎˆÓ Î·È ÚÔ¯ˆÚ‹ÛÂÈ ÛÙË Ì¿˙· ÙÔ˘ ˘ÏÈÎÔ‡7.
¶ÔÏÏÔ› ·Ú¿ÁÔÓÙ˜ ÂϤÁ¯Ô˘Ó ÙË Ì˯·ÓÈ΋ Û˘ÌÂÚÈÊÔÚ¿
ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP. TÔ Ì¤ÁÂıÔ˜ Î·È Û¯‹Ì· ÙÔ˘ ÎfiÎÎÔ˘,
Ô Ù‡Ô˜ Î·È ÙÔ ÔÛfi ÙÔ˘ ÛÙ·ıÂÚÔÔÈËÙ‹, ÙÔ Ì¤ÁÂıÔ˜ ηÈ
Ë Î·Ù·ÓÔÌ‹ ÙˆÓ ÂÛˆÙÂÚÈÎÒÓ Ù¿ÛÂˆÓ Î·È Ë ·ÚÔ˘Û›· ÙˆÓ
˘ÔÏÂÈÌÌ·ÙÈÎÒÓ Ù¿ÛˆÓ49. ŒÓ· ·fi Ù· ÌÂÈÔÓÂÎÙ‹Ì·Ù·
ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP Â›Ó·È Ë Â˘·ÈÛıËÛ›· ÛÙÔ˘˜ ıÂÚÌÈ-
grain boundaries resulting in cubic phase appearance
which affects the consistency of the material. To address
the phenomenon it was proposed the reduction of the
grain size to nanometer scale and the addition of other
stabilizers in order to improve its performance. It has been
proposed that adding Cerium (Ce) and Alumina another
Ce- stabilized alumina TZP ceramic can be created49. The
fully stabilized zirconia is less elastic than the partially
stabilized and less resistant to thermal shocks from MgPSZ. At temperatures above 900ÆC is prone to deformation50. One major limitation of Y-TZP in their use in dentistry concerns the optical properties and especially the
opacity and the intense white color. For this reason,
various additive oxides have been tested in order to
change the color of Y-TZP. It seems that the addition of
CeO2 and ErO2 improves the color without significantly
affecting the mechanical properties51. Indeed the system
Procera AllZirkon (Nobel Biocare) has four different colors. Recently new systems are developed with transparent zirconia (grain size 3nm) made with a particular
zirconium, yttrium and oxygen ions condensation technique, in a gaseous phase. This kind of material is designed
for the fabrication of full contour zirconia restorations
without the need of a veneering material.
3.1. PHYSICAL PROPERTIES OF YTZP
The properties of YTZP are dependent on yttria
percentage and on grain size. The density of YTZP is 6.056.07 gr/cm3, and thermal conductivity of 2.2W /m*K32. The
resistance to thermal shocks is approaching 400ÆC, and
the dielectric constant from 16 to 18. It has zero porosity,
white color and a maximum working temperature of
1500ÆC. The melting point is extremely high (2750ÆC).
Coefficient of thermal expansion is 10,3*10-6/ÆC. Table 1
shows comparatively the physical, thermal and electrical
properties of the three types of zirconia.
3.2. OPTICAL PROPERTIES
The phenomena that determine the color and shape of a
Table 1. Physical properties of zirconia toughened ceramics
Property
ZTA
Mg-PSZ
Y-TZP
white
yellow
white
Density (gr/cm )
4.1
5.7
6.0
Average grain size (Ìm)
0.5
50
0.35-0.7
25
2
2
9
10.5
10.5
Maximum temperature ÆC
1000
900
1200
Thermal shock resistance ÆC
250
260
300
Color
3
Thermal conductivity (W/m*K)
-6
-1
Coefficient of thermal expansion (*10 K )
(http://www.bce-special-ceramics.com/highperformanceceramics/comparison.php)
Hellenic Stomatological Review 57: 101-137, 2013
111
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÎÔ‡˜ ·ÈÊÓȉȷÛÌÔ‡˜. ™Â Ù¤ÙÔÈ· ÂÚ›ÙˆÛË ·Ú·ÙËÚ›ٷÈ
ÂÍ¿ÓÙÏËÛË ÙÔ˘ ˘ÙÙÚ›Ô˘ ·fi Ù· fiÚÈ· ÙˆÓ ÎfiÎÎˆÓ Ì ·ÔÙ¤ÏÂÛÌ· ÙË ‰ËÌÈÔ˘ÚÁ›· ΢‚È΋˜ Ê¿Û˘ Ë ÔÔ›· ÂËÚ¿˙ÂÈ ÙË Û˘ÓÔ¯‹ ÙÔ˘ ˘ÏÈÎÔ‡. °È· ÙËÓ ·ÓÙÈÌÂÙÒÈÛË ÙÔ˘ Ê·ÈÓÔ̤ÓÔ˘ ÚÔÙ¿ıËÎÂ Ë ÛÌ›ÎÚ˘ÓÛË ÙˆÓ ÎfiÎÎˆÓ Û Â›‰Ô
Ó·ÓÔ̤ÙÚˆÓ ÁÈ· ‚ÂÏÙ›ˆÛË Ù˘ Â›‰ÔÛ˘ Î·È Ë ÚÔÛı‹ÎË
¿ÏÏˆÓ ÛÙ·ıÂÚÔÔÈËÙÒÓ. Œ¯ÂÈ ÚÔÙ·ı› Ë ÚÔÛı‹ÎË ‰ËÌËÙÚ›Ô˘ (Ce) Î·È ·ÏÔ˘Ì›Ó·˜ ÁÈ· ÙË ‰ËÌÈÔ˘ÚÁ›· ÂÓfi˜ ¿ÏÏÔ˘ ÛÙ·ıÂÚÔÔÈË̤ÓÔ˘ ÎÂÚ·ÌÈÎÔ‡ Ce-TZP Ì ·ÏÔ˘Ì›Ó·49. H Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›· Â›Ó·È ÏÈÁfiÙÂÚÔ
ÂÏ·ÛÙÈ΋ ·fi ÙË ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË Î·È ÏÈÁfiÙÂÚÔ
·ÓıÂÎÙÈ΋ ÛÙÔ˘˜ ıÂÚÌÈÎÔ‡˜ ·ÈÊÓȉȷÛÌÔ‡˜ ·fi ÙËÓ MgPSZ. ™Â ıÂÚÌÔÎڷۛ˜ ¿Óˆ ÙˆÓ 900ÆC Â›Ó·È ÂÈÚÚÂ‹˜
ÛÙËÓ ·Ú·ÌfiÚʈÛË50.
ŒÓ·˜ ‚·ÛÈÎfi˜ ÂÚÈÔÚÈÛÌfi˜ ÙˆÓ Y-TZP ÛÙËÓ ¯Ú‹ÛË ÙÔ˘˜
ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ·ÊÔÚ¿ ÙȘ ÔÙÈΤ˜ ȉÈfiÙËÙ˜ Î·È ÂȉÈο
ÙËÓ ·‰È·Ê¿ÓÂÈ· Î·È ÙÔ ¤ÓÙÔÓ· Ï¢Îfi ¯ÚÒÌ· ÙÔ˘˜. °È· ÙÔ
ÏfiÁÔ ·˘Ùfi ¤¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› ‰È¿ÊÔÚ· ÚfiÛıÂÙ· ÔÍÂȉ›ˆÓ ÚÔÎÂÈ̤ÓÔ˘ Ó· ÌÂÙ·‚ÏËı› ÙÔ ¯ÚÒÌ· ÙˆÓ Y-TZP.
º·›ÓÂÙ·È ˆ˜ Ë ÚÔÛı‹ÎË Î·È CeO2 Î·È ErO2 ‚ÂÏÙÈÒÓÂÈ ÙË
¯ÚˆÌ·ÙÈ΋ ·fi¯ÚˆÛË ¯ˆÚ›˜ ÛËÌ·ÓÙÈ΋ Â›ÙˆÛË ÛÙȘ
Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜51. M¿ÏÈÛÙ· ÙÔ Û‡ÛÙËÌ· Procera
AllZirkon (Nobel Biocare, Switzerland) ¤¯ÂÈ ‹‰Ë Ù¤ÛÛÂÚȘ
‰È·ÊÔÚÂÙÈÎÔ‡˜ ¯ÚˆÌ·ÙÈÛÌÔ‡˜. ¶ÚfiÛÊ·Ù· ·Ó·Ù‡ÛÛÔÓÙ·È Û˘ÛÙ‹Ì·Ù· Ó¤·˜ ‰È·Ê·ÓÔ‡˜ ˙ÈÚÎÔÓ›· Ì ̤ÁÂıÔ˜
ÎfiÎÎˆÓ 3 nm Ô˘ ηٷÛ΢¿˙ÂÙ·È Ì ÌÈ· ȉȷ›ÙÂÚË Ù¯ÓÈ΋ Û˘Ì‡ÎÓˆÛ˘ ÈfiÓÙˆÓ ˙ÈÚÎÔÓ›Ô˘, ˘ÙÙÚ›Ô˘ Î·È Ô͢ÁfiÓÔ˘
Û ·¤ÚÈ· Ê¿ÛË Ô˘ ÚÔÔÚ›˙ÂÙ·È ÁÈ· ·ÔηٷÛÙ¿ÛÂȘ ˙ÈÚÎÔÓ›·˜ Ï‹ÚÔ˘˜ ·Ó·ÙÔÌ›·˜ ¯ˆÚ›˜ ÂÈÎ·Ï˘ÙÈÎfi ˘ÏÈÎfi52.
3.1. ºY™IKE™ I¢IOTHTE™ TZP
OÈ È‰ÈfiÙËÙ˜ ÙÔ˘ YTZP ÂÍ·ÚÙÒÓÙ·È ·fi ÙÔ ÔÛÔÛÙfi Ù˘
˘ÙÙÚ›·˜ ηıÒ˜ Î·È ·fi ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ. H ˘ÎÓfiÙËÙ· Â›Ó·È 6.05-6.07 gr/cm3 Î·È Ë ıÂÚÌÈ΋ ·ÁˆÁÈÌfiÙËÙ·
2.2W/m*K32. H ·ÓÙ›ÛÙ·ÛË ÛÙÔ˘˜ ıÂÚÌÈÎÔ‡˜ ·ÈÊÓȉȷÛÌÔ‡˜ ÏËÛÈ¿˙ÂÈ ÙÔ˘˜ 400ÆC, Î·È Ë ‰ÈËÏÂÎÙÚÈ΋ ÛÙ·ıÂÚ¿
16-18. Œ¯ÂÈ ÌˉÂÓÈÎfi ÔÚ҉˜, Ï¢Îfi ¯ÚÒÌ· Î·È Ì¤ÁÈÛÙË
ıÂÚÌÔÎÚ·Û›· ¯Ú‹Û˘ Ù˘ ÙÔ˘˜ 1500ÆC. TÔ ÛËÌÂ›Ô Ù‹Í˘
Ù˘ Â›Ó·È ÂÍ·ÈÚÂÙÈο ˘„ËÏfi (2750ÆC). O ™˘ÓÙÂÏÂÛÙ‹˜
ıÂÚÌÈ΋˜ ‰È·ÛÙÔÏ‹˜ (™.£.¢.) Â›Ó·È 10,3*10-6/ÆC. ™ÙÔÓ ¶›Ó·Î· 1 Ê·›ÓÔÓÙ·È Û˘ÁÎÚÈÙÈο ÔÈ Ê˘ÛÈΤ˜, ıÂÚÌÈΤ˜ Î·È ËÏÂÎÙÚÈΤ˜ ȉÈfiÙËÙ˜ ÙˆÓ ÙÚÈÒÓ Î·ÙËÁÔÚÈÒÓ ˙ÈÚÎÔÓ›·˜.
3.2. O¶TIKE™ I¢IOTHTE™
T· Ê·ÈÓfiÌÂÓ· Ô˘ ÚÔÛ‰ÈÔÚ›˙Ô˘Ó ¯ÚˆÌ·ÙÈο Î·È Û¯ËÌ·ÙÈο ¤Ó· Ê˘ÛÈÎfi ÛÒÌ· Â›Ó·È Ë ·ÔÚÚfiÊËÛË, Ë ·ÓÙ·Ó¿ÎÏ·ÛË, Ë ‰È¿‰ÔÛË, Ë ‰È¿ıÏ·ÛË Î·È Ë ‰È¿¯˘ÛË4, Ù· ÔÔ›·
ηıÔÚ›˙ÔÓÙ·È ‚·ÛÈο ·fi ÙËÓ Â›‰Ú·ÛË ÌÂٷ͇ Ù˘ ÂÈΛÌÂÓ˘ ËÏÂÎÙÚÔÌ·ÁÓËÙÈ΋˜ ·ÎÙÈÓÔ‚ÔÏ›·˜ Î·È ÙˆÓ ËÏÂÎÙÚÔÓ›ˆÓ ÂÓÙfi˜ ÙÔ˘ ˘ÏÈÎÔ‡. H ÂÈΛÌÂÓË ËÏÂÎÙÚÔÌ·ÁÓËÙÈ΋ ·ÎÙÈÓÔ‚ÔÏ›·, Ë ÔÔ›· ¤¯ÂÈ ¤Ó· ÌÂÁ¿ÏÔ Â‡ÚÔ˜ Û˘¯ÓÔÙ‹ÙˆÓ Î·È Ì‹ÎˆÓ Î‡Ì·ÙÔ˜, ÌÔÚ› Ó· ‰ÈÂÁ›ÚÂÈ ¤Ó· ËÏÂÎÙÚfiÓÈÔ Î¿ÓÔÓÙ·˜ ÙÔ Ó· ÌÂÙ·ÎÈÓËı› ·fi ÙÔ ·Ú¯ÈÎfi ÙÔ˘ ÂÓÂÚÁÂÈ·Îfi Â›Â‰Ô Û ¤Ó· ‰È·ÊÔÚÂÙÈÎfi Â›‰Ô. K¿ı ˘ÏÈÎfi ·ÓÙȉڿ Ì ‰È·ÊÔÚÂÙÈÎfi ÙÚfiÔ Û οı ̋ÎÔ˜ ·̷ÙÔ˜. O ‚·ıÌfi˜ ·ÔÚÚfiÊËÛ˘ Ù˘ ËÏÂÎÙÚÔÌ·ÁÓËÙÈ΋˜ ·ÎÙÈÓÔ‚ÔÏ›·˜ ÂÍ·ÚÙ¿Ù·È ·fi ÙÔ Â›‰Ô˜ ÙÔ˘ ¯ËÌÈÎÔ‡ ‰ÂÛÌÔ‡
112
material is the absorption, reflection, transmission, refraction and diffusion3, which are basically determined by the
interaction between the electromagnetic radiation and
electrons within the material. The external electromagnetic
radiation, which has a large range of frequencies and
wavelengths, can excite an electron by being moved from
its original energy level to a different level. Each material
reacts differently to each wavelength. The degree of absorption of electromagnetic radiation depends on the type of
chemical bonding and the availability of free electrons.
Ceramic materials may entrap some wavelengths of
radiation and can be transparent only in a small range.
The zirconia ceramics have special optical properties. In
the absence of glass due to the high density of the
material they present high opacity. Beyond that, depending on the type of material the color can change. They
have a high refractive index (2.1-2.2), a low coefficient of
absorption and high opacity in the optical and infrared
spectrum54. These properties are due to the fact that the
dispersed grains (particles) of material are slightly larger
than the wavelength of light and the different reflective
index of the matrix material. For this reason, in dentistry
are used to cover discolorations of the substrate55. Factors
affecting the color of the zirconia materials are the grain
size, the distribution of grain sizes, the compression
method and different additives in each material. The
density and homogeneity of the material with minimum
porosity (<0.05%) provides a constant opacity of the
material. Nevertheless factors affecting the color or
transparency of zirconia ceramics were tested without
showing that they degrade the mechanical properties55.
The Ce-TZP are yellow and in powder form, from yellow to
brown. When changing the valence of Ce from +4 to +3 then
it turns gray. For this reason it is not used as such for
dental use36. Y-TZP ceramics are white, although the products resulting from the production of isostatic compression in the absence of oxygen have originally black color.
But when they are subjected to a heat treatment at
1000ÆC-1200ÆC and the presence of oxygen, they
gradually acquire white color56. The Mg-PSZ are yellow
while the ZTA are white.
3.3. MECHANICAL PROPERTIES
There is no doubt that the zirconia ceramics have better
mechanical properties than other ceramics such as
alumina7. The excellent performance of zirconia ceramics
in mechanical testing is primarily due to the dense
structure, the microgranules and the absence of defects8.
The mechanical properties are affected by the purity of
the material, the density, the porosity, the particle size, the
crystalline structure (t-c-m phases), the geometrical
characteristics and the surface characteristics (Table 2).
There is particular interest in the flexural strength which
depends on the purity of the material density, the critical
particle size, the amount of t- phase and the sintering
method.
They present flexural strength around 500MPa40, 129, while
particularly high values of 900-1200 MPa have been
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
¶›Ó·Î·˜ 1. º˘ÛÈΤ˜ ȉÈfiÙËÙ˜ ÂÓÈÛ¯˘Ì¤ÓˆÓ ÎÂÚ·ÌÈÎÒÓ Ì ˙ÈÚÎÔÓ›·
I‰ÈfiÙËÙ·
ZTA
Mg-PSZ
Y-TZP
Ï¢Îfi
K›ÙÚÈÓÔ
§Â˘Îfi
¶˘ÎÓfiÙËÙ· (gr/cm )
4.1
5.7
6.0
M¤ÛÔ Ì¤ÁÂıÔ˜ ÎfiÎÎÔ˘ (Ìm)
0.5
50
0.35-0.7
£ÂÚÌÈ΋ ·ÁˆÁÈÌfiÙËÙ· (W/m*K)
25
2
2
9
10.5
10.5
M¤ÁÈÛÙË ıÂÚÌÔÎÚ·Û›· ÆC
1000
900
1200
AÓÙ›ÛÙ·ÛË ÛÙ· ıÂÚÌÈο ÛÙÚ˜ÆC
250
260
300
XÚÒÌ·
3
-6
-1
™£¢ (*10 K )
(http://www.bce-special-ceramics.com/highperformanceceramics/comparison.php)
Table 2. Mechanical properties of zirconia
Property/Material
Y-TZP
Ce-TZP
ZTA
Mg-PSZ
Density (gr/cm )
6.05
6.15
4.15
5.75
Hardness (HV30)
1350
900
1600
1020
Bending strength (MPa)
1000
350
500
800
Compression strength (MPa)
2000
-
-
2000
Modulus of elasticity (GPa)
205
215
380
205
3
Î·È ÙËÓ ‰È·ıÂÛÈÌfiÙËÙ· ÂχıÂÚˆÓ ËÏÂÎÙÚÔÓ›ˆÓ. T· ÎÂÚ·ÌÈο ˘ÏÈο ÌÔÚÔ‡Ó Ó· ÂÁÎψ‚›˙Ô˘Ó ÔÚÈṲ̂ӷ Ì‹ÎË Î‡Ì·ÙÔ˜ Ù˘ ·ÎÙÈÓÔ‚ÔÏ›·˜ Î·È Ó· Â›Ó·È ‰È·Ê·Ó‹ ÌfiÓÔ Û ¤Ó·
ÌÈÎÚfi ‡ÚÔ˜ ·˘ÙÒÓ55.
T· ÎÂÚ·ÌÈο Ù˘ ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ȉȷ›ÙÂÚ˜ ÔÙÈΤ˜ ȉÈfiÙËÙ˜. §fiÁˆ Ù˘ ·Ô˘Û›·˜ Á˘·ÏÈÔ‡ Î·È ÂÍ·ÈÙ›·˜ Ù˘ ÌÂÁ¿Ï˘ ˘ÎÓfiÙËÙ·˜ ÙÔ˘ ˘ÏÈÎÔ‡ ·ÚÔ˘ÛÈ¿˙Ô˘Ó ¤ÓÙÔÓË ·‰È·Ê¿ÓÂÈ·. Afi ÂΛ Î·È ¤Ú· ·Ó¿ÏÔÁ· Ì ÙÔÓ Ù‡Ô ÙÔ˘ ˘ÏÈÎÔ‡ ÙÔ ¯ÚÒÌ· ÌÂÙ·‚¿ÏÏÂÙ·È. Œ¯Ô˘Ó ˘„ËÏfi ‰Â›ÎÙË ·Ó¿ÎÏ·Û˘ (2.1-2.2), ¯·ÌËÏfi Û˘ÓÙÂÏÂÛÙ‹ ·ÔÚÚfiÊËÛ˘ ηÈ
˘„ËÏ‹ ·‰È·Ê¿ÓÂÈ· ÛÙÔ ÔÙÈÎfi Î·È ˘¤Ú˘ıÚÔ Ê¿ÛÌ·54. OÈ
ȉÈfiÙËÙ˜ ·˘Ù¤˜ ÔÊ›ÏÔÓÙ·È ÛÙÔ ÁÂÁÔÓfi˜ fiÙÈ ÔÈ ‰ÈÂÛ·Ṳ́ÓÔÈ ÎfiÎÎÔÈ (particles) ÙÔ˘ ˘ÏÈÎÔ‡ Â›Ó·È ÂÏ¿¯ÈÛÙ· ÌÂÁ·Ï‡ÙÂÚÔÈ ·fi ÙÔ Ì‹ÎÔ˜ ·̷ÙÔ˜ ÙÔ˘ ʈÙfi˜ Î·È ÛÙÔ ‰È·ÊÔÚÂÙÈÎfi ‰Â›ÎÙ˘ ·Ó¿ÎÏ·Û˘ Ù˘ Ì‹ÙÚ·˜ ÙÔ˘ ˘ÏÈÎÔ‡.
°È· ÙÔ ÏfiÁÔ ·˘Ùfi ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ¯ÚËÛÈÌÔÔÈ›ٷÈ
ÁÈ· Ó· ηχ„ÂÈ ‰˘Û¯ÚˆÌ›Â˜ ÙÔ˘ ˘ÔÛÙÚÒÌ·ÙÔ˜55. ¶·Ú¿ÁÔÓÙ˜ Ô˘ ÂËÚ¿˙Ô˘Ó ÙÔ ¯ÚÒÌ· ÙˆÓ ˘ÏÈÎÒÓ Ù˘
˙ÈÚÎÔÓ›·˜ Â›Ó·È ÙÔ Ì¤ÁÂıÔ˜ ÙÔ˘ ÎfiÎÎÔ˘, Ë Î·Ù·ÓÔÌ‹ ÙˆÓ
ÌÂÁÂıÒÓ ÙˆÓ ÎfiÎΈÓ, Ë Ì¤ıÔ‰Ô˜ Û˘Ì›ÂÛ˘ Î·È Ù· ‰È·ÊÔÚÂÙÈο ÚfiÛıÂÙ· οı ˘ÏÈÎÔ‡. H ˘ÎÓfiÙËÙ· Î·È ÔÌÔÈÔÁ¤ÓÂÈ· ÙÔ˘ ˘ÏÈÎÔ‡ Ì ÂÏ¿¯ÈÛÙÔ ÔÚ҉˜ (<0,05%)
·Ú¤¯ÂÈ ÌÈ· ÛÙ·ıÂÚ‹ ·‰È·Ê¿ÓÂÈ· ÛÙÔ ˘ÏÈÎfi. ¶·ÚfiÏ·
·˘Ù¿ ¤¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› Î·È ·Ú¿ÁÔÓÙ˜ Ô˘ ÂËÚ¿˙Ô˘Ó ÙÔ ¯ÚÒÌ· ‹ ÙË ‰È·Ê¿ÓÂÈ· Ù˘ ˙ÈÚÎÔÓ›·˜ ¯ˆÚ›˜ Ó·
Hellenic Stomatological Review 57: 101-137, 2013
recorded for the Y-TZP7 ceramics. The value of 900 MPa
results from technical sintering without pressure and the
value of 1200 MPa is achieved by fusing at high pressure
(HiP)40. The performance of ZTA ceramics in bending tests
gives smaller values of 400-450 MPa39.
Young’s modulus is relatively low, allowing large deformation of the material up to failure, a unique property in brittle
materials. This allows a significant absorption of stresses
that responds excellent during fatigue tests7. In the literature
there is a wide range of zirconia fracture toughness values
that vary from 4-19 MPa m-1/2. Comparison of these values is
difficult as they result from different techniques and are
influenced by the particle size, density and percentage of
impurities of each particular ceramic57. However, the Y TZP
fracture toughness is higher than other ceramics such as
alumina.
3.4. APPLICATIONS IN INDUSTRY - OTHER
APPLICATIONS
Zirconia is primarily used in industry. A particularly
important application of cubic zirconia YSZ (Y-16 %) is in
fuel cells. Zirconia is used as an electrolyte with very thin
coating thickness, which is responsible for the low resistance to electrical leakage and lower operating temperature of the cell58. However, as mentioned above, the cubic
113
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Ê·›ÓÂÙ·È fiÙÈ ˘Ô‚·ıÌ›˙Ô˘Ó ÙȘ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜55.
T· ÎÂÚ·ÌÈο Ce-TZP Â›Ó·È Î›ÙÚÈÓ· Î·È Û ÌÔÚÊ‹ ÛÎfiÓ˘
·fi ΛÙÚÈÓÔ ¤ˆ˜ ηʤ. M¿ÏÈÛÙ· fiÙ·Ó ÌÂÙ·‚¿ÏÏÂÈ Ûı¤ÓÔ˜
ÙÔ Ce ·fi +4 Û +3 ÙfiÙ Á›ÓÂÙ·È ÁÎÚÈ. °È· ÙÔ ÏfiÁÔ ·˘Ùfi ‰Â
¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ·˘ÙÔ‡ÛÈ· ÁÈ· Ô‰ÔÓÙÈ·ÙÚÈ΋ ¯Ú‹ÛË36.
T· ÎÂÚ·ÌÈο Y-TZP Â›Ó·È ÏÂ˘Î¿, ·Ó Î·È Ù· ÚÔ˚fiÓÙ· Ô˘
ÚÔ·ÙÔ˘Ó ·fi ·Ú·ÁˆÁ‹ ÈÛÔÛÙ·ÙÈ΋˜ Û˘Ì›ÂÛ˘ ÛÂ
·Ô˘Û›· Ô͢ÁfiÓÔ˘ ¤¯Ô˘Ó ·Ú¯Èο Ì·‡ÚÔ ¯ÚÒÌ·. EÓ Û˘Ó¯›· fï˜ ˘fiÎÂÈÓÙ·È Û ıÂÚÌÈ΋ ÂÂÍÂÚÁ·Û›· ÛÙÔ˘˜
1000ÆC-1200ÆC Î·È ·ÚÔ˘Û›· Ô͢ÁfiÓÔ˘, ·ÔÎÙÒÓÙ·˜
ÛÙ·‰È·Î¿ ¤Ó· ¿ÛÚÔ ¯ÚÒÌ·56. T· ÎÂÚ·ÌÈο Mg-PSZ ›ӷÈ
ΛÙÚÈÓÔ˘ ¯ÚÒÌ·ÙÔ˜ ÂÓÒ Ù· ZTA Â›Ó·È ÏÂ˘Î¿.
3.3. MHXANIKE™ I¢IOTHTE™
¢ÂÓ ˘¿Ú¯ÂÈ Î·Ì›· ·ÌÊÈ‚ÔÏ›· fiÙÈ Ù· ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ηχÙÂÚ˜ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ ·fi ¿ÏÏ· ÎÂÚ·ÌÈο
fiˆ˜ ÁÈ· ·Ú¿‰ÂÈÁÌ· Ë ·ÏÔ˘Ì›Ó·7. H ÂÍ·ÈÚÂÙÈ΋ ·fi‰ÔÛË
ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ˙ÈÚÎÔÓ›·˜ ÛÙȘ Ì˯·ÓÈΤ˜ ‰ÔÎÈ̤˜ ÔÊ›ÏÂÙ·È ÚÒÙÈÛÙ· ÛÙËÓ ˘ÎÓ‹ ‰ÔÌ‹, ÛÙÔ˘˜ ÌÈÎÚÔÎfiÎÎÔ˘˜ ηÈ
ÛÙËÓ ·Ô˘Û›· ·ÙÂÏÂÈÒÓ8. OÈ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ ÂËÚ¿˙ÔÓÙ·È ·fi ÙË Î·ı·ÚfiÙËÙ· ÙÔ˘ ˘ÏÈÎÔ‡, ÙËÓ ˘ÎÓfiÙËÙ·, ÙÔ
ÔÚ҉˜, ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ, ·fi ÙËÓ ÎÚ˘ÛÙ·ÏÏÈ΋
‰ÔÌ‹ (t-c-m Ê¿ÛÂȘ), ·fi Ù· ÁˆÌÂÙÚÈο ¯·Ú·ÎÙËÚÈÛÙÈο
Î·È Ù· ÂÈÊ·ÓÂȷο ¯·Ú·ÎÙËÚÈÛÙÈο (¶›Ó·Î·˜ 2). I‰È·›ÙÂÚ·
Ì·˜ ÂӉȷʤÚÂÈ Ë ·ÓÙÔ¯‹ ÛÂ Î¿Ì„Ë Ë ÔÔ›· ÂÍ·ÚÙ¿Ù·È ·fi ÙËÓ Î·ı·ÚfiÙËÙ·, ˘ÎÓfiÙËÙ· ÙÔ˘ ˘ÏÈÎÔ‡, ÙÔ ÎÚ›ÛÈÌÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÎfiÎΈÓ, ÙÔ ÔÛfi Ù˘ t-Ê¿Û˘ Î·È ÙË Ì¤ıÔ‰Ô
˘ÚÔÛ˘Ûۈ̿وÛ˘8. H ·ÓÙÔ¯‹ ÛÙËÓ Î¿Ì„Ë ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP Î˘Ì·›ÓÂÙ·È Á‡Úˆ ÛÙ· 500MPa40, 128, ÂÓÒ ¤¯Ô˘Ó
ηٷÁÚ·Ê› Î·È È‰È·›ÙÂÚ· ˘„ËϤ˜ ÙÈ̤˜ Ù˘ Ù¿Í˘ ÙˆÓ
900-1200 MPa7. H ÙÈÌ‹ ÙˆÓ 900 MPa ÚÔ·ÙÂÈ ·fi ÙËÓ
Ù¯ÓÈ΋ ˘ÚÔÛ˘Ûۈ̿وÛ˘ ¯ˆÚ›˜ ›ÂÛË Î·È Ë ÙÈÌ‹ ÙˆÓ
1200 MPa ÂÈÙ˘Á¯¿ÓÂÙ·È Î·Ù¿ ÙËÓ Û‡ÓÙËÍË Û ˘„ËÏ‹ ›ÂÛË (HiP)40, 57. H Â›‰ÔÛË ÙˆÓ ZTA ÛÙȘ ‰ÔÎÈ̤˜ ο̄˘ ‰›ÓÂÈ ÌÈÎÚfiÙÂÚ˜ ÙÈ̤˜ 400-450 MPa39.
TÔ Ì¤ÙÚÔ ÂÏ·ÛÙÈÎfiÙËÙ·˜ Â›Ó·È Û¯ÂÙÈο ¯·ÌËÏfi ÂÈÙÚ¤ÔÓÙ·˜ ÌÂÁ¿ÏË ·Ú·ÌfiÚʈÛË ÙÔ˘ ˘ÏÈÎÔ‡ ̤¯ÚÈ ÙË ıÚ·‡ÛË
ÙÔ˘, ÌÔÓ·‰È΋ ȉÈfiÙËÙ· ÛÙ· „·ı˘Ú¿ ˘ÏÈο. A˘Ùfi ÂÈÙÚ¤ÂÈ ÌÈ· ÛËÌ·ÓÙÈ΋ ·ÔÚÚfiÊËÛË Ù¿ÛÂˆÓ Ô˘ ·ÓÙ·ÔÎÚ›ÓÂÙ·È ¿ÚÈÛÙ· ÛÙȘ ‰ÔÎÈ̤˜ ÎfiˆÛ˘8. ™ÙË ‚È‚ÏÈÔÁÚ·Ê›· ˘¿Ú¯ÂÈ ¤Ó· ÌÂÁ¿ÏÔ Â‡ÚÔ˜ ÙÈÌÒÓ ‰˘ÛıÚ·˘ÛÙfiÙËÙ·˜ ÁÈ·
ÙË ˙ÈÚÎÔÓ›· Î·È ÔÈΛÏÂÈ ·fi 4-19MPa m-1/2. H Û‡ÁÎÚÈÛË
·˘ÙÒÓ ÙˆÓ ÙÈÌÒÓ Â›Ó·È ‰‡ÛÎÔÏË Î·ıÒ˜ ÚÔ·ÙÔ˘Ó ·fi
‰È·ÊÔÚÂÙÈΤ˜ Ù¯ÓÈΤ˜ Î·È ÂËÚ¿˙ÔÓÙ·È ·fi ÙÔ Ì¤ÁÂıÔ˜
zirconia has low toughness which can lead to cracking in
long term use. For this reason more recently it has been
proposed to add alumina in cubic zirconia electrolytes to
improve the hardness and fracture toughness (Kic) but in
a small proportion, as the addition of alumina has a
negative impact on the electrical conductivity59.
Another application of zirconia is in high performance or
pressure chromatography (HPLC). Due to the high
pressure, the HPLC is rapid (results in some minutes) and
due to fine grain adsorbents materials that are used
provide high separation efficiency. The main reason is the
excellent chemical and thermal stability, which remains
even at temperatures above 300ÆC for a long time60.
Silica (SiO2) was the first of the materials used as gate
dielectric materials for the manufacture of integrated
circuits. But as it was necessary to gradually reduce the
size of the devices, the size of the membranes had to
respectively decrease and in order to create current
leakage the use of materials with higher dielectric constant
was proposed. Partially stabilized zirconia (YSZ) is one of
the materials that can remain thermodynamically stable in
contact with silicon even at 1000ÆC and therefore is quite
promising as gate dielectric material to replace SiO261.
Cubic zirconia is used in oxygen sensors which have a
wide range of industrial applications. Such sensors are
used to control the oxygen content in exhaust gases or
molten metals. In automotive industry is known as oxygen
sensors (Ï)-type62. Combining the high durability and the
improved conductivity compared to that of fully stabilized
zirconia ceramics, Y-TZP ceramics are excellent for use
as electrolytes in electrochemical applications such reactors, oxygen pumps and fuel cells63. The chemical
stability, high melting point, electrical and optical properties makes them ideal components for high resistance
to wear and for connecting optical fibers64. There is a wide
variety of applications of zirconia in its various forms,
which are summarized in Table 39.
ZIRCONIA CERAMICS IN DENTISTRY
Although there are many types of systems in the industry
of ceramics containing zirconia65, three are currently
available for use in dentistry. These are fully stabilized
tetragonal zirconia, partially stabilized zirconia and zirconia -reinforced alumina.
¶›Ó·Î·˜ 2. ªË¯·ÓÈΤ˜ ȉÈfiÙËÙ˜ ˙ÈÚÎÔÓ›·˜
I‰ÈfiÙËÙ·/YÏÈÎfi
Y-TZP
Ce-TZP
ZTA
Mg-PSZ
3
¶˘ÎÓfiÙËÙ· (gr/cm )
6.05
6.15
4.15
5.75
™ÎÏËÚfiÙËÙ· (HV30)
1350
900
1600
1020
AÓÙÔ¯‹ ÛÙËÓ Î¿Ì„Ë (MPa)
1000
350
500
800
AÓÙÔ¯‹ ÛÙË Û˘Ì›ÂÛË (MPa)
2000
-
-
2000
M¤ÙÚÔ ÂÏ·ÛÙÈÎfiÙËÙ·˜ (GPa)
205
215
380
205
114
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Table 3. Major Zirconia industrial applications
Valve and pump parts
Cable guides
Cutting tools
Friction and dispersal means
Oxygen Sensors
Fuel cells membranes
Thermal Barriers
Fiber optic accessories
ÎfiÎΈÓ, ˘ÎÓfiÙËÙ· Î·È ÔÛÔÛÙfi ÚÔƯ͈̂Ó57. ¶¿ÓÙˆ˜ Ë
‰˘ıÚ·˘ÛÙfiÙËÙ· ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP Â›Ó·È ˘„ËÏfiÙÂÚË
Û ۯ¤ÛË Ì ¿ÏÏ· ÎÂÚ·ÌÈο fiˆ˜ Ë ·ÏÔ˘Ì›Ó·.
3.4. EºAPMO°E™ ™TH BIOMHXANIA - A§§E™
EºAPMO°E™
H ˙ÈÚÎÔÓ›· ¯ÚËÛÈÌÔÔÈÂ›Ù·È ÛÙȘ ÂÚÈÛÛfiÙÂÚ˜ ÌÔÚʤ˜
Ù˘ ÛÙË ‚ÈÔÌ˯·Ó›·. MÈ· ȉȷ›ÙÂÚ· ÛËÌ·ÓÙÈ΋ ÂÊ·ÚÌÔÁ‹
Ù˘ ΢‚È΋˜ ˙ÈÚÎÔÓ›·˜ YSZ (Y-16%) Â›Ó·È ÛÙȘ ΢„¤Ï˜
η˘Û›ÌÔ˘. H ˙ÈÚÎÔÓ›· ¯ÚËÛÈÌÔÔÈÂ›Ù·È ˆ˜ ËÏÂÎÙÚÔχÙ˘
Î·È Ì¿ÏÈÛÙ· Ì ȉȷ›ÙÂÚ· ÏÂÙfi ¿¯Ô˜ Â›ÛÙÚˆÛ˘ ÂÈÙ˘Á¯¿ÓÂÙ·È ¯·ÌËÏ‹ ·ÓÙ›ÛÙ·ÛË, ËÏÂÎÙÚÈ΋ ‰È·ÚÚÔ‹ ηÈ
¯·ÌËÏfiÙÂÚË ıÂÚÌÔÎÚ·Û›· ÏÂÈÙÔ˘ÚÁ›·˜ Ù˘ ΢„¤Ï˘58.
ŸÌˆ˜, fiˆ˜ ÚԷӷʤÚıËÎÂ, Ë Î˘‚È΋ ˙ÈÚÎÔÓ›· ¤¯ÂÈ ¯·ÌËÏ‹ ‰˘ÛıÚ·˘ÛÙfiÙËÙ· Ú¿ÁÌ· Ô˘ ÌÔÚ› Ó· Ô‰ËÁ‹ÛÂÈ
Û ‰ËÌÈÔ˘ÚÁ›· ÚˆÁÌÒÓ Û ̷ÎÚfi¯ÚÔÓË ÏÂÈÙÔ˘ÚÁ›·.
°È· ÙÔ ÏfiÁÔ ·˘Ùfi ÚfiÛÊ·Ù· ÚÔÙ¿ıËÎÂ Ë ÚÔÛı‹ÎË ·ÏÔ˘Ì›Ó·˜ Û ËÏÂÎÙÚÔχÙ˜ ΢‚È΋˜ ˙ÈÚÎÔÓ›·˜ ÒÛÙ ӷ
‚ÂÏÙȈı› Ë ÛÎÏËÚfiÙËÙ· Î·È Ë ‰˘ıÚ·˘ÛÙfiÙËÙ· Kic ·ÏÏ¿
Û ÌÈÎÚfi ÔÛÔÛÙfi ηıÒ˜ Ë ÚÔÛı‹ÎË ·ÏÔ˘Ì›Ó·˜ ¤¯ÂÈ
·ÚÓËÙÈ΋ Â›ÙˆÛË ÛÙËÓ ËÏÂÎÙÚÈ΋ ·ÁˆÁÈÌfiÙËÙ·59.
MÈ· ¿ÏÏË ÂÊ·ÚÌÔÁ‹ ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ˙ÈÚÎÔÓ›·˜ Â›Ó·È ÛÙË
¯ÚˆÌ·ÙÔÁÚ·Ê›· ˘„ËÏ‹˜ ·fi‰ÔÛ˘ ‹ ›ÂÛ˘ (HPLC).
§fiÁˆ Ù˘ ˘„ËÏ‹˜ ȤÛˆ˜, Ë HPLC Â›Ó·È Ù·¯‡Ù·ÙË (·Ú¤¯ÂÈ ·ÔÙ¤ÏÂÛÌ· Û ÌÂÚÈο ÏÂÙ¿ Ù˘ ÒÚ·˜) Î·È ÂÂȉ‹
¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ÏÂÙfiÎÔÎη ˘ÏÈο ÚÔÛÚfiÊËÛ˘ (Ï›Á· Ìm) ·Ú¤¯ÂÈ ÌÂÁ¿ÏË ÈηÓfiÙËÙ· ‰È·¯ˆÚÈÛÌÔ‡. O ·ÚÈÔ˜ ÏfiÁÔ˜ Â›Ó·È Ë ÂÍ·ÈÚÂÙÈ΋ ¯ËÌÈ΋ Î·È ıÂÚÌÈ΋ ÛÙ·ıÂÚfiÙËÙ· Ù˘, Ë ÔÔ›· ·Ú·Ì¤ÓÂÈ ·ÎfiÌ· Î·È Û ıÂÚÌÔÎڷۛ˜ ¿Óˆ ÙˆÓ 300ÆC ÁÈ· ÌÂÁ¿ÏÔ ¯ÚÔÓÈÎfi ‰È¿ÛÙËÌ·60.
To ‰ÈÔÍ›‰ÈÔ ˘ÚÈÙ›Ô˘ (SiO2) ˘‹ÚÍ ·fi Ù· ÚÒÙ· ˘ÏÈο
Ô˘ ¯ÚËÛÈÌÔÔÈ‹ıËÎ·Ó ˆ˜ ‰ÈËÏÂÎÙÚÈο ˘ÏÈο ‡Ï˘ ÁÈ·
ÙËÓ Î·Ù·Û΢‹ ÔÏÔÎÏËÚˆÌ¤ÓˆÓ Î˘Îψ̿وÓ. K·ıÒ˜ fï˜ ¯ÚÂÈ¿ÛÙËΠӷ ÌÂȈı› ÛÙ·‰È·Î¿ ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ
Û˘Û΢ÒÓ, ÌÂÈÒıËΠ·ÓÙ›ÛÙÔȯ· ÙÔ Ì¤ÁÂıÔ˜ ÙˆÓ ÌÂÌ‚Ú·ÓÒÓ Î·È ÚÔÎÂÈ̤ÓÔ˘ Ó· ‰ËÌÈÔ˘ÚÁËı› ‰È·ÚÚÔ‹ Ú‡̷ÙÔ˜ ÚÔÙ¿ıËÎÂ Ë ¯Ú‹ÛË ˘ÏÈÎÒÓ Ì ÌÂÁ·Ï‡ÙÂÚË ‰ÈËÏÂÎÙÚÈ΋ ÛÙ·ıÂÚ¿.
H ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›· (YSZ) Â›Ó·È ¤Ó· ·fi Ù· ˘ÏÈο Ô˘ ÌÔÚÔ‡Ó Ó· ·Ú·Ì¤ÓÔ˘Ó ıÂÚÌÔ‰˘Ó·ÌÈο ÛÙ·ıÂÚ¿ Û Â·Ê‹ Ì ˘Ú›ÙÈÔ ·ÎfiÌ· Î·È Û 1000ÆC,
Î·È Û˘ÓÂÒ˜ ·ÚÎÂÙ¿ ˘ÔÛ¯fiÌÂÓÔ ‰ÈËÏÂÎÙÚÈÎfi ˘ÏÈÎfi ‡Ï˘ ÁÈ· Ó· ·ÓÙÈηٷÛÙ‹ÛÂÈ ÙÔ SiO261.
H ΢‚È΋ ˙ÈÚÎÔÓ›· ¯ÚËÛÈÌÔÔÈÂ›Ù·È Û ·ÈÛıËÙ‹Ú˜ Ô͢ÁfiÓÔ˘ ÔÈ ÔÔ›ÔÈ ¤¯Ô˘Ó ¤Ó· ÌÂÁ¿ÏÔ Ê¿ÛÌ· ‚ÈÔÌ˯·ÓÈÎÒÓ
ÂÊ·ÚÌÔÁÒÓ. T¤ÙÔÈÔÈ ·ÈÛıËÙ‹Ú˜ ¯ÚËÛÈÌÔÔÈÔ‡ÓÙ·È ÁÈ·
ÙÔÓ ¤ÏÂÁ¯Ô ÂÚÈÂÎÙÈÎfiÙËÙ·˜ Ô͢ÁfiÓÔ˘ Û η˘Û·¤ÚÈ· ‹
Hellenic Stomatological Review 57: 101-137, 2013
Most manufactured zirconia ceramics for dental clinical
use are those of partially stabilized tetragonal zirconia,
which, depending on the laboratory manufacturing
process are divided into two categories. The first one,
where milling and machining is performed during the socalled «green stage», the partially sintered form. In this
category, high performance systems are: CEREC 3 and in
lab DCS Precident, Procera, Lava, Cercon Smart
Ceramics, Everest, Denzir, DentaCad and Evolution D4D.
As a disadvantage is considered the fact that the
frameworks must be done larger by 20-25% in order to
counteract the contraction that occurs during the final
stage of sintering. Unlike, the cutting and milling in this
form of zirconia is faster and cutting tools that serve this
purpose suffer less wear66. In the second category the
milling and construction are completed in the fully sintered format after burning down and compression (Hot Isostatic Pressing or HiP) of zirconia. The main representatives of this technique are the systems DC-Zirkon (DCS
Dental AG), Everest-ZH (Kavo), Denzir (Cadesthetics
AB)67, 23. This technique is advantageous in that the final
versions of the frameworks do not undergo dimensional
changes. On the other hand cutting and processing is
extremely difficult and time consuming because of the
high hardness of the material66. Even today there is no
consensus among researchers regarding the choice of
method of manufacturing zirconia frameworks concerning which is less damaging to the final product, and that
is the reason that both the aforementioned techniques still
exist68. Table 4 contains the major CAD-CAM system for
zirconia materials processing.
ZIRCONIA CERAMICS APPLICATIONS IN DENTISTRY
Dental prosthetic restorations should serve the function
and patient comfort and maintain their integrity over time70.
The selection of appropriate materials therefore must be
driven by the success and survival of restorations. Zirconia
ceramics are used in a wide range of applications in
dentistry. Therefore together with metal-ceramic and other
systems add an alternative approach in reconstructions
where strength has to be combined with increased demands for aesthetics.
SINGLE TOOTH RESTORATIONS
The most frequently used individual dental restorations in
115
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Û ÙËÁ̤ӷ ̤ٷÏÏ·. ™ÙËÓ ·˘ÙÔÎÈÓËÙÔ‚ÈÔÌ˯·Ó›· ÂÊ·ÚÌÔÁ‹ Â›Ó·È ÁÓˆÛÙÔ› ˆ˜ ·ÈÛıËÙ‹Ú˜ Ͽ̉· (Ï)62.
™˘Ó‰˘¿˙ÔÓÙ·˜ ÙËÓ ˘„ËÏ‹ ·ÓÙÔ¯‹ Î·È ÙËÓ ‚ÂÏÙȈ̤ÓË ·ÁˆÁÈÌfiÙËÙ· ·fi ÂΛÓË Ù˘ Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘
˙ÈÚÎÔÓ›·˜ Ù· ÎÂÚ·ÌÈο Y-TZP Â›Ó·È ÂÍ·ÈÚÂÙÈο ÁÈ· ¯Ú‹ÛË
Û·Ó ËÏÂÎÙÚÔχÙ˜ Û ÂÊ·ÚÌÔÁ¤˜ fiˆ˜ ËÏÂÎÙÚÔ¯ËÌÈÎÔ›
·ÓÙȉڷÛÙ‹Ú˜, ·ÓÙϛ˜ Ô͢ÁfiÓÔ˘ Î·È Î˘„¤Ï˜ η˘Û›ÌÔ˘64. H ¯ËÌÈ΋ ÛÙ·ıÂÚfiÙËÙ·, ÙÔ ˘„ËÏfi ÛËÌÂ›Ô Ù‹Í˘, ÔÈ
ËÏÂÎÙÚÈΤ˜ Î·È ÔÙÈΤ˜ ȉÈfiÙËÙ¤˜ ÙÔ˘˜ Ù· ηıÈÛÙ¿ ȉ·ÓÈο
ÁÈ· ÂÍ·ÚÙ‹Ì·Ù· ˘„ËÏ‹˜ ·ÓÙ›ÛÙ·Û˘ ÛÙËÓ ÊıÔÚ¿ Î·È ÁÈ·
Û‡Ó‰ÂÛË ÔÙÈÎÒÓ ÈÓÒÓ. Y¿Ú¯ÂÈ Ì›· ÌÂÁ¿ÏË ÔÈÎÈÏ›· ÂÊ·ÚÌÔÁÒÓ Ù˘ ˙ÈÚÎÔÓ›·˜ Û ‰È¿ÊÔÚ˜ ÌÔÚʤ˜ Ù˘, ÔÈ Ôԛ˜ Û˘ÓÔ„›˙ÔÓÙ·È ÛÙÔÓ ¶›Ó·Î· 39.
Table 4A. Current zirconia “green stage”
CAD-CAM systems
System
Material
synthesis
Cercon
PSZ
DC-Zirkon
PSZ
IPS e.max ZirCAD
PSZ
LAVA Frame
PSZ
ProceraAllCeram
alumina
KEPAMIKA ZIPKONIA™ ™THN O¢ONTIATPIKH
ProceraAllZirkon
PSZ
¶·Ú¿ ÙÔ ÁÂÁÔÓfi˜ fiÙÈ ˘¿Ú¯Ô˘Ó ÔÏÏÔ› Ù‡ÔÈ ÎÂÚ·ÌÈÎÒÓ
ÂÊ·ÚÌÔÁÒÓ ÛÙË ‚ÈÔÌ˯·Ó›· Ô˘ ÂÚȤ¯Ô˘Ó ˙ÈÚÎÔÓ›·65,
ÙÚÂȘ Â›Ó·È Û‹ÌÂÚ· ‰È·ı¤ÛÈÌÔÈ ÁÈ· ¯Ú‹ÛË ÛÙËÓ O‰ÔÓÙÈ·ÙÚÈ΋. A˘ÙÔ› Â›Ó·È Ë Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ÙÂÙÚ·ÁˆÓÈ΋ ˙ÈÚÎÔÓ›·, Ë ÌÂÚÈÎÒ˜ ÛÙ·ıÂÚÔÔÈË̤ÓË ˙ÈÚÎÔÓ›· Î·È Ë
·ÏÔ˘Ì›Ó· ÂÓÈÛ¯˘Ì¤ÓË Ì ˙ÈÚÎÔÓ›·.
T· ÂÚÈÛÛfiÙÂÚ· ηٷÛ΢·˙fiÌÂÓ· ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜
Û ÎÏÈÓÈ΋ ¯Ú‹ÛË Â›Ó·È ·˘Ù¿ Ù˘ Ï‹Úˆ˜ ÛÙ·ıÂÚÔÔÈË̤Ó˘ ÙÂÙÚ·ÁˆÓÈ΋˜ ˙ÈÚÎÔÓ›·˜, Ù· ÔÔ›· ·Ó¿ÏÔÁ· Ì ÙËÓ
ÂÚÁ·ÛÙËÚȷ΋ ‰È·‰Èηۛ· ηٷÛ΢‹˜ ÙÔ˘˜ ‰È·ÎÚ›ÓÔÓÙ·È Û ‰‡Ô ηÙËÁÔڛ˜. H ÚÒÙË ÂÎÙÂÏ› ÙÔÓ ÂÎÙÚÔ¯ÈÛÌfi Ù˘ ÚÒÙ˘ ‡Ï˘ ηٿ ÙÔ ÏÂÁfiÌÂÓÔ «green stage»,
‰ËÏ·‰‹ ÛÙË ÌÂÚÈÎÒ˜ Û˘ÓÙËÁ̤ÓË ÌÔÚÊ‹ Ù˘. ™Â ·˘Ù‹ ÙË
ηÙËÁÔÚ›· ÂÚÈÏ·Ì‚¿ÓÔÓÙ·È ÔÈΛϷ ·ÍÈfiÏÔÁ· Û˘ÛÙ‹Ì·Ù· ˘„ËÏ‹˜ ·fi‰ÔÛ˘: CEREC 3 Î·È in lab DCS Precident, Procera, Lava, Cercon Smart Ceramics, Everest,
Denzir, DentaCad Î·È Evolution D4D. MÂÈÔÓ¤ÎÙËÌ· ıˆÚÂ›Ù·È ÙÔ ÁÂÁÔÓfi˜ fiÙÈ ÔÈ ÛÎÂÏÂÙÔ› Ô˘ ηٷÛ΢¿˙ÔÓÙ·È
Ì ·˘Ù‹Ó ÙËÓ Ù¯ÓÈ΋ Â›Ó·È ÌÂÁÂı˘Ì¤ÓÔÈ Î·Ù¿ 20-25% ÁÈ·
Ó· ·ÓÙÈÚÚÔ‹ÛÔ˘Ó ÙË Û˘ÛÙÔÏ‹ Ô˘ Â¤Ú¯ÂÙ·È Î·Ù¿ ÙÔ
ÙÂÏÈÎfi ÛÙ¿‰ÈÔ Ù˘ ˘ÚÔÛ˘Ûۈ̿وÛ˘. AÓÙ›ıÂÙ· Ô ÂÎÙÚÔ¯ÈÛÌfi˜ Û ·˘Ù‹ ÙË ÌÔÚÊ‹ Ù˘ ˙ÈÚÎÔÓ›·˜ Â›Ó·È Ù·¯‡ÙÂÚÔ˜ Î·È Ù· ÎÔÙÈο ÂÚÁ·Ï›· Ô˘ Â͢ËÚÂÙÔ‡Ó ·˘Ùfi
ÙÔ ÛÎÔfi ˘Ê›ÛÙ·ÓÙ·È ÌÈÎÚfiÙÂÚË ÊıÔÚ¿66. H ‰Â‡ÙÂÚË ·ÊÔÚ¿ ÙÔÓ ÂÎÙÚÔ¯ÈÛÌfi Î·È Î·Ù·Û΢‹ Ù˘ ÛÙËÓ Ï‹Úˆ˜
Û˘ÓÙËÁ̤ÓË ÌÔÚÊ‹ Ù˘ fiÙ·Ó ¤¯ÂÈ ÚÔËÁËı› Ë ¤„ËÛË
οو ·fi Û˘Ì›ÂÛË (Hot Isostatic Pressing ‹ HiP) Ù˘
˙ÈÚÎÔÓ›·˜. K‡ÚÈÔÈ ÂÎÚfiÛˆÔÈ ·˘Ù‹˜ Ù˘ Ù¯ÓÈ΋˜ ›ӷÈ
Ù· Û˘ÛÙ‹Ì·Ù· DC-Zirkon (DCS Dental AG), Everest-ZH
(Kavo), Denzir (Cadesthetics AB)22. H Û˘ÁÎÂÎÚÈ̤ÓË Ù¯ÓÈ΋ ÏÂÔÓÂÎÙ› ÛÙÔ ÁÂÁÔÓfi˜ fiÙÈ ÔÈ ÙÂÏÈΤ˜ ÌÔÚʤ˜ ÙˆÓ
VitaYZ
PSZ
Table 4B. Current fully-sintered zirconia
CAD-Cam systems
System
Material synthesis
Denzir
PSZ
Digizon
PSZ
Everst ZH blanks
PSZ
clinical practice are the total coverage crowns, mainly
because of their excellent clinical reliability over other
more conservative restorations (inlays,onlays etc)71. The
removal of tooth structure when preparing the tooth to
receive a dental prostheses must be as conservative as
possible and any construction should be made at the
lowest possible volume, without violating the biological
principles and the principles of mechanical strength of the
structure4.
The instructions, however, for making teeth that will receive crowns with zirconia core differ slightly from those of
classical metal-ceramic crowns72. The minimum height of
clinical crown of the tooth preparation should be at least
4mm73. Particularly, incisal or occlusal reduction of the
tooth abutment should be 1.5 to 2mm and 1.2 to 1.5 mm
in the axial walls. In cervical areas finish line should be
slightly subgingivally and its width should be 0,8-1,2 mm74,
¶›Ó·Î·˜ 3. ∫‡ÚȘ ÂÊ·ÚÌÔÁ¤˜ Î·È ¯Ú‹ÛÂȘ ∑ÈÚÎÔÓ›· ÛÙË ‚ÈÔÌ˯·Ó›·
TÌ‹Ì·Ù· ‚·Ï‚›‰ˆÓ Î·È ·ÓÙÏÈÒÓ
O‰ËÁÔ› ηψ‰›ˆÓ
KÔÙÈο ÂÚÁ·Ï›·
M¤Û· ÙÚÈ‚‹˜ Î·È ‰È·ÛÔÚ¿˜
AÈÛıËÙ‹Ú˜ O͢ÁfiÓÔ˘
MÂÌ‚Ú¿Ó˜ ΢„ÂÏÒÓ Î·˘Û›ÌÔ˘
£ÂÚÌÈÎÔ› ÌÔÓˆÙ¤˜
EÍ·ÚÙ‹Ì·Ù· ÔÙÈÎÒÓ ÈÓÒÓ
116
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÛÎÂÏÂÙÒÓ ‰ÂÓ ˘Ê›ÛÙ·ÓÙ·È ÌÂÙ·‚ÔϤ˜ ‰È·ÛÙ¿ÛˆÓ, Ë ·ÔÎÔ‹ Î·È ÂÂÍÂÚÁ·Û›· fï˜ Â›Ó·È ÂÍ·ÈÚÂÙÈο ‰‡ÛÎÔÏË
Î·È ¯ÚÔÓÔ‚fiÚ· ÏfiÁˆ Ù˘ ˘„ËÏ‹˜ ÛÎÏËÚfiÙËÙ·˜ ÙÔ˘ ˘ÏÈÎÔ‡66. EÍ·ÎÔÏÔ˘ı› ·ÎfiÌ· Î·È Û‹ÌÂÚ· Ó· ÌËÓ ˘¿Ú¯ÂÈ ÔÌÔʈӛ· ÌÂٷ͇ ÂÚ¢ÓËÙÒÓ Û fiÙÈ ·ÊÔÚ¿ ÙËÓ ÂÈÏÔÁ‹
ÌÂıfi‰Ô˘ ηٷÛ΢‹˜ ÛÎÂÏÂÙÒÓ ˙ÈÚÎÔÓ›·˜ Ë ÔÔ›· ı· Â›Ó·È ÏÈÁfiÙÂÚÔ Î·Ù·ÛÙÚÂÙÈ΋ ÁÈ· ÙÔ ÙÂÏÈÎfi ÚÔ˚fiÓ, ÁÈ·˘Ùfi
ÂÍ·ÎÔÏÔ˘ıÔ‡Ó Ó· Û˘Ó˘¿Ú¯Ô˘Ó Î·È ÔÈ ‰‡Ô ÚÔ·Ó·ÊÂÚı›Û˜ Ù¯ÓÈΤ˜68. ™ÙÔÓ ¶›Ó·Î· 4 ÂÚÈÏ·Ì‚¿ÓÔÓÙ·È Ù· ÛËÌ·ÓÙÈÎfiÙÂÚ· Û˘ÛÙ‹Ì·Ù· CAD-CAM ÁÈ· ÂÂÍÂÚÁ·Û›· ˘ÏÈÎÒÓ ˙ÈÚÎÔÓ›·˜.
¶›Ó·Î·˜ 4A. ™‡Á¯ÚÔÓ· Û˘ÛÙ‹Ì·Ù·
CAD-CAM “green stage”
™‡ÛÙËÌ·
™‡ÓıÂÛË
˘ÏÈÎÔ‡
Cercon
PSZ
DC-Zirkon
PSZ
IPS e.max ZirCAD
PSZ
LAVA Frame
PSZ
ProceraAllCeram
alumina
ProceraAllZirkon
PSZ
VitaYZ
PSZ
75
. The inclination of the axial walls should be 5-6Æ73. Some
clinicians suggest 2,0 to 2,5 mm incisal/occlusal
reduction for better aesthetics and anatomical shape76.
On the other hand, there are of course minimally invasive
preparation techniques such as edge knife (knife-edge)
which seem to be an alternative technique in anterior
teeth, without reducing the strength of the structure77.
Unlike the feather-edge preparations, deep retentive
grooves and complex occlusal morphology of the
abutment should be avoided because it is extremely
difficult to reproduce78, 79. The specifications for the
laboratory part of the construction for the core thickness is
0,5 mm for posterior teeth and to 0,3 mm for the anterior77
(Fig. 5). A different approach to design the framework for
zirconia crowns is the technique of a zirconia collar80. The
Ce-TZP/Al is the hardest ceramic material currently
available for prosthetic restorations. The thickness of the
core Ce-TPZ/Al frameworks can be reduced to 0,3 mm,
compared to 0,5 mm of Y-TZP.
¶›Ó·Î·˜ 4B. ™‡Á¯ÚÔÓ· Û˘ÛÙ‹Ì·Ù·
Cad-Cam “Ï‹ÚÔ˘˜ Û˘Ûۈ̿وÛ˘”
™‡ÛÙËÌ·
™‡ÓıÂÛË ˘ÏÈÎÔ‡
Denzir
PSZ
Digizon
PSZ
Everst ZH blanks
PSZ
EºAPMO°E™ KEPAMIKøN ZIPKONIA™ ™THN O¢ONTIATPIKH ø™ E¶ANOP£øTIKøN Y§IKøN
OÈ Ô‰ÔÓÙÈΤ˜ ÚÔÛıÂÙÈΤ˜ ·ÔηٷÛÙ¿ÛÂȘ Ú¤ÂÈ Ó· Â͢ËÚÂÙÔ‡Ó ÙËÓ ÏÂÈÙÔ˘ÚÁ›·, ÙËÓ ¿ÓÂÛË ÙÔ˘ ·ÛıÂÓÔ‡˜ ηÈ
ÙËÓ ‰È·Ù‹ÚËÛË Ù˘ ·ÎÂÚ·ÈfiÙËÙ¿˜ ÙÔ˘˜ Û ‚¿ıÔ˜ ¯ÚfiÓÔ˘70. H ÂÈÏÔÁ‹ ÏÔÈfiÓ ÙˆÓ Î·Ù¿ÏÏËÏˆÓ ˘ÏÈÎÒÓ Ú¤ÂÈ
Ó· Á›ÓÂÙ·È Ì ÁÓÒÌÔÓ· ÙËÓ ÂÈÙ˘¯›· Ù˘ ·ÔηٿÛÙ·Û˘.
T· ÎÂÚ·ÌÈο ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ·ÍÈÔÔÈËı› Û ÌÈ· ·ÚÎÂÙ¿
ÌÂÁ¿ÏË Áο̷ ÂÊ·ÚÌÔÁÒÓ ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋. ™˘ÓÂÒ˜
Ì·˙› Ì ٷ ̤ٷÏÏ· Î·È ¿ÏÏ· ÔÏÔÎÂÚ·ÌÈο Û˘ÛÙ‹Ì·Ù·
ÚÔÛı¤ÙÔ˘Ó ÌÈ· ÂÓ·ÏÏ·ÎÙÈ΋ ÚÔÛ¤ÁÁÈÛË Û ηٷÛ΢¤˜ fiÔ˘ Ë ·ÓÙÔ¯‹ Û˘Ó‰˘¿˙ÂÙ·È Ì ·˘ÍË̤Ó˜ ··ÈÙ‹ÛÂȘ
ÁÈ· ·ÈÛıËÙÈ΋.
Hellenic Stomatological Review 57: 101-137, 2013
Fig. 5: Zirconia crown. Visible are the extended dimensions of
zirconia core
After three years of clinical studies81 zirconia crowns seem
to have satisfactory levels of success, to the point that the
zirconia core is considered as a reliable alternative material to the metal framework82. To reduce the rate of ceramic chipping, a ceramic veneering material with suitable
thermal expansion coefficient compatible with that of
zirconia was tested and the three-year follow-up showed
excellent behavior83. Also, after two years follow-up it was
found that the use of core material reinforced with alumina
zirconia by 25% (In Ceram Zirconia-VITA) is equally
reliable for the manufacture of posterior teeth crowns with
Cercon Zirconia84. Similar encouraging results for the InCeram Zirconia have been published in a three year study85. However, for a more accurate assessment of the
clinical behavior and complications of the use of allceramic crowns with zirconia core, a significant number of
at least five-year studies86 should be completed and be
able to support the use of zirconia ceramics as reliable
alternative to conventional metal-prostheses85.
117
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
MONHPEI™ O¢ONTIKE™ A¶OKATA™TA™EI™
TÔ ÌÂÁ·Ï‡ÙÂÚÔ fiÁÎÔ ÌÂÌÔÓˆÌ¤ÓˆÓ ·ÔηٷÛÙ¿ÛˆÓ
ÛÙËÓ ÎÏÈÓÈ΋ Ú¿ÍË ·ÔÙÂÏÔ‡Ó ÔÈ ÛÙÂÊ¿Ó˜ ÔÏÈ΋˜ Î¿Ï˘„˘ ÂÍ·ÈÙ›·˜ ΢ڛˆ˜ Ù˘ ÂÍ·ÈÚÂÙÈ΋˜ ÎÏÈÓÈ΋˜ ·ÍÈÔÈÛÙ›·˜ ÙÔ˘˜ Û ۯ¤ÛË Ì ¿ÏϘ ÂÚÈÛÛfiÙÂÚÔ Û˘ÓÙËÚËÙÈΤ˜ ÌÔÓ‹ÚÂȘ ·ÔηٷÛÙ¿ÛÂȘ71. H ·Ê·›ÚÂÛË ÙˆÓ Ô‰ÔÓÙÈÎÒÓ ÈÛÙÒÓ Î·Ù¿ ÙËÓ ·Ú·Û΢‹ ÙˆÓ ‰ÔÓÙÈÒÓ ÁÈ· ÙËÓ ˘Ô‰Ô¯‹ ÚÔÛıÂÙÈÎÒÓ ÂÚÁ·ÛÈÒÓ Ú¤ÂÈ Ó· ‚Ú›ÛÎÂÙ·È Ì¤Û·
ÛÙ· Ï·›ÛÈ· ÙˆÓ ÚԉȷÁÚ·ÊÒÓ Î¿ı ηٷÛ΢‹˜, ÒÛÙÂ
Ó· Á›ÓÂÙ·È Î·Ù¿ ÙÔÓ ÂÏ¿¯ÈÛÙÔ ‰˘Ó·Ùfi fiÁÎÔ, ¯ˆÚ›˜ Ó· ·Ú·‚È¿˙ÔÓÙ·È ÔÈ ‚ÈÔÏÔÁÈΤ˜ ·Ú¯¤˜ Ù˘ ÂÊ·ÚÌÔÁ‹˜ Î·È ÔÈ
Ì˯·ÓÈΤ˜ ·Ú¯¤˜ Ù˘ ·ÓÙÔ¯‹˜ Ù˘ ηٷÛ΢‹˜4.
OÈ Ô‰ËÁ›Â˜ ¿ÓÙˆ˜ ÁÈ· ÙËÓ ·Ú·Û΢‹ ‰ÔÓÙÈÒÓ Ô˘ ı· ˘ԉ¯ıÔ‡Ó ÛÙÂÊ¿ÓË Ì ˘Ú‹Ó· ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ÌÈÎÚ¤˜
‰È·ÊÔÚ¤˜ ·fi ·˘Ù¤˜ ÙˆÓ ÎÏ·ÛÈÎÒÓ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈÎÒÓ
ÛÙÂÊ·ÓÒÓ72. TÔ ÂÏ¿¯ÈÛÙÔ ‡„Ô˜ ÎÏÈÓÈ΋˜ ̇Ï˘ ÙÔ˘ ˘fi
·Ú·Û΢‹ ‰ÔÓÙÈÔ‡ Ú¤ÂÈ Ó· Â›Ó·È 4mm73. ¶ÈÔ Û˘ÁÎÂÎÚÈ̤ӷ ¯ÚÂÈ¿˙ÂÙ·È 1,5 ¤ˆ˜ 2mm ÎÔÙÈ΋ ‹ Ì·ÛËÙÈ΋ Ù·›ӈÛË ÙÔ˘ ÛÙËÚ›ÁÌ·ÙÔ˜ Î·È 1,2 ¤ˆ˜ 1,5mm ·Ê·›ÚÂÛË ÛÙ·
·ÍÔÓÈο ÙÔȯÒÌ·Ù·. ™ÙȘ ·˘¯ÂÓÈΤ˜ ·ÔÏ‹ÍÂȘ Ë ÔÚÈÔı¤ÙËÛË Ú¤ÂÈ Ó· Á›ÓÂÙ·È ÂÏ·ÊÚÒ˜ ÂÓ‰ÔÛ¯ÈÛÌÈο Î·È ÙÔ Â‡ÚÔ˜ ÙÔÍÔÂȉԇ˜ ·fiÏË͢ ÛÙ· ·˘¯ÂÓÈο fiÚÈ· 0,8 ¤ˆ˜
1,2mm73, 74. H ÎÏ›ÛË ÙˆÓ ·ÍÔÓÈÎÒÓ ÙÔȯˆÌ¿ÙˆÓ Ú¤ÂÈ Ó·
Â›Ó·È 5-6Æ73. OÚÈṲ̂ÓÔÈ ÎÏÈÓÈÎÔ› Ô‰ÔÓÙ›·ÙÚÔÈ Û˘ÓÈÛÙÔ‡Ó 2,0
¤ˆ˜ 2,5mm ÎÔÙÈ΋/Ì·ÛËÙÈ΋ Ù·›ӈÛË ÁÈ· ηχÙÂÚË ÔÙÈ΋ ·fi‰ÔÛË Î·È ·Ó·ÙÔÌÈ΋ ÌÔÚÊ‹76. Afi ÙËÓ ¿ÏÏË
ÏÂ˘Ú¿ ˘¿Ú¯Ô˘Ó ‚¤‚·È· Î·È ÔÈ ÂÏ¿¯ÈÛÙ· ÂÂÌ‚·ÙÈΤ˜
Ù¯ÓÈΤ˜ ·Ú·Û΢‹˜ fiˆ˜ ·˘Ù‹˜ ÙÔ˘ ¿ÎÚÔ˘ Ì·¯·›Ú·˜
(knife-edge) Ô˘ Ê·›ÓÂÙ·È Ó· ·ÔÙÂÏÔ‡Ó ÂÓ·ÏÏ·ÎÙÈ΋ Ù¯ÓÈ΋ Û ÚfiÛıÈ· ‰fiÓÙÈ·, ¯ˆÚ›˜ Ó· ÌÂÈÒÓÂÙ·È Ë ·ÓÙÔ¯‹
Ù˘ ηٷÛ΢‹˜77. AÓÙ›ıÂÙ· Ù· fiÚÈ· ¿ÎÚÔ˘ ÊÙÂÚÔ‡
(feather-edge), ÔÈ ‚·ıȤ˜ Û˘ÁÎÚ·ÙËÙÈΤ˜ ·‡Ï·Î˜ Î·È Ë
Û‡ÓıÂÙË Ì·ÛËÙÈ΋ ÌÔÚÊÔÏÔÁ›· ÙÔ˘ ÎÔÏÔ‚ÒÌ·ÙÔ˜ ı·
Ú¤ÂÈ Ó· ·ÔʇÁÔÓÙ·È, ‰ÈfiÙÈ Â›Ó·È ÂÍ·ÈÚÂÙÈο ‰‡ÛÎÔÏÔ
Ó· ·Ó··Ú·¯ıÔ‡Ó78, 79. OÈ ÚԉȷÁڷʤ˜ Ô˘ ·ÊÔÚÔ‡Ó
ÛÙÔ ÂÚÁ·ÛÙËÚÈ·Îfi ̤ÚÔ˜ Ù˘ ηٷÛ΢‹˜ ÁÈ· ÙÔ ¿¯Ô˜
ÙÔ˘ ˘Ú‹Ó· Â›Ó·È 0,5mm ÁÈ· Ù· Ô›ÛıÈ· ‰fiÓÙÈ· Î·È ¤ˆ˜
0,3mm ÁÈ· Ù· ÚfiÛıÈ·77 (EÈÎ. 5). M›· ‰È·ÊÔÚÂÙÈ΋ Û¯Â-
EÈÎ. 5: OÏÔÎÏËڈ̤ÓË ÛÙÂÊ¿ÓË ˙ÈÚÎÔÓ›·˜ Ì ۷Ê›˜ ÙȘ ‰È·ÛÙ¿ÛÂȘ ÙÔ˘ ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜
118
The use of all-ceramic crowns as abutments for removable prostheses rarely appears in the dental literature. The
design of these crowns should provide retentive undercuts and slots87. Zirconia crowns have been used in removable prosthodontics as crowns for the support of partial
dentures87 or as primary crowns in dual crown systems
(telescopic substructures)88.
One potential disadvantage arises from the fact that with
this type of restorations, zirconia is in some parts
completely exposed to the oral environment, without the
necessary ceramic veneer coverage. This constitutes a
danger to the integrity of the restorations over time, considering the role of water in aging of zirconia89. The manufacturers, however, recommend polishing of the exposed
zirconia ceramics with extremely fine abrasives87.
ALL CERAMIC FIXED PARTIAL DENTURESSPECIFICATIONS
A fixed partial denture (FPD) prosthesis consists of
abutments and pontics, which are connected together by
connectors. The connector is a relatively thin, vulnerable
point of the prosthetic construction90. During the loading
of fixed partial dentures, connectors reach critical stresses before these stresses reach the thicker parts of the
prostheses. For this reason, the connectors are manufactured in appropriate dimensions to withstand occlusal
loads4. Especially for zirconia restorations connectors
design seems to be crucial for the flexural strength and
reliability of zirconia fixed partial dentures66. Increasing the
dimensions of the connector reduces stress concentration at critical points of the structure impacting positively
on the strength of ceramic construction90. It is suggested
the height of 4mm is sufficient for posterior teeth FPD’s
and even greater if it is placed in areas of increased loads
(bruxism or increased vertical overlap). A similar design is
not always possible due to biological constraints (clinical
crown height, interdental spaces). Some researchers
suggest connector dimensions 3x3 mm and 0.5 mm core
thickness with positive laboratory results91, while others
increase dimensions up to 4x4 mm92. However, to avoid
connector fractures (Fig. 6) and therefore zirconia core
FPD’s clinical failures there is need for proper planning
and proportional connector geometry to resist the loads
sustained during function (Fig. 7). Of particular importance are the minimum diameter of the connector (dmin) and
the radius of curvature in cross section. Clinically the
design should take into account the material properties,
the anatomical constraints, and the possibility of oral
hygiene and aesthetic expectations66.
Proper design of connector offers longevity to the
prosthetic restorations. Increasing the connector height
from 3 to 4mm significantly reduced the stress concentration93 (Fig. 8). According to Studart94 3-unit FPD’s should
have a connector cross-sectional area of 5,7 mm2, 4-unit
12,6 mm2 and 5-unit 18,8 mm2. Forces that have a special
role in connector fractures are the tensile forces
developed during function of the FPD during chewing.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
‰È·ÛÙÈ΋ ÚÔÛ¤ÁÁÈÛË ÙÔ˘ ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜ ÁÈ· ÌÔÓ‹ÚÂȘ ÛÙÂÊ¿Ó˜ Â›Ó·È Ë Ù¯ÓÈ΋ Ù˘ ·Ú·ÌÔÓ‹˜ ÂÓfi˜ ÎÔÏÏ¿ÚÔ˘ ˙ÈÚÎÔÓ›·˜80. TÔ ÎÂÚ·ÌÈÎfi Ce-TZP/Al Â›Ó·È ÙÔ ÛÎÏËÚfiÙÂÚÔ ÎÂÚ·ÌÈÎfi ˘ÏÈÎfi Û‹ÌÂÚ· ‰È·ı¤ÛÈÌÔ ÁÈ· ÚÔÛıÂÙÈΤ˜ ·ÔηٷÛÙ¿ÛÂȘ. TÔ ¿¯Ô˜ ÙÔ˘ ˘Ú‹Ó· ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Ce-TZP/Al ÛÎÂÏÂÙÒÓ ÌÔÚ› Ó· ÌÂȈı› ÛÙÔ 0,3 mm,
Û ۇÁÎÚÈÛË Ì 0,5 mm ÙˆÓ ÎÂÚ·ÌÈÎÒÓ Y-TZP.
MÂÙ¿ ·fi ÙÚÈÂÙ›˜ ÎÏÈÓÈΤ˜ ÌÂϤÙ˜81 ÔÈ ÛÙÂÊ¿Ó˜ Ê·›ÓÂÙ·È Ó· ·ÚÔ˘ÛÈ¿˙Ô˘Ó ÈηÓÔÔÈËÙÈο ÔÛÔÛÙ¿ ÂÈÙ˘¯›·˜,
Û ÛËÌÂ›Ô Ô˘ Ó· ıˆÚÂ›Ù·È Ë ˙ÈÚÎÔÓ›· ˆ˜ ÂÓ·ÏÏ·ÎÙÈ΋
χÛË ÛÙÔ ÌÂÙ·ÏÏÈÎfi ÛÎÂÏÂÙfi82. °È· ÙË Ì›ˆÛË ÙÔ˘ ÔÛÔÛÙÔ‡ Ù˘ ·ÔÊÏÔ›ˆÛ˘ ‰ÔÎÈÌ¿ÛÙËΠ¤Ó· ÂÈÎ·Ï˘ÙÈÎfi
ÎÂÚ·ÌÈÎfi Ì ÙÔÓ Î·Ù¿ÏÏËÏÔ Û˘ÓÙÂÏÂÛÙ‹ ıÂÚÌÈ΋˜ ‰È·ÛÙÔÏ‹˜ Û˘Ì‚·Ùfi Ì ÂΛÓÔÓ Ù˘ ˙ÈÚÎÔÓ›·˜ Î·È Û ÙÚÈÂÙ‹
·Ú·ÎÔÏÔ‡ıËÛË ¤‰ÂÈÍ ÂÍ·ÈÚÂÙÈ΋ Û˘ÌÂÚÈÊÔÚ¿83. E›Û˘ Û ‰ÈÂÙ‹ ·Ú·ÎÔÏÔ‡ıËÛË ‰È·ÈÛÙÒıËΠfiÙÈ Ë ¯Ú‹ÛË
˘ÏÈÎÔ‡ ˘Ú‹Ó· ·ÏÔ˘Ì›Ó·˜ ÂÓÈÛ¯˘Ì¤Ó˘ Ì ˙ÈÚÎÔÓ›· ηٿ
25% (In Ceram Zirconia-VITA, Germany) Â›Ó·È ÂÍ›ÛÔ˘ ·ÍÈfiÈÛÙË ÁÈ· ÙËÓ Î·Ù·Û΢‹ ÛÙÂÊ·ÓÒÓ ÔÈÛı›ˆÓ ‰ÔÓÙÈÒÓ
Ì ÙËÓ Cercon Zirconia84. ¶·ÚfiÌÔÈ· ÂÓı·ÚÚ˘ÓÙÈο ·ÔÙÂϤÛÌ·Ù· ÁÈ· ÙÔ In-Ceram Zirconia ¤¯Ô˘Ó ‰ËÌÔÛÈ¢ı› ηÈ
Û ÙÚÈÂÙ‹ ÌÂϤÙË85. ¶¿ÓÙˆ˜ ÁÈ· Ó· ˘¿ÚÍÂÈ ÔÚıfiÙÂÚË ·ÍÈÔÏfiÁËÛË Ù˘ ÎÏÈÓÈ΋˜ Û˘ÌÂÚÈÊÔÚ¿˜ Î·È ÙˆÓ ÂÈÏÔÎÒÓ ·fi ÙË ¯Ú‹ÛË ÔÏÔÎÂÚ·ÌÈÎÒÓ ÛÙÂÊ·ÓÒÓ Ì ˘Ú‹Ó·
˙ÈÚÎÔÓ›·˜ ı· Ú¤ÂÈ Ó· ÔÏÔÎÏËÚˆı› ÛËÌ·ÓÙÈÎfi˜ ·ÚÈıÌfi˜ ÂÓÙ·ÂÙÒÓ ÌÂÏÂÙÒÓ86 Î·È Ó· ÌÔÚ¤ÛÂÈ Ó· ÛÙËÚȯı› Ë
¿Ô„Ë fiÙÈ ·ÔÙÂÏÔ‡Ó ·ÍÈfiÈÛÙË ÂÓ·ÏÏ·ÎÙÈ΋ χÛË ÛÙȘ
Û˘Ì‚·ÙÈΤ˜ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈΤ˜ ÚÔÛıÂÙÈΤ˜ ÂÚÁ·Û›Â˜85.
H ¯Ú‹ÛË ÙˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ÛÙÂÊ·ÓÒÓ ÁÈ· ÛÙËÚ›ÁÌ·Ù· ÎÈÓËÙÒÓ ÚÔÛı¤ÛÂˆÓ Û¿ÓÈ· ÂÌÊ·Ó›˙ÂÙ·È ÛÙËÓ Ô‰ÔÓÙÈ·ÙÚÈ΋ ‚È‚ÏÈÔÁÚ·Ê›·. O ۯ‰ȷÛÌfi˜ ·˘ÙÒÓ ÙˆÓ ÛÙÂÊ·ÓÒÓ
Ú¤ÂÈ Ó· ·Ú¤¯ÂÈ ÙȘ ·Ó¿ÏÔÁ˜ Û˘ÁÎÚ·ÙËÙÈΤ˜ ˘ÔÛηʤ˜, Ô‰ËÁ¿ Â›‰· Î·È ˘Ô‰Ô¯¤˜ ÂÊ·Ù‹ÚˆÓ87. Œ¯ÂÈ ·Ó·ÊÂÚı› Ë ¯Ú‹ÛË ÛÙÂÊ·ÓÒÓ ˙ÈÚÎÔÓ›·˜ ÛÙËÓ ÎÈÓËÙ‹ ÚÔÛıÂÙÈ΋ ηıÒ˜ ¤¯Ô˘Ó ¯ÚËÛÈÌÔÔÈËı› ˆ˜ ÛÙÂÊ¿Ó˜ ‰ÔÓÙÈÒÓ ÛÙËÚÈÁÌ¿ÙˆÓ ÌÂÚÈÎÒÓ Ô‰ÔÓÙÔÛÙÔȯÈÒÓ87 ‹ ˆ˜ ÚˆÙÔÁÂÓ›˜ ÛÙÂÊ¿Ó˜ ÛÂ Û˘ÛÙ‹Ì·Ù· ‰ÈÏÒÓ ÛÙÂÊ·ÓÒÓ (ÙËÏÂÛÎÔÈΤ˜ ÎÈÓËÙ¤˜ ηٷÛ΢¤˜)88.
ŒÓ· Èı·Ófi ÌÂÈÔÓ¤ÎÙËÌ· ÚÔ·ÙÂÈ ·fi ÙÔ ÁÂÁÔÓfi˜ fiÙÈ
Û ·˘ÙÔ‡ ÙÔ˘ Ù‡Ô˘ ÙȘ ÛÙÂÊ¿Ó˜, ÙÔ ˘ÏÈÎfi Ù˘ ˙ÈÚÎÔÓ›·˜
ÙÔ˘ ˘Ú‹Ó· Â›Ó·È Û ÔÚÈṲ̂ӷ ÛËÌ›· ÂÓÙÂÏÒ˜ ÂÎÙÂıÂÈ̤ÓÔ ÛÙÔ ÛÙÔÌ·ÙÈÎfi ÂÚÈ‚¿ÏÏÔÓ ¯ˆÚ›˜ ÎÂÚ·ÌÈ΋ Î¿Ï˘„Ë. H
¤ÎıÂÛË ·˘Ù‹ ·ÔÙÂÏ› ΛӉ˘ÓÔ ÁÈ· ÙËÓ ·ÎÂÚ·ÈfiÙËÙ· ÙˆÓ
·ÔηٷÛÙ¿ÛÂˆÓ Û ‚¿ıÔ˜ ¯ÚfiÓÔ˘ ηıÒ˜ Â›Ó·È ·ԉ‰ÂÈÁ̤ÓË Ë Û˘Ì‚ÔÏ‹ Ù˘ ·ÚÔ˘Û›·˜ ÓÂÚÔ‡ ÛÙËÓ ÂÈÙ¿¯˘ÓÛË ÙÔ˘ Ê·ÈÓÔ̤ÓÔ˘ Ù˘ Á‹Ú·ÓÛ˘ Ù˘ ˙ÈÚÎÔÓ›·˜89. OÈ
ηٷÛ΢·ÛÙ¤˜ ¿ÓÙˆ˜ Û˘ÓÈÛÙÔ‡Ó ÙË Ï›·ÓÛË Ù˘ ÂÎÙÂıÂÈ̤Ó˘ ˙ÈÚÎÔÓ›·˜ Ì ÂÍ·ÈÚÂÙÈο ÏÂÙfiÎÔÎη ÎÂÚ·ÌÈο
ÏÂÈ·ÓÙÈο ̤۷87.
Fig. 6: Extended dimensions of zirconia core
Fig.7: Crack of zirconia core in a 4 unit bridge
O§OKEPAMIKE™ °EºYPE™ - ¶PO¢IA°PAºE™
M›· ·Î›ÓËÙË ÚÔÛıÂÙÈ΋ ·ÔηٿÛÙ·ÛË ·ÔÙÂÏÂ›Ù·È ·fi
Ù· ÛÙËÚ›ÁÌ·Ù· Î·È Ù· ÁÂÊ˘ÚÒÌ·Ù·, Ù· ÔÔ›· Û˘Ó‰¤ÔÓÙ·È
ÌÂٷ͇ ÙÔ˘˜ Ì ÙÔ˘˜ Û˘Ó‰¤ÛÌÔ˘˜. O Û‡Ó‰ÂÛÌÔ˜ ·ÔÙÂÏ› ¤Ó· Û¯ÂÙÈο ÏÂÙfi, ¢¿ÏˆÙÔ ÛËÌÂ›Ô ÌÈ·˜ ÌË ÔÌÔÈfiÌÔÚÊÔ˘ Û¯‹Ì·ÙÔ˜ ηٷÛ΢‹˜90. K·Ù¿ ÙË ‰È¿ÚÎÂÈ· Ù˘
ÊfiÚÙÈÛ˘ ÌÈ·˜ Á¤Ê˘Ú·˜ Ô Û‡Ó‰ÂÛÌÔ˜ ÊÙ¿ÓÂÈ Û ÎÚ›ÛÈ̘
Hellenic Stomatological Review 57: 101-137, 2013
Fig. 8: The previous apperture in backscattered electron image
(BEI 20X) (Tzoutzas and Tzanakakis 2010)
119
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Ù¿ÛÂȘ ÚÈÓ ·fi Ù· ·¯‡ÙÂÚ· ÛËÌ›· Ù˘ ηٷÛ΢‹˜.
°È· ÙÔ ÏfiÁÔ ·˘Ùfi ÔÈ Û‡Ó‰ÂÛÌÔÈ Î·Ù·Û΢¿˙ÔÓÙ·È Û ηٿÏÏËϘ ‰È·ÛÙ¿ÛÂȘ ÒÛÙ ӷ ·ÓÙ¤¯Ô˘Ó Ù· Ì·ÛËÙÈο
ÊÔÚÙ›·4. EȉÈο ÁÈ· ÙȘ ·ÔηٷÛÙ¿ÛÂȘ ˙ÈÚÎÔÓ›·˜ Ô Û¯Â‰È·ÛÌfi˜ ÙÔ˘ Û˘Ó‰¤ÛÌÔ˘ Ê·›ÓÂÙ·È Ó· Â›Ó·È Î·ıÔÚÈÛÙÈÎfi˜
ÁÈ· ÙËÓ ·ÓÙÔ¯‹ ÛÙË ıÚ·‡ÛË Î·È ÙËÓ ‚ȈÛÈÌfiÙËÙ· ÙˆÓ ÁÂÊ˘ÚÒÓ Ì ÛÎÂÏÂÙfi ˙ÈÚÎÔÓ›·˜66. A˘Í¿ÓÔÓÙ·˜ ÙȘ ‰È·ÛÙ¿ÛÂȘ ÙˆÓ Û˘Ó‰¤ÛÌˆÓ ÌÂÈÒÓÂÙ·È Ë Û˘ÁΤÓÙÚˆÛË Ù¿ÛˆÓ
Û ÎÚ›ÛÈÌ· ÛËÌ›· Ù˘ ‰ÔÎÔ‡ ÂȉÚÒÓÙ·˜ ıÂÙÈο ÛÙËÓ ·ÓÙÔ¯‹ Ù˘ ÔÏÔÎÂÚ·ÌÈ΋˜ ηٷÛ΢‹˜90. ¶ÚÔÙ›ÓÂÙ·È Ì¿ÏÈÛÙ· ÙÔ ‡„Ô˜ ÙˆÓ 4mm ˆ˜ Â·ÚΤ˜ ÁÈ· Á¤Ê˘Ú˜ ÔÈÛı›ˆÓ ‰ÔÓÙÈÒÓ ‹ ·ÎfiÌË ÌÂÁ·Ï‡ÙÂÚÔ ·Ó ÚfiÎÂÈÙ·È ÁÈ· ÂÚÈÙÒÛÂȘ ·˘ÍË̤Ó˘ ÊfiÚÙÈÛ˘ fiˆ˜ Û ‚ÚÔ˘ÍÈÛÙ¤˜ ‹
·˘ÍË̤ÓË Î·Ù·ÎfiÚ˘ÊË ÚfiÙ·ÍË. ŒÓ·˜ ·ÚfiÌÔÈÔ˜ ۯ‰ȷÛÌfi˜ ‰ÂÓ Â›Ó·È ¿ÓÙ· ÂÊÈÎÙfi˜ ÏfiÁˆ ‚ÈÔÏÔÁÈÎÒÓ ÂÚÈÔÚÈÛÌÒÓ (‡„Ô˜ ÎÏÈÓÈ΋˜ ̇Ï˘, ÌÂÛÔ‰fiÓÙÈ· ‰È·ÛÙ‹Ì·Ù·).
OÚÈṲ̂ÓÔÈ ÂÚ¢ÓËÙ¤˜ ÚÔÙ›ÓÔ˘Ó ‰È·ÛÙ¿ÛÂȘ Û˘Ó‰¤ÛÌÔ˘
3x3 mm Î·È ¿¯Ô˜ ÛÎÂÏÂÙÔ‡ 0.5mm Ì ıÂÙÈο ÂÚÁ·ÛÙËÚȷο ·ÔÙÂϤÛÌ·Ù·91, ÂÓÒ ¿ÏÏÔÈ Û˘ÓÈÛÙÔ‡Ó ÌÂÁ·Ï‡ÙÂÚ˜ ‰È·ÛÙ¿ÛÂȘ Ù˘ Ù¿Í˘ ÙˆÓ 4x4 mm92. ¶¿ÓÙˆ˜ ÁÈ· Ó·
·ÔʇÁÔÓÙ·È Î·Ù¿ÁÌ·Ù· Û˘Ó‰¤ÛÌˆÓ Î·È Û˘ÓÂÒ˜ ÎÏÈÓÈΤ˜ ·ÔÙ˘¯›Â˜ ÁÂÊ˘ÚÒÓ Ì ˘Ú‹Ó· ˙ÈÚÎÔÓ›·˜, ¯ÚÂÈ¿˙ÂÙ·È
ηٿÏÏËÏÔ˜ ۯ‰ȷÛÌfi˜ Î·È ·Ó¿ÏÔÁË ÁˆÌÂÙÚ›· Û˘Ó‰¤ÛÌÔ˘ ÁÈ· Ó· ·ÓÙ·ÔÎÚÈı› Ô Û‡Ó‰ÂÛÌÔ˜ ÛÙ· ÊÔÚÙ›· Ô˘
˘Ê›ÛÙ·Ù·È Î·Ù¿ ÙË ÏÂÈÙÔ˘ÚÁ›· ÙÔ˘ (EÈÎ. 6). I‰È·›ÙÂÚË ÛËÌ·Û›· ÂÎÙfi˜ Ù˘ ÂÏ¿¯ÈÛÙ˘ ‰È·Ì¤ÙÚÔ˘ ÙÔ˘ Û˘Ó‰¤ÛÌÔ˘
(dmin) ¤¯ÂÈ Î·È Ë ·ÎÙ›Ó· ηÌ˘ÏfiÙËÙ·˜ ÛÙË ‰È·ÙÔÌ‹ ÙÔ˘˜.
(EÈÎ. 7). Afi ÎÏÈÓÈ΋˜ ¿Ԅ˘ ÛÙÔ Û¯Â‰È·ÛÌfi Ú¤ÂÈ Ó·
Ï·Ì‚¿ÓÔÓÙ·È ˘fi„Ë ÔÈ È‰ÈfiÙËÙ˜ ÙÔ˘ ˘ÏÈÎÔ‡, ÔÈ ·Ó·ÙÔÌÈÎÔ› ÂÚÈÔÚÈÛÌÔ›, Ë ‰˘Ó·ÙfiÙËÙ· ÛÙÔÌ·ÙÈ΋˜ ˘ÁÈÂÈÓ‹˜ ηÈ
·ÈÛıËÙÈΤ˜ ÚÔÛ‰Ô˘66.
O ÛˆÛÙfi˜ ۯ‰ȷÛÌfi˜ ÙˆÓ Û˘Ó‰¤ÛÌˆÓ ÌÈ·˜ ·Î›ÓËÙ˘ ·ÔηٿÛÙ·Û˘ ÚÔÛ‰›‰ÂÈ Ì·ÎÚÔ‚ÈfiÙËÙ· ÛÙËÓ Î·Ù·Û΢‹. A˘Í¿ÓÔÓÙ·˜ ÙÔ ‡„Ô˜ ÙˆÓ Û˘Ó‰¤ÛÌˆÓ Û ÔÏÔÎÂÚ·ÌÈΤ˜ ·ÔηٷÛÙ¿ÛÂȘ ·fi 3 Û 4mm ÌÂÈÒÓÂÙ·È ÛËÌ·ÓÙÈο Ë Û˘ÁΤÓÙÚˆÛË Ù¿ÛÂˆÓ ÛÙÔ˘˜ Û˘Ó‰¤ÛÌÔ˘˜93 (EÈÎ.
8). ™‡Ìʈӷ Ì ÙÔÓ Studart94 Ë ·ÔηٿÛÙ·ÛË ÙÚÈÒÓ ÙÂÌ·¯›ˆÓ Ú¤ÂÈ Ó· ¤¯ÂÈ ‰È·ÙÔÌ‹ Û˘Ó‰¤ÛÌÔ˘ ÂÌ‚·‰fi 5,7
mm2,ÙˆÓ ÙÂÛÛ¿ÚˆÓ 12,6 mm2 Î·È ÙˆÓ ¤ÓÙ 18,8 mm2.
¢˘Ó¿ÌÂȘ Ô˘ ¤¯Ô˘Ó ȉȷ›ÙÂÚÔ ÚfiÏÔ ÛÙ· ηٿÁÌ·Ù· Û˘Ó‰¤ÛÌˆÓ Â›Ó·È ÔÈ ÂÊÂÏ΢ÛÙÈΤ˜ ‰˘Ó¿ÌÂȘ Ô˘ ·Ó·Ù‡ÛÛÔÓÙ·È Î·Ù¿ ÙË ÏÂÈÙÔ˘ÚÁ›· Ù˘ Á¤Ê˘Ú·˜ Ì ÙËÓ Â›‰Ú·ÛË
ÙˆÓ Ì·ÛËÙÈÎÒÓ ‰˘Ó¿ÌÂˆÓ ÛÙË ÛÙÔÌ·ÙÈ΋ ÎÔÈÏfiÙËÙ·. H
̤ÁÈÛÙË ÂÊÂÏ΢ÛÙÈ΋ ÊfiÚÙÈÛË ·Ú·ÙËÚÂ›Ù·È ÛÙËÓ Ô˘ÏÈ΋
ÂÈÊ¿ÓÂÈ· ÙˆÓ Û˘Ó‰¤Û̈Ó93 ÁÈ’ ·˘Ùfi Î·È ÚÔÙ¿ıËÎÂ Ë ÌË
Î¿Ï˘„Ë Ù˘ Ô˘ÏÈ΋˜ ÂÈÊ¿ÓÂÈ·˜ ÙÔ˘ Û˘Ó‰¤ÛÌÔ˘ ÌÂ Î·Ï˘ÙÈ΋ ÔÚÛÂÏ¿ÓË95. H ÂÎÙÂıÂÈ̤ÓË ÂÈÊ¿ÓÂÈ· ˙ÈÚÎÔÓ›·˜ fï˜ ‰ËÌÈÔ˘ÚÁ› ÚÔ‚ÏËÌ·ÙÈÛÌÔ‡˜ ˆ˜ ÚÔ˜ ÙË Á‹Ú·ÓÛË
‹ ·ÎÚÈ‚¤ÛÙÂÚ· ÙÔÓ ÂÎÊ˘ÏÈÛÌfi ÙˆÓ Ì˯·ÓÈÎÒÓ È‰ÈÔًوÓ
Û ˘ÁÚfi ÂÚÈ‚¿ÏÏÔÓ (LTD-low temperature degradation)
ÛÙÔ ÛÙÔÌ·ÙÈÎfi ÂÚÈ‚¿ÏÏÔÓ89. IηÓÔÔÈËÙÈο ÔÛÔÛÙ¿ ÂÈÙ˘¯›·˜ ¤¯Ô˘Ó ‚ÚÂı› Û ÙÚÈÂÙ‹ ·Ú·ÎÔÏÔ‡ıËÛË ÁÂÊ˘ÚÒÓ
˙ÈÚÎÔÓ›·˜ ÙÚÈÒÓ Î·È ÙÂÛÛ¿ÚˆÓ ÙÂÌ·¯›ˆÓ Ì ÌÔÓ·‰ÈÎfi ÌÂÈÔÓ¤ÎÙËÌ· ¤Ó· ÌÈÎÚfi ÔÛÔÛÙfi ·ÔÊÏÔ›ˆÛ˘ ÙÔ˘ ÂÈÎ·Ï˘ÙÈÎÔ‡ ÎÂÚ·ÌÈÎÔ‡96.
¶·Ú¿ ÙËÓ ·Ú¯È΋ ‰˘ÛÈÛÙ›· ÙˆÓ ÎÏÈÓÈÎÒÓ Ô‰ÔÓÙÈ¿ÙÚˆÓ
ˆ˜ ÚÔ˜ ÙËÓ ·ÎÚ›‚ÂÈ· ÔÚȷ΋˜ ÂÊ·ÚÌÔÁ‹˜ ÙˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ÁÂÊ˘ÚÒÓ, Û‹ÌÂÚ· ÂÎÙÈÌ¿Ù·È fiÙÈ ‰ÂÓ ˘Ê›ÛÙ·Ù·È ‰È·120
The maximum tensile loads are observed in the gingival
surface of connectors93 and for this reason non ceramic
coverage of the connector’s gingival surface has been
proposed95. The exposed zirconia surface, however, raises concerns regarding aging or rather degradation of
mechanical properties in humid environment (LTD-low
temperature degradation) in the oral environment89.
Satisfactory success rates have been reported in studies
with three year follow-ups of zirconia 3- and 4-unit FPD’s,
without significant complications apart from only a small
percentage of ceramic chipping96.
Despite the initial skepticism of clinicians as to the
accuracy of fit of all-ceramic FPD’s, currently it is estimated
that there is no difference in quality between the application
of classic metal-ceramic and modern CAD-CAM zirconia
restorations97. Laboratory studies have identified the clinically acceptable fit accuracy of 3- and 4-units zirconia
FPD’s fabricated on CAD-CAM systems98, 99, 100.
INLAY RETAINED FIXED PARTIAL DENTURES
A special category of conservative dental restorations are
the posterior teeth 3-unit inlay retained FPD’s. Of particular interest are those that replace the first molar and are
retained on inlay design cavities in the second premolar
and second molar, which can be one alternative prosthetic treatment plan of a missing molar or premolar101. It
is reported that when preparing an abutment for ceramic
crown a 67-73% of the coronal tooth substance is removed102. Therefore more tooth substance is removed on
conventional FPD’s than on inlay retained FPD’s104. An
alternative technique in which buccal and palatal (lingual)
flanges are added in both sides of the inlays seems to
improve the prognosis of such special prosthetic construction103. Nevertheless, large amounts of failure of such
structures are observed (13% to 37 months)104 and made
clinicians cautious to their widespread use, despite the
promising strength of such zirconia core constructions in
laboratory tests104.
MARYLAND FIXED PARTIAL DENTURES
Zirconia frameworks have been used for the construction
of micromechanical retention FPD’s, which are an alternative approach in several clinical cases where we need a
minimally invasive prosthetic rehabilitation. Both single
wing and double wing designs were tested. Double wing
design appears to have greater resistance to detachment
in laboratory tests106. These constructions have as complications detachments107 or fractures of the joints. A new
modified surface for bonding gives new prospects for
wider use of such special structures108.
ZIRCONIA POSTS
Castable posts of noble metals are considered as the
reference method in restoring endodontically treated
teeth with extensive loss of dental hard substances109. The
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
EÈÎ. 6: EÍ·ÈÚÂÙÈο ÌÂÁ¿ÏÔ˘ ÌÂÁ¤ıÔ˘˜ Û‡Ó‰ÂÛÌÔÈ(>4x4mm) ÛÂ
ÛÎÂÏÂÙfi Á¤Ê˘Ú·˜ ˙ÈÚÎÔÓ›·˜ ÙÂÛÛ¿ÚˆÓ ÙÂÌ·¯›ˆÓ
need for more aesthetic posts was driven from the fact
that the color of a ceramic crown is affected by the color of
the underlying coronal build-up, leading to the search for
more esthetic materials110, 111. The use of zirconia as a
structural material for posts began in 1993 as an alternative solution and was subsequently extended.
The type of restoration on an endodontically treated tooth
when a post method is selected depends on several
factors. Today the choices are divided into cast posts and
a wide range of prefabricated ones. In the second case,
the restoration of the removed tooth substance in the
coronal part is made with a restoring material. Following
this classification manufacturers have released systems
of prefabricated or customized zirconia posts111.
According to some authors fiberglass posts have lower
probability of root fracture than zirconia posts. The latter
are not removed when a failure occurs. Toksavul found
similar strengths in three different post systems and
concluded that zirconia posts are reliable as aesthetic
posts in cases when all-ceramic crowns are used to
restore endodontically treated teeth111.
However, regardless of type and technique, zirconia
posts have been heavily criticized for the fact that may
cause -due to their high rigidity- root fractures more often
than fiberglass posts113. There is also an inherent difficulty
in bonding zirconia to both adhesive cement and build-up
material, but the most important problem is considered
the difficulty to remove a zirconia post when endodontic
re-treatment is required. It is also almost impossible to
grind a cemented zirconia post113, 114.
MONOLITHIC ZIRCONIA
EÈÎ.7: K¿Ù·ÁÌ· ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜ Û Á¤Ê˘Ú· ÙÂÛÛ¿ÚˆÓ ÙÂÌ·¯›ˆÓ (T˙Ô‡Ù˙·˜ I., T˙·Ó·Î¿Î˘ E. 2010)
The need to reduce and eliminate chipping failures led to the
entrance of a new technique to form full contour restorations
with the exclusive use of zirconia material. To differentiate
from other materials the term monolithic zirconia is widely
used for this new generation materials. The opacity of the
material appears to be significantly reduced due to the
decrease in the grain size of the material (nm scale). Also
due to the high strength of the material very thin restorations
can be made(0.6-0.8 mm). These require minimum tooth
preparation, almost the same that is needed to construct a
full cast crown made of gold, noble or basic alloys.
Beyond that, there are some drawbacks and weaknesses
of the new material that might impede the wide spreading.
First, the aesthetic restorations can be individualized as
limited only to external dyes and colors specified by the
manufacturer. This of course depends on the patient
selection, the skill of the laboratory and the accuracy of
color matching. Also the high hardness of the material
creates suspicions of the possible abrasion of the enamel
antagonist53, 54.
OTHER APLLIANCES
EÈÎ. 8: H ÚÔËÁÔ‡ÌÂÓË ÂÈÎfiÓ· Û ÏÂÙÔ̤ÚÂÈ· Ì ÙË ¯Ú‹ÛË ÚÔ‚ÔÏ‹˜ ÔÈÛıÔÛΉ·˙fiÌÂÓˆÓ ËÏÂÎÙÚÔÓ›ˆÓ ÛÙËÓ ÂÚÈÔ¯‹ ÙÔ˘ ηٿÁÌ·ÙÔ˜. (BEI 20X) (T˙Ô‡Ù˙·˜ & T˙·Ó·Î¿Î˘ 2010)
Hellenic Stomatological Review 57: 101-137, 2013
Ceramic orthodontic brackets were one of the innovations
in clinical orthodontics in the late 80s. The first ceramic
had low toughness and the material used was alumina114.
121
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÊÔÚ¿ ÛÙËÓ ÔÈfiÙËÙ· ÂÊ·ÚÌÔÁ‹˜ ÌÂٷ͇ ÎÏ·ÛÈÎÒÓ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈÎÒÓ Î·Ù·Û΢ÒÓ Î·È Û‡Á¯ÚÔÓˆÓ CAD-CAM
ηٷÛ΢ÒÓ ˙ÈÚÎÔÓ›·˜97. EÚÁ·ÛÙËÚȷΤ˜ ÌÂϤÙ˜ ÂÍ·ÎÚ›‚ˆÛ·Ó ÙËÓ ÎÏÈÓÈο ·Ô‰ÂÎÙ‹ ÔÚȷ΋ ÂÊ·ÚÌÔÁ‹ ÁÂÊ˘ÚÒÓ
˙ÈÚÎÔÓ›·˜ ÙÚÈÒÓ Î·È ÙÂÛÛ¿ÚˆÓ ÙÂÌ·¯›ˆÓ ηٷÛ΢·Ṳ̂Ó˜ Ì ۇÁ¯ÚÔÓ· CAD-CAM Û˘ÛÙ‹Ì·Ù·98 ,99, 100.
°EºYPE™ ™THPIZOMENE™ ™E EN£ETA/INLAY
RETAINED FPDS
M›· ȉȷ›ÙÂÚË Î·ÙËÁÔÚ›· Û˘ÓÙËÚËÙÈÎÒÓ ÚÔÛıÂÙÈÎÒÓ ·ÔηٷÛÙ¿ÛÂˆÓ ·ÔÙÂÏÔ‡Ó ÔÈ ÙÚÈÒÓ ÙÂÌ·¯›ˆÓ Á¤Ê˘Ú˜
ÔÈÛı›ˆÓ ‰ÔÓÙÈÒÓ ÛÙËÚÈ˙fiÌÂÓ˜ Û ¤ÓıÂÙ·. I‰È·›ÙÂÚÔ ÂӉȷʤÚÔÓ ·ÔÙÂÏÔ‡Ó ÂΛӘ Ô˘ ·ÓÙÈηıÈÛÙÔ‡Ó ÙÔÓ
ÚÒÙÔ ÁÔÌÊ›Ô Î·È ÛÙËÚ›˙ÔÓÙ·È Û ÎÔÈÏfiÙËÙ˜ ÂÓı¤ÙˆÓ
ÛÙÔÓ ‰Â‡ÙÂÚÔ ÚÔÁfiÌÊÈÔ Î·È ÁÔÌÊ›Ô ·ÓÙ›ÛÙÔȯ·, ÔÈ Ôԛ˜ ÌÔÚÔ‡Ó Ó· ·ÔÙÂϤÛÔ˘Ó ¤Ó· ·fi ÂÓ·ÏÏ·ÎÙÈο Û¯¤‰È· ıÂÚ·›·˜ ·ÔηٿÛÙ·Û˘ ÂÓfi˜ ÂÏÏ›ÔÓÙÔ˜ ÁÔÌÊ›Ô˘ ‹ ÚÔÁÔÌÊ›Ô˘101. AӷʤÚÂÙ·È fiÙÈ Î·Ù¿ ÙËÓ ·Ú·Û΢‹
ÂÓfi˜ ÛÙËÚ›ÁÌ·ÙÔ˜ ÁÈ· ÔÏÔÎÂÚ·ÌÈ΋ ÛÙÂÊ¿ÓË ·Ê·ÈÚ›ٷÈ
ÙÔ 67-73% Ù˘ Ô‰ÔÓÙÈ΋˜ Ô˘Û›·˜ Ù˘ ̇Ï˘102. ™˘ÓÂÒ˜
ÂÚÈÛÛfiÙÂÚË Ô‰ÔÓÙÈ΋ Ô˘Û›· ·Ê·ÈÚÂ›Ù·È Û ‰fiÓÙÈ·-ÛÙËÚ›ÁÌ·Ù· Ì ‰‡Ô ÂÍˆÌ˘ÏÈΤ˜ ·Ú·Û΢¤˜ ÔÏÈ΋˜ Î¿Ï˘„˘ ·Ú¿ Û ÌÈ· Á¤Ê˘Ú· ÛÙËÚÈ˙fiÌÂÓË Û ¤ÓıÂÙ·104. M›·
ÂÓ·ÏÏ·ÎÙÈ΋ Ù¯ÓÈ΋ ηٿ ÙËÓ ÔÔ›· ÚÔÛÙ›ıÂÓÙ·È ÙÂÚ‡ÁÈ· ·ÚÂȷο Î·È ˘ÂÚÒÈ· (ÁψÛÛÈο) Âη٤ڈıÂÓ ÙˆÓ
ÂÓı¤ÙˆÓ-ÛÙËÚÈÁÌ¿ÙˆÓ Ê·›ÓÂÙ·È Ó· ‚ÂÏÙÈÒÓÂÈ ÙËÓ ÚfiÁÓˆÛË Ù¤ÙÔÈˆÓ ÂȉÈÎÒÓ ÚÔÛıÂÙÈÎÒÓ Î·Ù·Û΢ÒÓ103. ¶·ÚfiÏ· ·˘Ù¿, Ù· ÌÂÁ¿Ï· ÔÛÔÛÙ¿ ·ÔÙ˘¯›·˜ Ù¤ÙÔÈˆÓ Î·Ù·Û΢ÒÓ (13% Û 37 Ì‹Ó˜)105 Ì·˜ ηıÈÛÙÔ‡Ó ÂÈÊ˘Ï·ÎÙÈÎÔ‡˜ ÛÙËÓ Â˘Ú›· ¯Ú‹ÛË ÙÔ˘˜, ·Ú¿ ÙËÓ ÔÏÏ¿ ˘ÔÛ¯fiÌÂÓË ˘„ËÏ‹ ·ÓÙÔ¯‹ ÙÔ˘ ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜ Û ÂÚÁ·ÛÙËÚȷΤ˜ ‰ÔÎÈ̷ۛ˜ Ù¤ÙÔÈˆÓ Î·Ù·Û΢ÒÓ104.
°EºYPE™ TY¶OY MARYLAND
OÈ ÛÎÂÏÂÙÔ› ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ¯ÚËÛÈÌÔÔÈËı› ÁÈ· ÙËÓ Î·Ù·Û΢‹ ÁÂÊ˘ÚÒÓ ÌÈÎÚÔÌ˯·ÓÈ΋˜ Û˘ÁÎÚ¿ÙËÛ˘, ÔÈ Ôԛ˜
·ÔÙÂÏÔ‡Ó ÌÈ· ÂÓ·ÏÏ·ÎÙÈ΋ ÚÔÛ¤ÁÁÈÛË Û ·ÚÎÂÙ¤˜ ÎÏÈÓÈΤ˜ ÂÚÈÙÒÛÂȘ Ô˘ ¯ÚÂÈ¿˙ÂÙ·È ÌÈ· ÂÏ¿¯ÈÛÙ· ·ÚÂÌ‚·ÙÈ΋ ÚÔÛıÂÙÈ΋ ·ÔηٿÛÙ·ÛË. Œ¯Ô˘Ó ‰ÔÎÈÌ·ÛÙ› ÙfiÛÔ
ÌÔÓÔÙ¤Ú˘ÁÔÈ fiÛÔ Î·È ‰ÈÙ¤Ú˘ÁÔÈ Û¯Â‰È·ÛÌÔ›, ÂÎ ÙˆÓ ÔÔ›ˆÓ ÔÈ ‰ÈÙ¤Ú˘ÁÔÈ Ê·›ÓÂÙ·È Ó· ¤¯Ô˘Ó ÌÂÁ·Ï‡ÙÂÚË ·ÓÙÔ¯‹ ÛÙËÓ ·ÔÎfiÏÏËÛË ÂÚÁ·ÛÙËÚȷο106. OÈ Î·Ù·Û΢¤˜ ·˘Ù¤˜ ¤¯Ô˘Ó ˆ˜ Û˘Ó‹ıÂȘ ÂÈÏÔΤ˜ ÙȘ ·ÔÎÔÏÏ‹ÛÂȘ107 ‹
Ù· ηٿÁÌ·Ù· ÙˆÓ Û˘Ó‰¤Û̈Ó. MÈ· Ó¤· ÙÚÔÔÔÈË̤ÓË ÂÈÊ¿ÓÂÈ· ÁÈ· Û˘ÁÎfiÏÏËÛË ‰›ÓÂÈ Ó¤Â˜ ÚÔÔÙÈΤ˜ ÁÈ· ¢ڇÙÂÚË ¯Ú‹ÛË Ù¤ÙÔÈˆÓ ÂȉÈÎÒÓ Î·Ù·Û΢ÒÓ108.
A•ONE™ EN¢OPPIZIKOI
OÈ ¯˘ÙÔ› ÂÓ‰ÔÚÚÈ˙ÈÎÔ› ¿ÍÔÓ˜ ·fi ¢ÁÂÓ‹ ̤ٷÏÏ· ıˆÚÔ‡ÓÙ·È ˆ˜ ̤ıÔ‰Ô˜ ·Ó·ÊÔÚ¿˜ ÛÙËÓ ·ÔηٿÛÙ·ÛË ÂÓ‰Ô‰ÔÓÙÈο ıÂÚ·Â˘Ì¤ÓˆÓ ‰ÔÓÙÈÒÓ Ì ÂÎÙÂٷ̤ÓË ·ÒÏÂÈ· ÛÎÏËÚÒÓ Ô‰ÔÓÙÈÎÒÓ Ô˘ÛÈÒÓ109. H ·Ó¿ÁÎË ÁÈ· ¿ÍÔÓ˜
Ì ηχÙÂÚË ·ÈÛıËÙÈ΋ ·fi‰ÔÛË Û ÂÚÈÙÒÛÂȘ fiÔ˘ Ë
¯ÚˆÌ·ÙÈ΋ ÈÛÙfiÙËÙ· ÌÈ·˜ ÔÏÔÎÂÚ·ÌÈ΋˜ ÛÙÂÊ¿Ó˘ ÂËÚ¿˙ÂÙ·È ·fi ÙÔ ¯ÚÒÌ· Ù˘ ˘ÔΛÌÂÓ˘ Ì˘ÏÈ΋˜ ·Ó·Û‡122
Then zirconia115 was used as an alternative ceramic with
some disadvantages. The intense white color was not
particularly aesthetic and high opacity inhibits photopolymerization of the adhesive substrate114. On the other hand,
zirconia brackets exhibited excellent resistance to abrasion116, greater resistance to deformation and less retention of dental plaque74.
In direct comparison with the metal brackets show reduced efficacy of tooth movement, greater wear of enamel
due to frequent detachment74 and greater wear of the
opposite dental barrier117. Zirconia brackets are however,
an alternative solution115. Other structures of zirconia for
dental use that have been released are some types of
precision attachments for which so far there is no available literature on their efficacy and clinical performance74.
A number of new cutters and surgical instruments based
on zirconia have been also released74.
IMPLANT ABUTMENTS
Almost in all implant brands on the market, there is a
number of prefabricated and customized abutments for
implant restorations, made of titanium alloys, gold or nonprecious metals and ceramic materials118. First ceramic
abutments were made of alumina and came into production in 1993, which despite their excellent aesthetic performance were criticized for certain failures (abutment
fractures)119, 120. Then in order to reduce the risk of failure
zirconia abutments were tested122.
Zirconia abutments can be prefabricated or customized.
The selection of prefabricated is reliable and practical, but
customized ones with the help of CAD-CAM technology
can be designed for optimum aesthetics and integration
of soft tissues74. There is need for more randomized clinical trials to evaluate the benefits of using zirconia abutments. In general having only a few research data,
findings may be summarized as follows121:
a) In frontal areas zirconia abutments function without
complications (four years studies), without knowing
their reliability for posterior restorations.
b) The biocompatibility of zirconia is similar to that of titanium at periimplant soft tissues and the accumulation
of dental plaque is less than that of titanium.
In a clinical study after four years there was no abutment
fracture, but only loosening of abutment screw in a small
percentage and ceramic chipping123. Other advantages
are considered the radiolucency of the abutments which
is similar to metals and allows a reliable assessment of the
fit accuracy through a radiographic imaging12, the less
discoloration of tissues in relation to basic alloys and even
the less bacterial adhesion to the surface of zirconia124.
COMPLICATIONS OF ZIRCONIA RESTORATIONS
1. CERAMIC CHIPPING
Complication rates of zirconia FPD’s survival, show that
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÛÙ·Û˘ Ô‰‹ÁËÛ ÛÙËÓ ·Ó·˙‹ÙËÛË ˘ÏÈÎÒÓ Ô˘ ·¤‰È‰·Ó
ηχÙÂÚË ·ÈÛıËÙÈ΋110, 111. H ¯Ú‹ÛË Ù˘ ˙ÈÚÎÔÓ›·˜ ˆ˜ ˘ÏÈÎÔ‡ ηٷÛ΢‹˜ ÂÓ‰ÔÚÚÈ˙ÈÎÒÓ ·ÍfiÓˆÓ ÍÂΛÓËÛ ÙÔ 1993
ˆ˜ ÂÓ·ÏÏ·ÎÙÈ΋ χÛË Î·È ÂÂÎÙ¿ıËΠÛÙË Û˘Ó¤¯ÂÈ·.
H ÂÈÏÔÁ‹ ÙÔ˘ ›‰Ô˘˜ Ù˘ ·ÔηٿÛÙ·Û˘ ÂÓfi˜ ÂÓ‰Ô‰ÔÓÙÈο ıÂÚ·Â˘Ì¤ÓÔ˘ ‰ÔÓÙÈÔ‡ fiÙ·Ó ÂÈÏÂÁ› Ó· ÙÔÔıÂÙËı› ÂÓ‰ÔÚÚÈ˙ÈÎfi˜ ¿ÍÔÓ·˜ ÂÍ·ÚÙ¿Ù·È ·fi ·ÚÎÂÙÔ‡˜ ·Ú¿ÁÔÓÙ˜. ™‹ÌÂÚ· ÔÈ ÂÈÏÔÁ¤˜ ¯ˆÚ›˙ÔÓÙ·È Û ¯˘ÙÔ‡˜ ÂÍ·ÙÔÌÈÎÂ˘Ì¤ÓÔ˘˜ ¿ÍÔÓ˜ Î·È Û ¤Ó· ÌÂÁ¿ÏÔ Ê¿ÛÌ· ÚÔηٷÛ΢·ÛÌ¤ÓˆÓ ÂÓ‰ÔÚÚÈ˙ÈÎÒÓ ·ÍfiÓˆÓ. ™ÙÔ˘˜ ‰Â‡ÙÂÚÔ˘˜, Ë
·ÔηٿÛÙ·ÛË Ù˘ ·Ê·ÈÚÂı›۷˜ Ô‰ÔÓÙÈ΋˜ Ô˘Û›·˜ ÛÙÔ
Ì˘ÏÈÎfi ̤ÚÔ˜ Á›ÓÂÙ·È Ì ¤Ó· ˘ÏÈÎfi ·Ó·Û‡ÛÙ·Û˘. AÎÔÏÔ˘ıÒÓÙ·˜ ·˘Ù‹ ÙËÓ Ù·ÍÈÓfiÌËÛË Î·Ù¿ ·ÚfiÌÔÈÔ ÙÚfiÔ ¤¯Ô˘Ó
΢ÎÏÔÊÔÚ‹ÛÂÈ Û˘ÛÙ‹Ì·Ù· ÚÔηٷÛ΢·Ṳ̂ӈÓ, ·ÏÏ¿
Î·È ÂÍ·ÙÔÌÈÎÂ˘Ì¤ÓˆÓ ÂÓ‰ÔÚÚÈ˙ÈÎÒÓ ·ÍfiÓˆÓ ˙ÈÚÎÔÓ›·˜111.
™‡Ìʈӷ Ì ÔÚÈṲ̂ÓÔ˘˜ Û˘ÁÁÚ·Ê›˜ ÔÈ ¿ÍÔÓ˜ ˘·ÏÔÓËÌ¿ÙˆÓ ¤¯Ô˘Ó ÌÈÎÚfiÙÂÚË Èı·ÓfiÙËÙ· ηٷÛÙÚÔÊÈÎÒÓ Î·Ù·ÁÌ¿ÙˆÓ Û ۯ¤ÛË Ì ÙÔ˘˜ ¿ÍÔÓ˜ ˙ÈÚÎÔÓ›·˜, Î·È ÔÈ ÙÂÏÂ˘Ù·›ÔÈ ‰ÂÓ ·Ê·ÈÚÔ‡ÓÙ·È fiÙ·Ó Û˘Ì‚Â› ·ÔÙ˘¯›·. O
Toksavul112 ‚ڋΠ·ÚfiÌÔȘ ·ÓÙÔ¯¤˜ Û 3 ‰È·ÊÔÚÂÙÈο ›‰Ë ·ÍfiÓˆÓ Î·È Î·Ù¤ÏËÍ fiÙÈ ÔÈ ¿ÍÔÓ˜ ˙ÈÚÎÔÓ›·˜ Â›Ó·È ·ÍÈfiÈÛÙÔÈ ˆ˜ ÚÔ˜ ÙÔ ·ÈÛıËÙÈÎfi ·ÔÙ¤ÏÂÛÌ· Û ÂÚÈÙÒÛÂȘ
ÔÏÔÎÂÚ·ÌÈÎÒÓ ÛÙÂÊ·ÓÒÓ Ô˘ ηχÙÔ˘Ó ÂÓ‰Ô‰ÔÓÙÈο ıÂÚ·Â˘Ì¤Ó· ‰fiÓÙÈ· Ì ÂÍ·ÈÚÂÙÈ΋ ηٷÛÙÚÔÊ‹ ̇Ï˘111.
°ÂÓÈο ¿ÓÙˆ˜, ·ÓÂÍ·Úًو˜ Ù‡Ô˘ Î·È Ù¯ÓÈ΋˜, ÔÈ ¿ÍÔÓ˜ ˙ÈÚÎÔÓ›·˜ ¤¯Ô˘Ó ˘ÔÛÙ› ¤ÓÙÔÓË ÎÚÈÙÈ΋ ÁÈ· ÙÔ ÁÂÁÔÓfi˜ fiÙÈ Ê·›ÓÂÙ·È Ó· ÚÔηÏÔ‡Ó ÂÍ·ÈÙ›·˜ Ù˘ ÌÂÁ¿Ï˘ ·Î·Ì„›·˜ ÙÔ˘˜ Û˘¯Ó¿ ηٿÁÌ·Ù· ÚÈ˙ÒÓ ÈÔ Û˘¯Ó¿ ·fi
ÙÔ˘˜ ¿ÍÔÓ˜ ˘·ÏÔÓËÌ¿ÙˆÓ113. Y¿Ú¯ÂÈ Â›Û˘ ÌÈ· ÂÁÁÂÓ‹˜
‰˘ÛÎÔÏ›· Û˘ÁÎfiÏÏËÛ˘ Ù˘ ˙ÈÚÎÔÓ›·˜ ÙfiÛÔ Ì ÙËÓ Û˘ÁÎÔÏÏËÙÈ΋ ÎÔÓ›· fiÛÔ Î·È Ì ÙÔ ˘ÏÈÎfi ·Ó·Û‡ÛÙ·Û˘, ·ÏÏ¿
ÙÔ ϤÔÓ ÛËÌ·ÓÙÈÎfi Úfi‚ÏËÌ· ıˆÚÂ›Ù·È Ë ‰‡ÛÎÔÏË ·Ê·›ÚÂÛË ÙÔ˘ ¿ÍÔÓ· ˙ÈÚÎÔÓ›·˜ Û ÂÚ›ÙˆÛË Ô˘ ¯ÚÂÈ¿˙ÂÙ·È Â·Ó¿ÏË„Ë Ù˘ ÂÓ‰Ô‰ÔÓÙÈ΋˜ ıÂÚ·›·˜ ηıÒ˜ ›ӷÈ
·‰‡Ó·ÙÔ Ó· ÙÚÔ¯ÈÛÙ› ¤Ó·˜ Û˘ÁÎÔÏÏË̤ÓÔ˜ ¿ÍÔÓ·˜113, 114.
MONO§I£IKH ZIPKONIA
H ·Ó¿ÁÎË ÁÈ· ÙË Ì›ˆÛË Î·È ÂÍ¿ÏÂÈ„Ë ÙˆÓ ·ÛÙÔ¯ÈÒÓ Ù˘ ÂÈÎ·Ï˘ÙÈ΋˜ ÔÚÛÂÏ¿Ó˘ ÛÙȘ ηٷÛ΢¤˜ ˙ÈÚÎÔÓ›·˜ Ô‰‹ÁËÛ ÛÙËÓ Â›ÛÔ‰Ô ÌÈ·˜ Ó¤·˜ Ù¯ÓÈ΋˜ ‰È·ÌfiÚʈÛ˘ ·Î›ÓËÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ Ï‹ÚÔ˘˜ Ô‰ÔÓÙÈ΋˜ ·Ó·ÙÔÌ›·˜ Ì ·ÔÎÏÂÈÛÙÈ΋ ¯Ú‹ÛË ˘ÏÈÎÔ‡ ˙ÈÚÎÔÓ›·˜53. °È· ÙË
‰È·ÊÔÚÔÔ›ËÛË ·fi Ù· ¿ÏÏ· ˘ÏÈο ˙ÈÚÎÔÓ›·˜ ·Ô‰fiıËÎÂ
Ô ¯·Ú·ÎÙËÚÈÛÌfi˜ ÌÔÓÔÏÈıÈ΋ ˙ÈÚÎÔÓ›· ÁÈ· ·˘Ù‹ ÙË Ó¤· ÁÂÓÈ¿ ˘ÏÈÎÒÓ. H ·‰È·Ê¿ÓÂÈ· ÙÔ˘ ˘ÏÈÎÔ‡ Ê·›ÓÂÙ·È Ó· ÌÂÈÒÓÂÙ·È ·ÈÛıËÙ¿ ÏfiÁˆ Ù˘ Ì›ˆÛ˘ ÙÔ˘ ÌÂÁ¤ıÔ˘˜ ÙˆÓ ÎfiÎΈÓ
ÙÔ˘ ˘ÏÈÎÔ‡ (Ù˘ Ù¿Í˘ ÙˆÓ nm)54. E›Û˘ ÏfiÁˆ Ù˘ ÌÂÁ¿Ï˘ ·ÓÙÔ¯‹˜ ÙÔ˘ ˘ÏÈÎÔ‡ ηٷÛ΢¿˙ÔÓÙ·È Ôχ ÏÂÙ¿
¿¯Ë ·ÔηٷÛÙ¿ÛÂˆÓ 0,6-0,8¯ÈÏ. Ô˘ ··ÈÙÔ‡Ó ÂÏ¿¯ÈÛÙË Ô‰ÔÓÙÈ΋ ·Ú·Û΢‹ fiÛË ÂÚ›Ô˘ ··ÈÙ›ÙÔ ÁÈ· ÙËÓ
ηٷÛ΢‹ ÌÈ·˜ ÔÏÈ΋˜ ¯˘Ù‹˜ ÛÙÂÊ¿Ó˘ ·fi ÎÚ¿Ì·Ù·
¯Ú˘ÛÔ‡, ¢ÁÂÓÒÓ ‹ ‚·ÛÈÎÒÓ ÎÚ·Ì¿ÙˆÓ.
Afi ÂΛ Î·È ¤Ú· ˘¿Ú¯Ô˘Ó ÔÚÈṲ̂ӷ ÌÂÈÔÓÂÎÙ‹Ì·Ù· ηÈ
·‰˘Ó·Ì›Â˜ ÙÔ˘ Ó¤Ô˘ ˘ÏÈÎÔ‡ Ô˘ Èı·Ófi Ó· ÂÌÔ‰›ÛÔ˘Ó
ÙËÓ Â˘Ú›· ÂÍ¿ψۋ ÙÔ˘. K·Ù·Ú¯‹Ó Ë ·ÈÛıËÙÈ΋ ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ ‰ÂÓ ÌÔÚ› Ó· ÂÍ·ÙÔÌÈ΢ٛ ηıÒ˜ ÂÚÈÔÚ›˙ÂÙ·È Û Â͈ÙÂÚÈΤ˜ ÌfiÓÔ ¯ÚˆÛÙÈΤ˜ Î·È ÛÙ· ¯ÚÒHellenic Stomatological Review 57: 101-137, 2013
the most frequent technical complication is the loss of the
ceramic veneering layer (chipping)66, 125. There are many
factors, such as the proper design of the zirconia framework to support the porcelain veneering layer, the appropriate processing in the dental laboratory, and further
improvements in mechanical properties and application
techniques of porcelain veneering that affect chipping
rates125.
Each manufacturer recommends treating the surface of
the zirconia framework (eg sandblast and heat treatments) before veneering with porcelain. However, the
effect of surface treatments on the bonding strength of
porcelain to zirconia is still controversial. There are differences in thermal expansion coefficients and firing temperatures between commercial veneering ceramics for
zirconia. This implies that different products have different
powder compositions. Compatibility of the coefficients of
thermal expansion needs improvement, which will likely
include the optimization of powder synthesis126.
However, there is no clear evidence demonstrating the
presence of chemical bonds between zirconia and
ceramic veneer, although there is one report126 that suggests the existence of such bond. Therefore it is assumed
that micromechanical adhesion plays a major role in
integrating zirconia and porcelain.
2. CONNECTOR FRACTURE
Another serious complication that leads to failure restorations is the fracture of the frame. Most often is observed
to the connectors. The first few failures led to the introduction of stricter criteria for the minimum dimensions of
frame and connectors and the use of shorter span restorations5 (Fig. 6). Of particular importance is the design of
the connectors where sharp endings can lead inevitably
to stress concentration points and failure. (Fig. 7-8)
3. RESTORATION DEBONDING/DECEMENTATION
The loss of retention (adhesive cement fracture) of one
tooth abutment or the entirely decementation of a dental
prosthesis is an important technical complication that
affects its survival. It is of course possible to re-cement the
prosthesis without any other complication, but sometimes
other biological complications such as secondary caries
or loss of pulp vitality require immediate replacement of
the prosthesis. The loss of retention is a very low complication rate in single crowns or FPDs127. Nevertheless, the
investigation and understanding of the causes leading to
decementation of prostheses can lead to more reliable
restorations.
Cementation is the last clinical step for the construction of
a prosthetic restoration. Provided that the preceding
steps have been executed perfectly, final cementation
completes a reliable prosthetic restoration. The bonding
surfaces must produce the maximum quality of bond so
that there is a long-term prosthetic survival and the possibility of microleakage is minimized. Apart from the surface
of the dental abutment, the inner surface of the prosthesis
123
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
Ì·Ù· Ô˘ ηıÔÚ›˙ÔÓÙ·È ·fi ÙÔÓ Î·Ù·Û΢·ÛÙ‹. A˘Ùfi ‚¤‚·È· ÂÍ·ÚÙ¿Ù·È ·fi ÙËÓ ÂÈÏÔÁ‹ ÂÚÈÛÙ·ÙÈÎÔ‡, ÙËÓ ÂȉÂÍÈfiÙËÙ· ÙÔ˘ ÂÚÁ·ÛÙËÚ›Ô˘ Î·È ÙËÓ ·ÎÚ›‚ÂÈ· Ù˘ ¯ÚˆÌ·ÙÔÏË„›·˜. AÎfiÌË Ë ÌÂÁ¿ÏË ÛÎÏËÚfiÙËÙ· ÙÔ˘ ˘ÏÈÎÔ‡ ‰ËÌÈÔ˘ÚÁ› ˘Ô„›Â˜ ÁÈ· Èı·Ó‹ ·ÔÙÚÈ‚‹ Ù˘ ·‰·Ì·ÓÙ›Ó˘
ÙÔ˘ ·ÓÙ·ÁˆÓÈÛÙ‹.
A§§E™ KATA™KEYE™/OP£O¢ONTIKH
T· ÎÂÚ·ÌÈο ÔÚıÔ‰ÔÓÙÈο ·Á·ÏÈ· (brackets) ·ÔÙ¤ÏÂÛ·Ó ÌÈ· ·fi ÙȘ ηÈÓÔÙƠ̂˜ ÛÙËÓ ÎÏÈÓÈ΋ ÔÚıÔ‰ÔÓÙÈ΋
ÛÙ· Ù¤ÏË Ù˘ ‰ÂηÂÙ›·˜ ÙÔ˘ ’80. T· ÚÒÙ· ÎÂÚ·ÌÈο ›¯·Ó ¯·ÌËÏ‹ ‰˘ÛıÚ·˘ÛÙfiÙËÙ· Î·È ÙÔ ˘ÏÈÎfi Ô˘ ¯ÚËÛÈÌÔÔÈ‹ıËΠ‹Ù·Ó Ë ·ÏÔ˘Ì›Ó·115. ™ÙË Û˘Ó¤¯ÂÈ· Ë ˙ÈÚÎÔÓ›·116
¯ÚËÛÈÌÔÔÈ‹ıËΠˆ˜ ÂÓ·ÏÏ·ÎÙÈÎfi ÎÂÚ·ÌÈÎfi Ì ·ÚÎÂÙ¿ fï˜ ÌÂÈÔÓÂÎÙ‹Ì·Ù·. TÔ ¤ÓÙÔÓ· Ï¢Îfi ¯ÚÒÌ· ‰ÂÓ ‹Ù·Ó ȉȷ›ÙÂÚ· ·ÈÛıËÙÈÎfi Î·È Ë ˘„ËÏ‹ ·‰È·Ê¿ÓÂÈ· ÂÌfi‰È˙ ÙÔÓ
ʈÙÔÔÏ˘ÌÂÚÈÛÌfi ÙÔ˘ Û˘ÁÎÔÏÏËÙÈÎÔ‡ ˘ÔÛÙÚÒÌ·ÙÔ˜115. Afi ÙËÓ ¿ÏÏË ÏÂ˘Ú¿ ÂÌÊ¿ÓÈ˙ ÂÍ·ÈÚÂÙÈ΋ ·ÓÙ›ÛÙ·ÛË ÛÙËÓ ·ÔÙÚÈ‚‹116, ÌÂÁ·Ï‡ÙÂÚË ·ÓÙÔ¯‹ ÛÙËÓ ·Ú·ÌfiÚʈÛË Î·È ÏÈÁfiÙÂÚË Û˘ÁÎÚ¿ÙËÛË Ô‰ÔÓÙÈ΋˜ ÌÈÎÚԂȷ΋˜ Ͽη˜75.
™Â ¿ÌÂÛË Û‡ÁÎÚÈÛË Ì ٷ ÌÂÙ·ÏÏÈο brackets ·ÚÔ˘ÛÈ¿˙Ô˘Ó ÌÂȈ̤ÓË ·ÔÙÂÏÂÛÌ·ÙÈÎfiÙËÙ· ÌÂٷΛÓËÛ˘ ‰ÔÓÙÈÒÓ, ÌÂÁ·Ï‡ÙÂÚË ÊıÔÚ¿ Ù˘ ·‰·Ì·ÓÙ›Ó˘ ÏfiÁˆ ÙˆÓ Û˘¯ÓÒÓ ·ÔÎÔÏÏ‹ÛˆÓ75 Î·È ÌÂÁ·Ï‡ÙÂÚË ·ÔÙÚÈ‚‹ ÙÔ˘ ·ÓÙ›ıÂÙÔ˘ Ô‰ÔÓÙÈÎÔ‡ ÊÚ·ÁÌÔ‡117. AÔÙÂÏÔ‡Ó ¿ÓÙˆ˜ ÌÈ·
ÂÓ·ÏÏ·ÎÙÈ΋ χÛË ÛÙËÓ ÔÚıÔ‰ÔÓÙÈ΋115.
ÕÏϘ ηٷÛ΢¤˜ ˙ÈÚÎÔÓ›·˜ ÁÈ· Ô‰ÔÓÙÈ·ÙÚÈ΋ ¯Ú‹ÛË
Ô˘ ¤¯Ô˘Ó ΢ÎÏÔÊÔÚ‹ÛÂÈ Â›Ó·È ÔÚÈṲ̂ÓÔÈ Ù‡ÔÈ Û˘Ó‰¤ÛÌˆÓ ·ÎÚȂ›·˜ ÁÈ· ÙÔ˘˜ ÔÔ›Ô˘˜ ˆ˜ ÙÒÚ· ‰ÂÓ ˘¿Ú¯ÂÈ
‰È·ı¤ÛÈÌË ‚È‚ÏÈÔÁÚ·Ê›· ÁÈ· ÙËÓ ·ÔÙÂÏÂÛÌ·ÙÈÎfiÙËÙ· ηÈ
ÙËÓ ÎÏÈÓÈ΋ ÙÔ˘˜ ·fi‰ÔÛË. E›Û˘ ¤¯ÂÈ Î·Ù·Û΢·ÛÙ›
ÛÂÈÚ¿ Ó¤ˆÓ ÎÔÙÈÎÒÓ Î·È ¯ÂÈÚÔ˘ÚÁÈÎÒÓ ÂÚÁ·Ï›ˆÓ Ì ‚¿ÛË ÙË ˙ÈÚÎÔÓ›·75.
most often needs some form of treatment to strengthen
the cement-substrate bond. The specificity of zirconia
framework restorations lies in the fact that due to its high
hardness and crystallinity, it remains almost unaffected by
any processing128.
There have been several experimental attempts to improve the bond between zirconia and various cements with
different results. There is still a wide field of research until
the introduction of a protocol for cementing zirconia restorations that may eliminate the unpleasant complication of
restoration decementation.
CLINICAL CASES
1) Zirconia crown replacing an old metal-ceramic crown
on # 11# (Fig. 9-12)
2) Monolithic zirconia restorations (Fig.13 a-d and Fig.14 a-d).
Fig. 9a: Image of cracked metal-ceramic crown in #21
¢IAB§ENNO°ONIA ™THPI°MATA EMºYTEYMATøN
™Â οı ÔÏÔÎÏËڈ̤ÓÔ Û‡ÛÙËÌ· ÚÔÛıÂÙÈ΋˜ ·ÔηٿÛÙ·Û˘ ÂÌÊ˘ÙÂ˘Ì¿ÙˆÓ Û¯Â‰fiÓ fiÏˆÓ fiÛˆÓ Î˘ÎÏÔÊÔÚÔ‡Ó
ÛÙËÓ ·ÁÔÚ¿, ˘¿Ú¯ÂÈ ÌÈ· ÛÂÈÚ¿ ÚÔηٷÛ΢·ÛÌ¤ÓˆÓ Î·È
ÂÍ·ÙÔÌÈÎÂ˘Ì¤ÓˆÓ ÛÙËÚÈÁÌ¿ÙˆÓ ÁÈ· ÂÈÂÌÊ˘ÙÂ˘Ì·ÙÈΤ˜ ·ÔηٷÛÙ¿ÛÂȘ, ηٷÛ΢·ÛÌ¤ÓˆÓ ·fi ÎÚ¿Ì·Ù· ÙÈÙ·Ó›Ô˘, ¯Ú˘ÛÔ‡ ‹ ÌË Â˘ÁÂÓÒÓ ÌÂÙ¿ÏÏˆÓ Î·È ÎÂÚ·ÌÈÎÒÓ ˘ÏÈÎÒÓ118. T· ÚÒÙ· ÎÂÚ·ÌÈο ÛÙËÚ›ÁÌ·Ù· ·fi ·ÏÔ˘Ì›Ó· ÂÌÊ·Ó›ÛÙËÎ·Ó ÛÙËÓ ·Ú·ÁˆÁ‹ ÙÔ 1993, Ù· ÔÔ›· fï˜ ·Ú¿ ÙËÓ ÂÍ·ÈÚÂÙÈ΋ ·ÈÛıËÙÈ΋ ÙÔ˘˜ ·fi‰ÔÛË ‰¤¯ÙËÎ·Ó ÎÚÈÙÈ΋ ÁÈ· ÔÚÈṲ̂Ó˜ ·ÔÙ˘¯›Â˜ (ηٿÁÌ·Ù· ÎÔÏÔ‚ˆÌ¿ÙˆÓ)119, 120. ™ÙË Û˘Ó¤¯ÂÈ· ÚÔÎÂÈ̤ÓÔ˘ Ó· ÌÂȈı› Ô Î›Ó‰˘ÓÔ˜ ıÚ·‡ÛÂˆÓ ‰ÔÎÈÌ¿ÛÙËÎ·Ó ÛÙËÚ›ÁÌ·Ù· ·fi ˙ÈÚÎÔÓ›·122.
T· ÛÙËÚ›ÁÌ·Ù· ˙ÈÚÎÔÓ›·˜ ÌÔÚ› Ó· Â›Ó·È ÚÔηٷÛ΢·Ṳ̂ӷ ‹ ÂÍ·ÙÔÌÈÎÂ˘Ì¤Ó·. H ÂÈÏÔÁ‹ ÙˆÓ ÚÔηٷÛ΢·ÛÌ¤ÓˆÓ Â›Ó·È ·ÍÈfiÈÛÙË Î·È Ú·ÎÙÈ΋, ·ÏÏ¿ Ù· ÂÍ·ÙÔÌÈÎÂ˘Ì¤Ó· Ì ÙË ‚Ô‹ıÂÈ· Ù˘ Ù¯ÓÔÏÔÁ›·˜ CAD-CAM ÌÔÚÔ‡Ó
Ó· ۯ‰ȷÛÙÔ‡Ó ÁÈ· ȉ·ÓÈ΋ ·ÈÛıËÙÈ΋ Î·È ÂÓۈ̿وÛË
ÙˆÓ Ì·Ï·ÎÒÓ ÈÛÙÒÓ75. Y¿Ú¯ÂÈ fï˜ ·Ó¿ÁÎË ÂÚÈÛÛfiÙÂÚˆÓ Ù˘¯·ÈÔÔÈËÌ¤ÓˆÓ ÎÏÈÓÈÎÒÓ ÌÂÏÂÙÒÓ ÁÈ· Ó· ·ÍÈÔÏÔÁËıÔ‡Ó Ù· ÔʤÏË ·fi ÙË ¯Ú‹ÛË ÛÙËÚÈÁÌ¿ÙˆÓ ˙ÈÚÎÔÓ›·˜. ™Â
124
Fig. 9b: Image of cracked metal-ceramic crown in #21(visible
metal collar in cervical area)
DISCUSSION AND CONCLUSIONS
Zirconia - ceramic systems have already gained a significant position in restorative approaches with all-ceramic
restorations. The first 3-year and 5-year studies were very
encouraging for the behavior of the material in the oral
environment, while there is a large research effort to
further reduce and eliminate problems encountered in its
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
ÁÂÓÈΤ˜ ÁÚ·Ì̤˜ ¤¯ÔÓÙ·˜ Ï›Á· ÂÚ¢ÓËÙÈο ‰Â‰Ô̤ӷ Ù·
Û˘ÌÂÚ¿ÛÌ·Ù· ÌÔÚÔ‡Ó Ó· Û˘ÓÔ„ÈÛÙÔ‡Ó ˆ˜ ÂÍ‹˜121:
·) ™Â ÚfiÛıȘ ÂÚÈÔ¯¤˜ Ù· ÛÙËÚ›ÁÌ·Ù· ˙ÈÚÎÔÓ›·˜ ÏÂÈÙÔ˘ÚÁÔ‡Ó ¯ˆÚ›˜ ÂÈÏÔΤ˜ (ÌÂϤÙ˜ ÙÂÛÛ¿ÚˆÓ ÂÙÒÓ),
¯ˆÚ›˜ Ó· ÁÓˆÚ›˙Ô˘Ì ÙËÓ ·ÍÈÔÈÛÙ›· ÙÔ˘˜ ÁÈ· ÙȘ ·ÔηٷÛÙ¿ÛÂȘ ÔÈÛı›ˆÓ ÂÚÈÔ¯ÒÓ ÙÔ˘ ÊÚ·ÁÌÔ‡.
‚) H ‚ÈÔÛ˘Ì‚·ÙfiÙËÙ· Ù˘ ˙ÈÚÎÔÓ›·˜ Â›Ó·È ·Ó¿ÏÔÁË Ì ·˘Ù‹Ó ÙÔ˘ ÙÈÙ·Ó›Ô˘ ÛÙÔ˘˜ ÂÚÈÂÌÊ˘ÙÂ˘Ì·ÙÈÎÔ‡˜ Ì·Ï·ÎÔ‡˜ ÈÛÙÔ‡˜ Î·È Ë Û˘ÁΤÓÙÚˆÛË Ô‰ÔÓÙÈ΋˜ ÌÈÎÚԂȷ΋˜ Ͽη˜ ÌÈÎÚfiÙÂÚË ·fi ·˘Ù‹Ó ÙÔ˘ ÙÈÙ·Ó›Ô˘.
™Â ÎÏÈÓÈ΋ ÌÂϤÙË Â›Û˘ ÙÂÛÛ¿ÚˆÓ ÂÙÒÓ ‰ÂÓ ·Ú·ÙËÚ‹ıËΠοٷÁÌ· ÛÙËÚ›ÁÌ·ÙÔ˜, ·Ú¿ ÌfiÓÔ ·ÔÎÔ¯ÏÈÒÛÂȘ ÛÂ
ÌÈÎÚfi ÔÛÔÛÙfi ÛÙËÚÈÁÌ¿ÙˆÓ Î·È ·ÔÊÏÔÈÒÛÂȘ ÂÈÎ·Ï˘ÙÈÎÒÓ ÎÂÚ·ÌÈÎÒÓ123. ÕÏÏ· ÏÂÔÓÂÎÙ‹Ì·Ù· ıˆÚÔ‡ÓÙ·È Ë
·ÎÙÈÓԉȷÂÚ·ÙfiÙËÙ· ÙˆÓ ÛÙËÚÈÁÌ¿ÙˆÓ Ô˘ Â›Ó·È ·Ó¿ÏÔÁË ÙˆÓ ÌÂÙ¿ÏÏˆÓ Î·È ÂÈÙÚ¤ÂÈ ·ÍÈfiÈÛÙË ·ÍÈÔÏfiÁËÛË Ù˘
ÂÊ·ÚÌÔÁ‹˜ ̤۷ ·fi ÌÈ· ·ÎÙÈÓÔÁÚ·ÊÈ΋ ·ÂÈÎfiÓÈÛË12, fiˆ˜ Â›Û˘ Ô ÌÈÎÚfiÙÂÚÔ˜ ·ԯڈ̷ÙÈÛÌfi˜ ÙˆÓ ÈÛÙÒÓ ÛÂ
Û¯¤ÛË Ì ٷ ‚·ÛÈο ÎÚ¿Ì·Ù· Î·È ·ÎfiÌË Ë ÌÈÎÚfiÙÂÚË ÚÔÛÎfiÏÏËÛË ‚·ÎÙËÚ›ˆÓ ÛÙËÓ ÂÈÊ¿ÓÂÈ· Ù˘ ˙ÈÚÎÔÓ›·˜124.
Fig. 10: Zirconia core try-in
E¶I¶§OKE™ A¶OKATA™TA™EøN ME KAPAMIKA
ZIPKONIA™
Fig. 11: Final prosthesis
1) A¶Oº§OIø™H KEPAMIKøN E¶IKA§Y¶TIKøN Y§IKøN
T· ÔÛÔÛÙ¿ ÂÈÏÔÎÒÓ Î·È ÂÈ‚›ˆÛ˘ ·ÔηٷÛÙ¿ÛˆÓ
˙ÈÚÎÔÓ›·˜ Î·È ÌÂÙ·ÏÏÔÎÂÚ·ÌÈ΋˜ ‰Â›¯ÓÔ˘Ó fiÙÈ Ë ÈÔ Û˘¯Ó‹
Ù¯ÓÈ΋ ÂÈÏÔ΋ ÁÈ· ÙȘ ·ÔηٷÛÙ¿ÛÂȘ ˙ÈÚÎÔÓ›·˜ ›ӷÈ
Ë ·ÒÏÂÈ· Ù˘ ÂÈÎ·Ï˘ÙÈ΋˜ ÔÚÛÂÏ¿Ó˘ (chipping)66,
125
. Y¿Ú¯Ô˘Ó ÔÏÏÔ› ·Ú¿ÁÔÓÙ˜ Ô˘ ÙËÓ ÂËÚ¿˙Ô˘Ó fiˆ˜ Ô Î·Ù¿ÏÏËÏÔ˜ ۯ‰ȷÛÌfi˜ ÙÔ˘ ÔÏÔÎÂÚ·ÌÈÎÔ‡ ÛÎÂÏÂÙÔ‡ ÁÈ· ÙËÓ ˘ÔÛÙ‹ÚÈÍË Ù˘ ÂÈÎ¿Ï˘„˘ ÔÚÛÂÏ¿Ó˘,
ÙÔ ÌÂÁ¿ÏÔ ¿¯Ô˜ Ù˘ ÂÈÎ·Ï˘ÙÈ΋˜ ÔÚÛÂÏ¿Ó˘, Ô Î·Ù¿ÏÏËÏÔ˜ ¯ÂÈÚÈÛÌfi˜ ÛÙÔ Ô‰ÔÓÙÔÙ¯ÓÈÎfi ÂÚÁ·ÛÙ‹ÚÈÔ, ηÈ
ÔÈ ÂÚ·ÈÙ¤Úˆ ‚ÂÏÙÈÒÛÂȘ ÛÙȘ Ì˯·ÓÈΤ˜ ȉÈfiÙËÙ˜ Î·È ÙȘ
Ù¯ÓÈΤ˜ ÂÊ·ÚÌÔÁ‹˜ Ù˘ ÂÈÎ¿Ï˘„˘ ÔÚÛÂÏ¿Ó˘125.
K¿ı ηٷÛ΢·ÛÙ‹˜ Û˘ÓÈÛÙ¿ ÂÂÍÂÚÁ·Û›· Ù˘ ÂÈÊ¿ÓÂÈ·˜ ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜ (fiˆ˜ ·ÌÌÔ‚ÔÏ‹ Î·È ıÂÚÌÈΤ˜
ÂÂÍÂÚÁ·Û›Â˜) ÚÈÓ ·fi ÙËÓ ÂÈÎ¿Ï˘„Ë Ì ÔÚÛÂÏ¿ÓË.
øÛÙfiÛÔ, Ë Â›‰Ú·ÛË ÙˆÓ ıÂÚÌÈÎÒÓ ÂÂÍÂÚÁ·ÛÈÒÓ ÁÈ· ÙËÓ
·‡ÍËÛË ÙÔ˘ ‰ÂÛÌÔ‡ Û‡Ó‰ÂÛ˘ Ù˘ ÔÚÛÂÏ¿Ó˘ Ì ÙË ˙ÈÚÎÔÓ›· Â›Ó·È ·ÎfiÌ· ·ÌÊÈÏÂÁfiÌÂÓË. Y¿Ú¯Ô˘Ó ‰È·ÊÔÚ¤˜
ÛÙÔ˘˜ ıÂÚÌÈÎÔ‡˜ Û˘ÓÙÂÏÂÛÙ¤˜ ‰È·ÛÙÔÏ‹˜ Î·È ıÂÚÌÔÎڷۛ˜ fiÙËÛ˘ ÌÂٷ͇ ÙˆÓ ÂÌÔÚÈο ÚÔ˚fiÓÙˆÓ ÂÈÎ¿Ï˘„˘ ÔÚÛÂÏ¿ÓË ÁÈ· ÙË ˙ÈÚÎÔÓ›·. A˘Ùfi Û˘ÓÂ¿ÁÂÙ·È fiÙÈ Ù·
‰È·ÊÔÚÂÙÈο ÚÔ˚fiÓÙ· ¤¯Ô˘Ó ‰È·ÊÔÚÂÙÈΤ˜ Û˘Óı¤ÛÂȘ
ÛÎfiÓ˘. BÂÏÙ›ˆÛË ¯ÚÂÈ¿˙ÂÙ·È ÙË Û˘Ì‚·ÙfiÙËÙ· ·fi ÙÔ˘˜
Û˘ÓÙÂÏÂÛÙ¤˜ ıÂÚÌÈ΋˜ ‰È·ÛÙÔÏ‹˜, Î·È ·˘Ùfi ‚ÂÏÙ›ˆÛË Î·Ù¿ ¿Û· Èı·ÓfiÙËÙ· ı· ÂÚÈÏ·Ì‚¿ÓÂÈ ÙË ‚ÂÏÙÈÛÙÔÔ›ËÛË
Ù˘ ÛÎfiÓ˘ Û‡ÓıÂÛ˘126.
øÛÙfiÛÔ, ‰ÂÓ ˘¿Ú¯Ô˘Ó Û·Ê›˜ ÂӉ›ÍÂȘ Ô˘ ·Ô‰ÂÈÎÓ‡Ô˘Ó ÙËÓ ·ÚÔ˘Û›· ÙˆÓ ¯ËÌÈÎÒÓ ‰ÂÛÌÒÓ ÌÂٷ͇ ˙ÈÚÎÔÓ›·˜
Î·È ÂÈÎ¿Ï˘„Ë ÎÂÚ·ÌÈο, ·Ó Î·È ˘¿Ú¯ÂÈ Ì›· ·Ó·ÊÔÚ¿126
Ô˘ ·Ó·Ê¤ÚÂÈ ¤Ó·Ó Ù¤ÙÔÈÔ ‰ÂÛÌfi. ™˘ÓÂÒ˜ ˘ÔÙ›ıÂÙ·È fiÙÈ Ë Ì˯·ÓÈ΋ ÚfiÛÊ˘ÛË ‰È·‰Ú·Ì·Ù›˙ÂÈ ÙÔ Ì›˙ÔÓ· ÚfiÏÔ
ÛÙËÓ ÂÓۈ̿وÛË Ù˘ ÔÚÛÂÏ¿Ó˘ ÛÙË ˙ÈÚÎÔÓ›·.
Hellenic Stomatological Review 57: 101-137, 2013
Fig. 12: Absence of metal allows light transmission through
zirconia prosthesis
use. Alongside the emergence of new zirconia materials
such as as monolithic zirconia has solved the ceramic
chipping disadvantage.
There are plenty more applications of zirconia in dentistry,
few of which have scientific and long-term evidence-based
documentation. Some studies report cases with extreme
applications of zirconia such as bars, precision attachments etc. Clinicians should be particularly cautious in
accepting new undocumented applications that may be
proposed by companies or dental laboratories.
Some suspicions persist by clinicians as to the restorations behavior over time that should not be considered
groundless. The great strength of the core material does
not always guarantee longevity as there is always the risk of
a sharp change in the behavior of the material due to aging.
125
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
2) KATA°MATA ™YN¢E™MøN
M›· ¿ÏÏË ÛÔ‚·Ú‹ ÂÈÏÔ΋ Ô˘ Ô‰ËÁ› ÙȘ ·ÔηٷÛÙ¿ÛÂȘ Û ·ÛÙÔ¯›· Â›Ó·È ÙÔ Î¿Ù·ÁÌ· ÙÔ˘ ÛÎÂÏÂÙÔ‡. ¶ÈÔ Û˘¯Ó¿ ÂÌÊ·Ó›˙ÔÓÙ·È ÛÙÔ˘˜ Û˘Ó‰¤ÛÌÔ˘˜. OÈ ÚÒÙ˜ ÎÈfiÏ·˜
·ÔÙ˘¯›Â˜ Ô‰‹ÁËÛ·Ó ÛÙËÓ Î·ıȤڈÛË ·˘ÛÙËÚfiÙÂÚˆÓ
ÎÚÈÙËÚ›ˆÓ ÁÈ· ÙȘ ‰È·ÛÙ¿ÛÂȘ ÛÎÂÏÂÙÔ‡ Î·È Û˘Ó‰¤Û̈Ó
Î·È ÛÙËÓ ˘ÈÔı¤ÙËÛË ÈÔ ÂÚÈÔÚÈÛÌ¤ÓˆÓ Û ¤ÎÙ·ÛË ·ÔηٷÛÙ¿ÛˆÓ5 (EÈÎ. 6). I‰È·›ÙÂÚË ÛËÌ·Û›· ¤¯ÂÈ Î·È Ô Û¯Â‰È·ÛÌfi˜ ÙˆÓ Û˘Ó‰¤ÛÌˆÓ fiÔ˘ Ú¤ÂÈ Ó· ·ÔʇÁÔÓÙ·È
Ô͇·È¯Ì˜ ·ÔÏ‹ÍÂȘ Ô˘ Ô‰ËÁÔ‡Ó ·Ó·fiÊ¢ÎÙ· Û ÛËÌ›· Û˘ÁΤÓÙÚˆÛ˘ Ù¿ÛÂˆÓ (EÈÎ. 7&8).
3) A¶OKO§§H™H ¶PO™£ETIKøN EP°A™IøN
H ·ÒÏÂÈ· Û˘ÁÎÚ¿ÙËÛ˘ (οٷÁÌ· Û˘ÁÎÔÏÏËÙÈ΋˜ ÎÔÓ›·˜)
ÂÓfi˜ ÛÙËÚ›ÁÌ·ÙÔ˜ ·fi Ì›· ÚÔÛıÂÙÈ΋ ÂÚÁ·Û›· ‹ Ë ÂÍÔÏÔÎÏ‹ÚÔ˘ ·ÔÎfiÏÏËÛË ÌÈ·˜ ÚÔÛıÂÙÈ΋˜ ÂÚÁ·Û›·˜ ·fi Ù· Ô‰ÔÓÙÈο ÎÔÏÔ‚ÒÌ·Ù· ·ÔÙÂÏ› Ì›· ÛËÌ·ÓÙÈ΋ Ù¯ÓÈ΋ ÂÈÏÔ΋ Ô˘ ÂËÚ¿˙ÂÈ ÙËÓ ÂÈ‚›ˆÛ‹ Ù˘. E›Ó·È ‚¤‚·È· ‰˘Ó·Ù‹ Ë ¿ÌÂÛË Â·Ó·Û˘ÁÎfiÏÏËÛË Ù˘ ÂÚÁ·Û›·˜ ¯ˆÚ›˜ οÔÈ·
¿ÏÏË ÂÈÏÔ΋, ·ÏÏ¿ ÔÚÈṲ̂Ó˜ ÊÔÚ¤˜ ¿ÏϘ ‚ÈÔÏÔÁÈΤ˜ ÂÈÏÔΤ˜ fiˆ˜ ‰Â˘ÙÂÚÔÁÂÓ‹˜ ÙÂÚˉfiÓ· ‹ ·ÒÏÂÈ· ˙ˆÙÈÎfiÙËÙ·˜ ÂÈ‚¿ÏÏÔ˘Ó ÙËÓ ¿ÌÂÛË ·ÓÙÈηٿÛÙ·Û‹ Ù˘. H ·ÒÏÂÈ· Û˘ÁÎÚ¿ÙËÛ˘ Â›Ó·È Ôχ ¯·ÌËÏ‹˜ Û˘¯ÓfiÙËÙ·˜ ÂÈÏÔ΋ ÛÙȘ ÌÔÓ¤˜ ÛÙÂÊ¿Ó˜ ‹ Á¤Ê˘Ú˜127. ¶·ÚfiÏ· ·˘Ù¿ Ë ‰ÈÂÚ‡ÓËÛË ÙˆÓ ·ÈÙ›ˆÓ Ô˘ Ô‰ËÁÔ‡Ó ÛÙËÓ ·ÔÎfiÏÏËÛË ÙˆÓ
ÚÔÛıÂÙÈÎÒÓ ÂÚÁ·ÛÈÒÓ ÌÔÚ› Ó· ‚ÔËı‹ÛÂÈ ÙËÓ ¤Ú¢ӷ ÁÈ·
ÂÚÈÛÛfiÙÂÚÔ Ì·ÎÚÔ‚ÈfiÙÂÚ˜ ·ÔηٷÛÙ¿ÛÂȘ.
H ‰È·‰Èηۛ· Ù˘ ÙÂÏÈ΋˜ Û˘ÁÎfiÏÏËÛ˘ ·ÔÙÂÏ› ÙÔ ÙÂÏÂ˘Ù·›Ô ÎÏÈÓÈÎfi ÛÙ¿‰ÈÔ Î·Ù·Û΢‹˜ ÌÈ·˜ ÚÔÛıÂÙÈ΋˜ ·ÔηٿÛÙ·Û˘. M ÙËÓ ÚÔ¸fiıÂÛË fiÙÈ Ù· ÚÔËÁÔ‡ÌÂÓ· ÛÙ¿‰È· ¤¯Ô˘Ó ÂÎÙÂÏÂÛÙ› ȉ·ÓÈο, Ë Û˘ÁÎfiÏÏËÛË ¤Ú¯ÂÙ·È ˆ˜ ÂÈÛÙ¤Á·ÛÌ· ÁÈ· ÙËÓ ÔÏÔÎÏ‹ÚˆÛË ÌÈ·˜ ·ÍÈfiÈÛÙ˘ ÚÔÛıÂÙÈ΋˜ ·ÔηٿÛÙ·Û˘. OÈ ÚÔ˜ Û˘ÁÎfiÏÏËÛË ÂÈÊ¿ÓÂȘ
Ú¤ÂÈ Ó· ·Ô‰ÒÛÔ˘Ó ÙË Ì¤ÁÈÛÙË ÔÈfiÙËÙ· ‰ÂÛÌÔ‡ ¤ÙÛÈ ÒÛÙ ӷ ˘¿Ú¯ÂÈ ÌÈ· Ì·ÎÚÔ¯ÚfiÓÈ· ÂÈ‚›ˆÛË Ù˘ ÚÔÛıÂÙÈ΋˜ ·ÔηٿÛÙ·Û˘ Î·È Ó· ÂÏ·¯ÈÛÙÔÔÈËı› ÙÔ Ê·ÈÓfiÌÂÓÔ
Ù˘ ÌÈÎÚԉțۉ˘Û˘. EÎÙfi˜ ·fi ÙËÓ ÂÈÊ¿ÓÂÈ· ÙÔ˘ Ô‰ÔÓÙÈÎÔ‡ ÎÔÏÔ‚ÒÌ·ÙÔ˜, Ë ÂÛˆÙÂÚÈ΋ ÂÈÊ¿ÓÂÈ· Ù˘ ÚÔÛıÂÙÈ΋˜ ÂÚÁ·Û›·˜ ˘Ê›ÛÙ·Ù·È ÙȘ ÂÚÈÛÛfiÙÂÚ˜ ÊÔÚ¤˜ οÔÈ·
ÌÔÚÊ‹˜ ÂÂÍÂÚÁ·Û›· ÚÔÎÂÈ̤ÓÔ˘ Ó· ÈÛ¯˘ÚÔÔÈËı› Ô ‰ÂÛÌfi˜ Ì ÙÔ Ô‰ÔÓÙÈÎfi ÎÔÏfi‚ˆÌ·. H ȉȷÈÙÂÚfiÙËÙ· ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ Ì ÛÎÂÏÂÙfi ˙ÈÚÎÔÓ›·˜ ¤ÁÎÂÈÙ·È ÛÙÔ ÁÂÁÔÓfi˜
fiÙÈ ÏfiÁˆ Ù˘ ˘„ËÏ‹˜ ÛÎÏËÚfiÙËÙ·˜ Î·È ÎÚ˘ÛÙ·ÏÏÈÎfiÙËÙ·˜
Ù˘ ˙ÈÚÎÔÓ›· ·Ú·Ì¤ÓÔ˘Ó Û¯Â‰fiÓ ·ÓÂËÚ¤·ÛÙ˜ ·fi ÔÔÈ·‰‹ÔÙ ÂÊ·ÚÌÔ˙fiÌÂÓË ÂÂÍÂÚÁ·Û›·128. Œ¯Ô˘Ó Á›ÓÂÈ
ÔÏϤ˜ ÂÈÚ·Ì·ÙÈΤ˜ ÚÔÛ¿ıÂȘ ÁÈ· ÙË ‚ÂÏÙ›ˆÛË ÙÔ˘
‰ÂÛÌÔ‡ ÌÂٷ͇ ˙ÈÚÎÔÓ›·˜ Î·È ‰È¿ÊÔÚˆÓ ÎÔÓÈÒÓ Ì ‰È·ÊÔÚÂÙÈο ·ÔÙÂϤÛÌ·Ù·. Y¿Ú¯ÂÈ ·ÎfiÌË Â˘Ú‡ ÂÚ¢ÓËÙÈÎfi
‰›Ô ̤¯ÚÈ ÙËÓ Î·ıȤڈÛË Û˘ÁÎÂÎÚÈ̤ÓÔ˘ ÚˆÙÔÎfiÏÏÔ˘
Û˘ÁÎfiÏÏËÛ˘ ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ ˙ÈÚÎÔÓ›·˜ Ô˘ ÂӉ¯Ô̤ӈ˜ Ó· ÂÍ·Ï›„ÂÈ ÙË ‰˘Û¿ÚÂÛÙË ÂÈÏÔ΋ ·ÔÎfiÏÏËÛ˘ ÌÈ·˜ ·ÔηٿÛÙ·Û˘ ·fi ÙÔ Ô‰ÔÓÙÈÎfi ÛÙ‹ÚÈÁÌ·.
K§INIKA ¶EPI™TATIKA
1) MÔÓ‹Ú˘ ÛÙÂÊ¿ÓË Ì ÛÎÂÏÂÙfi ˙ÈÚÎÔÓ›·˜ ÁÈ· ·ÓÙÈηٿÛÙ·ÛË ·Ï·È¿˜ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈ΋˜ ÛÙÂÊ¿Ó˘ Û ·ÈÛıËÙÈ΋ ÂÚÈÔ¯‹ #11(EÈÎ. 9-12)
2) ™ÙÂÊ¿ÓË ÌÔÓÔÏÈıÈ΋˜ ˙ÈÚÎÔÓ›·˜ (EÈÎ. 13 ·-‰ &14 ·-‰)
126
13a
13b
13c
13d
Fig. 13a-d: Monolithic zirconia crown a) buccal view b) occlusal
view c) appliance of surface contamination inhibitor (Ivoclean,
Ivoclar)
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
14a
EÈÎ. 9·: AÚ¯È΋ ÂÈÎfiÓ· ıÚ·˘Ṳ̂Ó˘ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈ΋˜ ÛÙÂÊ¿Ó˘ #21
14b
EÈÎ. 9‚: AÚ¯È΋ ÂÈÎfiÓ· ıÚ·˘Ṳ̂Ó˘ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈ΋˜ ÛÙÂÊ¿Ó˘ #21 (ÂÌÊ·Ó¤˜ ÙÔ ÌÂÙ·ÏÏÈÎfi ÛÂÈÚ‹ÙÈ ·˘¯ÂÓÈο)
14c
EÈÎ. 10: ¢ÔÎÈÌ‹ ÛÎÂÏÂÙÔ‡ ˙ÈÚÎÔÓ›·˜
14d
EÈÎ. 11: H ÙÂÏÈ΋ ·ÔηٿÛÙ·ÛË
Hellenic Stomatological Review 57: 101-137, 2013
Fig. 14a-d: Monolithic zirconia crown one month post final cementation (buccal and occlusal view)
127
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
EÈÎ. 12: H ·Ô˘Û›· ÌÂÙ¿ÏÏÔ˘ ÂÈÙÚ¤ÂÈ ‰È¿¯˘ÛË ÊˆÙfi˜ ̤۷ ·fi ÙËÓ ÚÔÛıÂÙÈ΋ ·ÔηٿÛÙ·ÛË
™YZHTH™H-™YM¶EPA™MATA
T· ÔÏÔÎÂÚ·ÌÈο Û˘ÛÙ‹Ì·Ù· ˙ÈÚÎÔÓ›·˜ Ôχ ÁÚ‹ÁÔÚ· ÂÎÙfiÈÛ·Ó ¿ÏÏ· ÔÏÔÎÂÚ·ÌÈο Û˘ÛÙ‹Ì·Ù· Î·È ¤¯Ô˘Ó ‹‰Ë ·ÔÎÙ‹ÛÂÈ ¤Ó· ÌÂÁ¿ÏÔ ÌÂÚ›‰ÈÔ Ù˘ ·ÁÔÚ¿˜ ÙˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ·ÔηٷÛÙ¿ÛˆÓ. OÈ ÚÒÙ˜ 3ÂÙ›˜ Î·È 5ÂÙ›˜ ÌÂϤÙ˜ ‹Ù·Ó ȉȷ›ÙÂÚ· ÂÓı·ÚÚ˘ÓÙÈΤ˜ ÁÈ· ÙË Û˘ÌÂÚÈÊÔÚ¿
ÙÔ˘ ˘ÏÈÎÔ‡ ÛÙÔ ÛÙÔÌ·ÙÈÎfi ÂÚÈ‚¿ÏÏÔÓ Î·È Á›ÓÂÙ·È ÌÂÁ¿ÏË
ÂÚ¢ÓËÙÈ΋ ÚÔÛ¿ıÂÈ· ÁÈ· ÙËÓ ÂÚ·ÈÙ¤Úˆ Ì›ˆÛË Î·È ÂÍ¿ÏÂÈ„Ë ÙˆÓ ÚÔ‚ÏËÌ¿ÙˆÓ Ô˘ ÚԤ΢„·Ó ηٿ ÙË ¯Ú‹ÛË Ù˘. ¶·Ú¿ÏÏËÏ· Ë ÂÌÊ¿ÓÈÛË Ó¤ˆÓ ˘ÏÈÎÒÓ ÌÔÓÔÏÈıÈ΋˜
˙ÈÚÎÔÓ›·˜ ¤‰ˆÛ χÛË ÛÙȘ ·ÔÎÔÏÏ‹ÛÂȘ ÙÔ˘ ÂÈÎ·Ï˘ÙÈÎÔ‡ ÎÂÚ·ÌÈÎÔ‡.
Y¿Ú¯ÂÈ ÏËıÒÚ· ϤÔÓ ÂÊ·ÚÌÔÁÒÓ Ù˘ ˙ÈÚÎÔÓ›·˜ ÛÙËÓ
Ô‰ÔÓÙÈ·ÙÚÈ΋, ÂÏ¿¯ÈÛÙ˜ ·fi ÙȘ Ôԛ˜ ¤¯Ô˘Ó ÂÈÛÙËÌÔÓÈ΋ Î·È ‚È‚ÏÈÔÁÚ·ÊÈ΋ ÙÂÎÌËÚ›ˆÛË. ¶ÔÏϤ˜ ÊÔÚ¤˜ Ì¿ÏÈÛÙ· ·Ó·Ê¤ÚÔÓÙ·È ˆ˜ ·Ó·ÊÔÚ¤˜ ÂÚÈÙÒÛÂˆÓ ·ÎÚ·›Â˜ ÂÊ·ÚÌÔÁ¤˜ Ù˘ ˙ÈÚÎÔÓ›·˜ fiˆ˜ Û‡Ó‰ÂÛÌÔÈ ·ÎÚȂ›·˜, ‰ÔÎÔ› Î.¿. OÈ ÎÏÈÓÈÎÔ› Ú¤ÂÈ Ó· Â›Ó·È È‰È·›ÙÂÚ· ÂÈÊ˘Ï·ÎÙÈÎÔ› ÛÙËÓ ·Ô‰Ô¯‹ Ó¤ˆÓ ·ÙÂÎÌËÚ›ˆÙˆÓ ÂÊ·ÚÌÔÁÒÓ Ô˘
ÌÔÚ› Ó· ÚÔÙ·ıÔ‡Ó ·fi ÂÙ·ÈÚ›˜ ‹ Ô‰ÔÓÙÔÙ¯ÓÈο
ÂÚÁ·ÛÙ‹ÚÈ·.
OÚÈṲ̂Ó˜ ˘Ô„›Â˜ Ô˘ ÂÍ·ÎÔÏÔ˘ıÔ‡Ó Ó· ˘¿Ú¯Ô˘Ó ·fi ÙÔ˘˜ ÎÏÈÓÈÎÔ‡˜ ˆ˜ ÚÔ˜ ÙË Û˘ÌÂÚÈÊÔÚ¿ ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ Û ‚¿ıÔ˜ ¯ÚfiÓÔ˘ ‰ÂÓ Ú¤ÂÈ Ó· ıˆÚÔ‡ÓÙ·È
·‚¿ÛÈ̘. OÈ ÌÂÁ¿Ï˜ ·ÓÙÔ¯¤˜ ÙÔ˘ ˘ÏÈÎÔ‡ ˘Ú‹Ó· ‰ÂÓ
ÂÁÁ˘ÒÓÙ·È ¿ÓÙÔÙ ̷ÎÚÔ‚ÈfiÙËÙ· ηıÒ˜ ˘¿Ú¯ÂÈ Ô Î›Ó‰˘ÓÔ˜ Ù˘ ·fiÙÔÌ˘ ÌÂÙ·‚ÔÏ‹˜ Ù˘ Û˘ÌÂÚÈÊÔÚ¿˜ ÙÔ˘
˘ÏÈÎÔ‡ (Á‹Ú·ÓÛË)130. TÔ ÁÂÁÔÓfi˜ fiÙÈ ÙÔ ˘ÏÈÎfi ‰Â ¯ÚËÛÈÌÔÔÈÂ›Ù·È ÛÙËÓ ÔÚıÔ·È‰È΋ ÚÔ‚ÏËÌ¿ÙÈÛ ÔÏÏÔ‡˜ ÎÏÈÓÈÎÔ‡˜ Ô‰ÔÓÙÈ¿ÙÚÔ˘˜.
Afi ÙËÓ ¿ÏÏË ÏÂ˘Ú¿ Ë ·Ó¿Ù˘ÍË Î·È ÂͤÏÈÍË ÙˆÓ Û˘ÛÙËÌ¿ÙˆÓ Û¯Â‰È·ÛÌÔ‡ Î·È ÎÔ‹˜ Ì ÙË ‚Ô‹ıÂÈ· ËÏÂÎÙÚÔÓÈÎÒÓ
˘ÔÏÔÁÈÛÙÒÓ (CAD-CAM) ¤¯ÂÈ ÂÈÎÂÓÙÚˆı› ÛÙÔ ˘ÏÈÎfi Ù˘
˙ÈÚÎÔÓ›·˜ Î·È ¤¯ÂÈ ÙÂÏÂ˘Ù·›· ‚ÂÏÙȈı› Ë ÔÈfiÙËÙ· ÔÚȷ΋˜
ÂÊ·ÚÌÔÁ‹˜, ÛËÌÂ›Ô ¤ÓÙÔÓ˘ ÎÚÈÙÈ΋˜ ÛÙ· ÚÒÙ· Û˘ÛÙ‹Ì·Ù·84. T· ÎÂÚ·ÌÈο ·ÏÔ˘Ì›Ó·˜ Î·È Ù· ÌÂÙ·ÏÏÈο ÎÚ¿Ì·Ù·
Ê·›ÓÂÙ·È Ó· ÌËÓ ·ÔÙÂÏÔ‡Ó ϤÔÓ ÙÔ Â›ÎÂÓÙÚÔ Ù˘ ÂͤÏÈ128
The fact that the material is not used any longer in clinical
orthopedics raise doubts among dental professionals.
On the other hand the growth and development of
computer-aided design and cutting systems (CAD-CAM)
have been focused on zirconia and have recently
improved the fit accuracy, a point of criticism in the early
systems. The alumina ceramics and metal alloys appear
to no longer constitute the focus of development for CADCAM systems, and their commercial use is descending.
Zirconia is a subject of basic research for the last ten years
in dentistry at many levels. The three main axes of research investigation are its bond to the veneering
porcelain, luting with contemporary cements and the
improvement of its optical and mechanical properties.
Alongside areas of research and development are related
to similar materials such as composites of zirconia and
alumina. Some attempts are currently in progress in the
laser’s field, for cutting and processing zirconia with
preliminary promising results.
There are several issues on zirconia with the main
disadvantage being the matastability of its structure and
the non-controlled development of monoclinic phase that
can lead to premature failures. However there is not
enough long-term clinical documentation for total or partial acceptance of zirconia as a viable and reliable
alternative to the classical metal-ceramic restorations.
Finally, the application of zirconia as a biomaterial for
dental implants does not seem to have nowdays the initial
enthusiastic acceptance. Today, there are only a few
manufacturers of zirconia implants. However, until now,
the research done on zirconia implants is a small fraction
of the widespread research on titanium alloy implants.
REFERENCES
1. Zhao Z, Gou J: Improved fire retardancy of thermoset
composites modified with carbon nanofibers Sci Technol
Adv Mater 2009; 10: 1-6.
2. McLean J, Kedge M: High strength ceramics Quintessence
Int 1987;18: 97-106.
3. Andritsakis D: All-Ceramic Aesthetic Reconstructions
Athens1994 Parisianos publications.
4. Andritsakis D: Fixed Restorative Dentistry Athens 2002
Zacharopoulos publications.
5. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T:
Current status of zirconia restoration. J Prosthodont Res
2013; 57 (4): 236-61.
6. Encyclopedia Britannica Online Zirconium (Zr) Web. 15
March 2012.
7. Piconi C, Maccauro G: Zirconia as a ceramic biomaterial
Biomaterials 1999; 20: 1-25.
8. Mahiat Y: La Zircone: cette meconnue Strategie Prothetique
2006; 6 (1): 55-65.
9. Vagkopoulou T, Koutayas S, Koidis P, Strub J: Zirconia in
dentistry: Part 1. Discovering the nature of an upcoming
bioceramic The European Journal of Esthetic dentistry
2009; 4 (2): 2-23.
10. Hannink R, Kelly P, Muddle B: Transformation toughening
in zirconia-containing ceramics. J Am Ceram Soc 2000; 83
(3): 461-87.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
13·
13‚
13Á
13‰
EÈÎ. 13 (·-‰): ÛÙÂÊ¿ÓË ÌÔÓÔÏÈıÈ΋˜ ˙ÈÚÎÔÓ›·˜ ·) ·ÚÂȷ΋ ¿Ô„Ë ‚) Ì·ÛËÙÈ΋ ¿Ô„Ë Á) ÙÔÔı¤ÙËÛË ·Ú¿ÁÔÓÙ· ·Ê·›ÚÂÛ˘ ÂÈÊ·ÓÂȷ΋˜ ÂÈÌfiÏ˘ÓÛ˘ (Ivoclean, Ivoclar) ‰) Ë ÛÙÂÊ¿ÓË ÚÈÓ
ÙË Û˘ÁÎfiÏÏËÛË (T˙Ô‡Ù˙·˜ I.)
Hellenic Stomatological Review 57: 101-137, 2013
11. Petropoulos P: Elastic properties of high technology ceramics PhD 2001 University of Patra.
12. Manicone P, Iommetti P, Raffaelli L: An overview of zirconia
ceramic: Basic properties and clinical applications Journal
of dentistry 2007; 35: 819-826.
13. Clarke I et al: Current status of zirconia used in total hip
implants J Bone Joint Surg 2003; 85: 73-84.
14. Chevalier J: What future of zirconia as a biomaterial? Biomaterials 2006; 27: 535-543.
15. Masonis J, Bourne R, Ries, M, McCalden R, Salehi A, Kelman D: Zirconia femoral head fractures: a clinical and retrieval analysis. Journal of Arthroplasty 2004; 19: 898-905.
16. Fabbri P et al: Lifetime estimation of a zirconia-alumina
composite for biomedical applications Dental Mater 2014;
30: 138-42.
17. Katakis D: University Inorganic Chemistry p.51 OEDB.
18. “Zirconium” The Columbia electronic Encyclopedia 6th
edition 2007 editor Paul Lagasse.
19. Peterson J, McDonell M: Zirconium: Radiological and Chemical Fact Sheets to Support Health Risk Analyses for
Contaminated Areas. Argonne National Laboratory 2007:
64-65.
20. Zirconium: How Products Are Made. Advameg Inc 2007: 1-6.
21. Giannakoudakis D: Lessons of General and Inorganic
Chemistry 1970 University of Thessaloniki.
22. Denry I, Kelly R: State of the art of zirconia for dental
applications Dental Materials 2008; 24: 299-307.
23. Kelly J, Denry I: Stabilized zirconia as a structural ceramic:
An overview. Dent Mater 2008; 24: 289-298.
24. Shen T, Tien T, Chen I: Cubic- to -tetragonal (t’) transformation in zirconia coating systems. J Am Ceram Soc 1992; 75:
1505-16.
25. Evans A, Heuer A: Review-transformation toughening in
ceramics: martensitic transformations in crack-tip stress
fields. J Am Ceram Soc 1980; 63 (5-6): 241-8.
26. Tagmatarchis A: Surface characterization of dental
ceramics on reinforced all-ceramic substrates Phd 2003.
27. Pessoa R, Cerqueira M, Nasar R, Yoshida I: Synthesis of stabilized zirconia without dopants Cerâmica 2008; 54:253258.
28. Garvie R, Hannink R, Pascoe R: Ceramic steel? Nature
(London) 1975; 258: 703-4.
29. Claussen N, Ruhle M, Heuer AH, editors: Advances in
ceramics, vol. 12. Science and Technology of Zirconia II.
Columbus (OH, USA): The American Ceramic Society
1984: 325-51.
30. Heuer A: Transformation toughening in ZrO2-containing
ceramics. J Am Ceram Soc 1987; 70 (10): 689-98.
31. Heuer A, Claussen N, Kriven W, Ruehle M: Stability of tetragonal ZrO2 particles in ceramic materials. J Am Ceram Soc
1982; 65 (12): 642-50.
32. Stevens R: Engineering Properties of Zirconia 1986 Magnesium Elektron Ltd.
33. Salomoni A, Tucci A, Esposito L, Stamenkovic I: Forming
and sintering of multiphase bioceramics. J Mater Sci Mater
Med 1994; 5: 651-3.
34. Deville S, Chevalier J: Martensitic Relief Observation by
Atomic Force Microscopy in Yttria-Stabilized Zirconia J Am
Ceram Soc 2003; 86 (12): 225-27.
35. Basu D, Gupta M, Basu M, Sarkar B: Ageing of zirconiatoughened alumina ceramics J of the European Ceramic
Society 1996; 16: 613-617.
36. Lunghi V, Sergo V: Low temperature degradation-aging-of
zirconia: A critical review of relevant aspects in dentistry
Dental Materials 2010; 26: 807-820.
129
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
14·
14‚
14Á
14‰
EÈÎ. 14·-‰: ™ÙÂÊ¿ÓË ÌÔÓÔÏÈıÈ΋˜ ˙ÈÚÎÔÓ›·˜ ¤Ó· Ì‹Ó· ÌÂÙ¿ ÙËÓ ÙÂÏÈ΋ Û˘ÁÎfiÏÏËÛË (·ÚÂȷ΋ Î·È Ì·ÛËÙÈ΋ ¿Ô„Ë) (T˙Ô‡Ù˙·˜ I.)
130
37. Magnani G, Brillante A: Effect of the composition and
sintering process on mechanical properties and residual
stresses in zirconia-alumina composites Journal of the
European Ceramic Society 2005; 25: 3383-3392.
38. Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta
D, Manicone PF, Raffaelli L, Rossi Iommetti P, Stewart A,
Cittadini A, Sgambato A: Development of a new zirconiatoughened alumina: promising mechanical properties and
absence of in vitro carcinogenicity. Int J Immunopathol
Pharmacol 2009 Jul-Sep; 22 (3): 773-9.
39. Chai J, Chu F, Chow T, Liang B: Chemical solubility and FS
of Zirconia based ceramics. Int J Prosthodont 2007; 20:
587-595.
40. Christel P, Meunier A, Heller M, Torre J, Peile C: Mechanical
properties and short-term in vivo evaluation of yttriumoxide-parially-stabilized zirconia. J Biomed Mater Res
1989; 23: 45-61.
41. Montross C: Comparison of bulk properties of Mg-PSZ with
temperature- time contour diagrams. J Am Ceram Soc
1993; 76 (8): 1993-7.
42. Green D, Hannink R, Swain M: TransfÔrmation Toughening
of Ceramics. CRC Press, Boca Raton. FL, 1989: 98-103.
43. Hannink R, Howard C, Kisi E, Swain M: Relationship
between fracture toughness and phase assemblage in MgPSZ. J Am Ceram Soc 1994; 77: 571-579.
44. Sundh A, Sjoegren G: Fracture resistance of all-ceramic
zirconia bridges with differing phase stabilizers and quality
of sintering. Dent Mater 2006; 22: 778-84.
45. Gupta T, Bechtold J, Kuznicki R, Cadoff L, Rossing B:
Stabilization of tetragonal phase in polycrystalline zirconia
J Mater Sci 1977; 12 (12): 2421-6.
46. Gupta T, Lange F, Bechtold J: Effect of stress induced phase transformation on the properties of polycrystalline
zirconia containing metastable tetragonal phase J Mater
Sci 1978; 13: 1464-70.
47. Ruiz L, Readey M: Effect of heat-treatment on grain size,
phase assemblage, and mechanical properties of 3 mol%
Y-TZP J Am Ceram Soc 1996; 79 (9): 2331-40.
48. Chevalier J, Deville S, Munch E, Jullian R, Lair F: Critical
effect of cubic phase on aging in 3mol% yttria-stabilized
zirconia ceramics for hip replacement prosthesis
Biomaterials 2004; 25 (24): 5539-45.
49. Aboushelib M, Kleverlaan C, Feilzer A: Evaluation of a High
Fracture Toughness Composite Ceramic for Dental
Applications J of Prosthodontics 2008; 17 :538-544.
50. Sato T, Ohtaki S, Endo T, Shimada M: Transformation of
yttria-doped tetragonal ZrO2 polycrystals by annealing in
controlled humidity conditions J Am Ceram Soc 1985; 168:
356-9.
51. Yi Y, Wang C, Wen N, Lin Y, Tian J: Structure and properties
of colored dental tetragonal zirconia stabilized by yttrium
ceramics. Hua Xi Kou Qiang Yi Xue Za Zhi. 2009 Oct; 27 (5):
473-8(abstract).
52. Zhang Y, Sailer I, Lawn B: Fatigue of dental ceramics J of
Dentistry 2013; 41: 1135-47.
53. Zhang Y, Lee J, Srikanth R, Lawn B: Edge chipping and
flexural resistance of monolithic ceramics. Dent Mater
2013; 29 (12): 1201-8.
54. Boulouz M, Boulouz, A, Giani A, Boyer A: Influence of
substrate temperature and target composition on the
properties of yttria-stabilized zirconia thin films grown by r.f.
reactive magnetron sputtering Thin Solid Films 1998; 323:
85-92.
55. Heffernan M et al: Relative translucency of six all-ceramic
systems: Part II J Prosthet Dent 2002; 88: 10-5.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
͢ ÁÈ· Ù· CAD-CAM Û˘ÛÙ‹Ì·Ù· Î·È Ë ÂÌÔÚÈ΋ ÙÔ˘˜ ÔÚ›· Â›Ó·È Êı›ÓÔ˘Û·. H ˙ÈÚÎÔÓ›· ·ÔÙÂÏ› ·ÓÙÈΛÌÂÓÔ ÌÂϤÙ˘ Ù· ÙÂÏÂ˘Ù·›· ‰¤Î· ¯ÚfiÓÈ· ÛÙËÓ O‰ÔÓÙÈ·ÙÚÈ΋ ÛÂ
ÔÏÏ¿ Â›‰·. OÈ ÙÚÂȘ ‚·ÛÈÎÔ› ¿ÍÔÓ˜ ÌÂϤÙ˘ Â›Ó·È Ë
Û‡Ó‰ÂÛË Ì ÙËÓ ÔÚÛÂÏ¿ÓË, Ë Û˘ÁÎfiÏÏËÛË Ì ٷ Û‡Á¯ÚÔÓ· ̤۷ Î·È Ë ‚ÂÏÙ›ˆÛË ÙˆÓ ÔÙÈÎÒÓ Î·È Ì˯·ÓÈÎÒÓ È‰ÈÔًوÓ. ¶·Ú¿ÏÏËÏ· ·Ó·Ù‡ÛÛÔÓÙ·È Î·È ÙÔÌ›˜ Ô˘ ·ÊÔÚÔ‡Ó
Û ·ÚÂÌÊÂÚ‹ ˘ÏÈο fiˆ˜ ÛÙ· Û‡ÓıÂÙ· ˘ÏÈο ˙ÈÚÎÔÓ›·˜·ÏÔ˘Ì›Ó·˜. K¿ÔȘ ÚÔÛ¿ıÂȘ Á›ÓÔÓÙ·È ·ÎfiÌ· ÛÙÔÓ ÙÔ̤· Ù˘ ÂÊ·ÚÌÔÁ‹˜ laser ÁÈ· ÙËÓ ÎÔ‹ Î·È ÂÂÍÂÚÁ·Û›·
ÙˆÓ ˘ÏÈÎÒÓ ˙ÈÚÎÔÓ›·˜ Ì ˘ÔÛ¯fiÌÂÓ· ·ÔÙÂϤÛÌ·Ù·.
Y¿Ú¯Ô˘Ó ·ÚÎÂÙ¿ ˙ËÙ‹Ì·Ù· Û¯ÂÙÈο Ì ÙÔ ˘ÏÈÎfi Ù˘ ˙ÈÚÎÔÓ›·˜ Ì ‚·ÛÈÎfiÙÂÚÔ ÌÂÈÔÓ¤ÎÙËÌ· ÙËÓ ·ÛÙ¿ıÂÈ· ‰ÔÌ‹˜
Î·È ÙË ÌË ÂÏÂÁ¯fiÌÂÓË ·Ó¿Ù˘ÍË Ù˘ ÌÔÓÔÎÏÈÓÔ‡˜ Ê¿Û˘
Ô˘ ÌÔÚ› Ó· Ô‰ËÁ‹ÛÂÈ ÙÔ ˘ÏÈÎfi Û ÚÒÈÌË ·ÛÙÔ¯›·.
T·˘Ùfi¯ÚÔÓ·, ÙÔ ÁÂÁÔÓfi˜ fiÙÈ ‰ÂÓ ˘¿Ú¯Ô˘Ó Ì·ÎÚfi¯ÚÔÓ˜
ÌÂϤÙ˜ ÂÈ‚›ˆÛ˘ ÙˆÓ ·ÔηٷÛÙ¿ÛÂˆÓ ˙ÈÚÎÔÓ›·˜, ηıÈÛÙ¿ ÂÏÏÈ‹ ÙËÓ ÙÂÎÌËÚ›ˆÛË ÁÈ· ÙËÓ Î·ıÔÏÈ΋ ‹ ÌÂÚÈ΋
·Ô‰Ô¯‹ ÙÔ˘ ˆ˜ ·ÍÈfiÈÛÙ˘ ÂÓ·ÏÏ·ÎÙÈ΋˜ χÛ˘ ÙˆÓ
ÎÏ·ÛÈÎÒÓ ÌÂÙ·ÏÏÔÎÂÚ·ÌÈÎÒÓ ·ÔηٷÛÙ¿ÛˆÓ.
T¤ÏÔ˜ Ë ÂÊ·ÚÌÔÁ‹ Ù˘ ˙ÈÚÎÔÓ›·˜ ˆ˜ Ô‰ÔÓÙÈ·ÙÚÈÎÔ‡ ‚ÈÔ¸ÏÈÎÔ‡ ÂÌÊ˘ÙÂ˘Ì¿ÙˆÓ ‰Â Ê·›ÓÂÙ·È Ó· ¤¯ÂÈ Û‹ÌÂÚ· ÙËÓ ·Ú¯È΋ ÂÓıÔ˘ÛÈÒ‰Ë ·Ô‰Ô¯‹, fiˆ˜ ‰È·Ê·›ÓÂÙ·È ·fi ÙÔ˘˜
ÂÏ¿¯ÈÛÙÔ˘˜ ϤÔÓ Î·Ù·Û΢·ÛÙ¤˜ ÂÌÊ˘ÙÂ˘Ì¿ÙˆÓ ˙ÈÚÎÔÓ›·˜. H ¤Ú¢ӷ Ô˘ Á›ÓÂÙ·È Û¯ÂÙÈο Ì ÙË ˙ÈÚÎÔÓ›· Â›Ó·È ¤Ó· ÌÈÎÚfi ÎÏ¿ÛÌ· Ù˘ Â˘Ú‡Ù·Ù˘ ¤Ú¢ӷ˜ ÁÈ· Ù· ÂÌÊ˘Ù‡̷ٷ ÎÚ·Ì¿ÙˆÓ ÙÈÙ·Ó›Ô˘.
BIB§IO°PAºIA
1. Zhao Z, Gou J: Improved fire retardancy of thermoset
composites modified with carbon nanofibers Sci Technol
Adv Mater 2009; 10:1-6.
2. McLean J, Kedge M: High strength ceramics Quintessence
Int 1987;18: 97-106.
3. AÓ‰ÚÈÙÛ¿Î˘ ¢: OÏÔÎÂÚ·ÌÈΤ˜ AÈÛıËÙÈΤ˜ AÔηٷÛÙ¿ÛÂȘ Aı‹Ó· 1994 EΉfiÛÂȘ ¶·ÚÈÛÈ¿ÓÔ˜.
4. AÓ‰ÚÈÙÛ¿Î˘ ¢: AΛÓËÙË E·ÓÔÚıˆÙÈ΋ O‰ÔÓÙÈ·ÙÚÈ΋ Aı‹Ó· 2002 EΉfiÛÂȘ Z·¯·ÚfiÔ˘ÏÔ˜.
5. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T:
Current status of zirconia restoration. J Prosthodont Res
2013; 57 (4): 236-61.
6. Encyclopedia Britannica Online Zirconium (Zr) Web. 15
March 2012.
7. Piconi C, Maccauro G: Zirconia as a ceramic biomaterial
Biomaterials 1999; 20: 1-25.
8. Mahiat Y: La Zircone: cette meconnue Strategie Prothetique
2006; 6 (1): 55-65.
9. Vagkopoulou T, Koutayas S, Koidis P, Strub J: Zirconia in
dentistry: Part 1. Discovering the nature of an upcoming
bioceramic The European Journal of Esthetic dentistry
2009; 4 (2): 2-23.
10. Hannink R, Kelly P, Muddle B: Transformation toughening
in zirconia-containing ceramics. J Am Ceram Soc 2000; 83
(3): 461-87.
11 ¶ÂÙÚfiÔ˘ÏÔ˜ ¶: EÏ·ÛÙÈΤ˜ I‰ÈfiÙËÙ˜ ÎÂÚ·ÌÈÎÒÓ ˘ÏÈÎÒÓ ˘„ËÏ‹˜ Ù¯ÓÔÏÔÁ›·˜ ¢È‰·ÎÙÔÚÈ΋ ¢È·ÙÚÈ‚‹ 2001 ¶·ÓÂÈÛÙ‹ÌÈÔ ¶·ÙÚÒÓ.
12. Manicone P, Iommetti P, Raffaelli L: An overview of zirconia
ceramic: Basic properties and clinical applications Journal
of dentistry 2007; 35: 819-826.
Hellenic Stomatological Review 57: 101-137, 2013
56. Niafas Ch: Total hip replacement and high speed ceramic
process PhD 2009 NTUOA.
57. Theunissen G, Bouma J, Winnbst A: Mechanical properties
of ultra fine grained zirconia ceramics Journal of materials
Science 1992; 27: 4429-4438.
58. Jasinski P, Petrovsky V, Toshio S, Petrovsky T, Anderson H:
Electrical properties of YSZ films prepared by net shape
technology J of the Electrochemical Society 2005; 152 (2):
A454-A458.
59. Garcia R, Ussui V, de Lima N, Muccillo E, Lazar D: Physical
properties of alumina/yttria-stabilized zirconia composites
with improved microstructure Journal of Alloys and
Compounds 2009; 486 (1-2): 747-753.
60. Rigney M, Funkenbusch E, Carr P: Physical and chemical
characterization of microporous zirconia Journal of
Chromatography 1990; 499: 291-304.
61. Wang C, Ong S, Xu P, Chen C: Electrical properties of
crystalline YSZ films on silicon as alternative gate
dielectrics Semicon Sci Technol 2001; 16: 13-16.
62. Bengisu M: Engineering ceramics Spinger 2007.
63. Badwal S, Drennan J: Grain boundary sensitivity in Y-TZP
materials as a function of thermal history J Mater Sci 24
(1989): 88-96.
64. Chen C, Hsiang H, Hsu S: Preparation and characterization
of Y-TZP powders coated with alumina Journal of Ceramic
Processing Research 2008; 8: 131-134.
65. Hannink R, Kelly P, Muddle B: Transformation Toughening
in Zirconia-Containing Ceramics J Am Ceram Soc, 2000; 83
(3): 461-87.
66. Komine F, Blatz M, Matsumura H: Current status of zirconiabased fixed restorations Journal Oral Science 2010; 52 (4):
531-539.
67. Parker R: Use of zirconia in restorative dentistry Dent Today
2007; 26 (3): 114-112.
68. Al-Amleh B, Lyons K, Swai M: Clinical trials in zirconia: a
systematic review J of Oral Rehabil 2010; 37: 641-652.
69. Griggs JA: Recent advances in materials for all-ceramic
restorations. Dent Clin North Am 2007; 51 (3):713-27.
70. Creugers N, Kayser A, Van’t Hoff M: A meta-analysis of
durability data on conventional fixed bridges. Community
Dent Oral Epidemiol 1994; 22: 448-452.
71. Lucarroti P, Burke F: Analysis of an administrative database
of indirect restorations over 11 years Journal of Dentistry
2009; 37: 4-11.
72. Sadan A, Blatz M, Lang B: Clinical considerations for
densely sintered alumina and zirconia restorations: part 1
Int J Per Rest Dent 2005; 25: 213-219.
73. Bahhav V, Aras M: Zirconia-based fixed partial dentures: a
clinical review Quintessence Int 2011; 42: 173-182.
74. Koutayas S, Vagkopoulou T, Pelekanos S, Koidis P, Strub J:
Zirconia in dentistry: Part 2. Evidence-based clinical
breakthrough The European Journal of Esthetic dentistry
2009; 4 (2): 348-380.
75. Akbar J, Petrie C, Walker M, Williams K, Eick J: Marginal
adaptation of Cerec 3 CAD/CAM composite crowns using
two different finish line preparation designs. J Prosthodont
2006; 15 (3): 155-63.
76. McLaren E, Hyo L: CAD/CAM update: technologies and
materials and clinical perspectives Inside Dentistry 2006;
Nov/Dec: 98-103.
77. Reich S, Petschelt A, Lohbauer U: The effect of finish line
preparation and layer thickness on the failure load and
fractography of ZrO2 copings. J Prosthet Dent 2008 May;
99 (5): 369-76.
131
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
13. Clarke I et al: Current status of zirconia used in total hip
implants J Bone Joint Surg 2003; 85: 73-84.
14. Chevalier J: What future of zirconia as a biomaterial?
Biomaterials 2006; 27: 535-543.
15. Masonis J, Bourne R, Ries, M, McCalden R, Salehi A, Kelman
D: Zirconia femoral head fractures: a clinical and retrieval
analysis. Journal of Arthroplasty 2004; 19: 898-905.
16. Fabbri P et al: Lifetime estimation of a zirconia-alumina
composite for biomedical applications Dental Mater 2013;
XXX-XXX.
17. K·Ù¿ÎË ¢, ¶ÓÂ˘Ì·ÙÈοÎË °: ¶·ÓÂÈÛÙËÌȷ΋ AÓfiÚÁ·ÓÔ˜
XËÌ›· ÙfiÌÔ˜ A’ ÛÂÏ. 51 OE¢B.
18. “Zirconium” The Columbia electronic Encyclopedia 6th
edition 2007 editor Paul Lagasse.
19. Peterson J, McDonell M: Zirconium: Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas. Argonne National Laboratory 2007: 64-65.
20. Zirconium: How Products Are Made. Advameg Inc. 2007: 1-6.
21. °È·ÓÓ·ÎÔ˘‰¿Î˘ ¢A, M·ÓÔ˘Û¿Î˘ °E: M·ı‹Ì·Ù· °ÂÓÈ΋˜
Î·È AÓÔÚÁ¿ÓÔ˘ XËÌ›·˜, 1970 ¶·ÓÂÈÛÙ‹ÌÈÔ £ÂÛÛ·ÏÔӛ΢.
22. Denry I, Kelly R: State of the art of zirconia for dental
applications Dental Materials 2008; 24: 299-307.
23. Kelly J, Denry I: Stabilized zirconia as a structural ceramic:
An overview. Dent Mater 2008; 24: 289-298.
24. Shen T, Tien T, Chen I: Cubic- to -tetragonal (t’) transformation in zirconia coating systems. J Am Ceram Soc 1992; 75:
1505-16.
25. Evans A, Heuer A: Review-transformation toughening in
ceramics: martensitic transformations in crack-tip stress
fields. J Am Ceram Soc 1980; 63 (5-6): 241-8.
26. T·Á̷ٿگ˘ A: X·Ú·ÎÙËÚÈÛÌfi˜ Ù˘ ‰ÈÂÈÊ¿ÓÂÈ·˜ Ô‰ÔÓÙÈ·ÙÚÈÎÒÓ ÎÂÚ·ÌÈÎÒÓ ÂÈηχ„ÂˆÓ Â› ÂÓÈÛ¯˘Ì¤ÓˆÓ ÔÏÔÎÂÚ·ÌÈÎÒÓ ˘ÔÛÙÚˆÌ¿ÙˆÓ Aı‹Ó· 2003 ¢È‰·ÎÙÔÚÈ΋ ¢È·ÙÚÈ‚‹.
27. Pessoa R, Cerqueira M, Nasar R, Yoshida I: Synthesis of
stabilized zirconia without dopants Cerâmica 2008; 54:
253-258.
28. Garvie R, Hannink R, Pascoe R: Ceramic steel? Nature
(London) 1975; 258: 703-4.
29. Claussen N, Ruhle M, Heuer AH editors: Advances in
ceramics, vol. 12. Science and Technology of Zirconia II.
Columbus (OH, USA): The American Ceramic Society
1984: 325-51.
30. Heuer A: Transformation toughening in ZrO2-containing
ceramics. J Am Ceram Soc 1987; 70 (10): 689-98.
31. Heuer A, Claussen N, Kriven W, Ruehle M: Stability of
tetragonal ZrO2 particles in ceramic materials. J Am Ceram
Soc 1982; 65 (12): 642-50.
32. Stevens R: Engineering Properties of Zirconia 1986
Magnesium Elektron Ltd.
33. Salomoni A, Tucci A, Esposito L, Stamenkovic I: Forming
and sintering of multiphase bioceramics. J Mater Sci Mater
Med 1994; 5: 651-3.
34. Deville S, Chevalier J: Martensitic Relief Observation by
Atomic Force Microscopy in Yttria-Stabilized Zirconia J Am
Ceram Soc 2003; 86 (12): 225-27.
35. Basu D, Gupta M, Basu M, Sarkar B: Ageing of zirconiatoughened alumina ceramics J of the European Ceramic
Society 1996; 16: 613-617.
36. Lunghi V, Sergo V: Low temperature degradation-aging-of
zirconia: A critical review of relevant aspects in dentistry
Dental Materials 2010; 26: 807-820.
37. Magnani G, Brillante A: Effect of the composition and
sintering process on mechanical properties and residual
stresses in zirconia-alumina composites Journal of the
European Ceramic Society 2005; 25: 3383-3392.
132
78. Lin M et al: The effect of tooth preparation form on the fit of
Procera copings Int J Prosthodont 1998; 11: 580-90.
79. Conrad H, Seong W, Pesun I: Current ceramc materials
and systems with clinical recommendations: A systematic
review J Prosthet Dent 2007; 98: 389-404.
80. Pogoncheff C, Duff R: Use of zirconia collar to prevent
interproximal porcelain fracture: a clinical report J Prosthet
Dent 2010; 104: 77-79.
81. Tinschert J et al: Clinical behavior of zirconia-based fixed
partial dentures made of DC-Zirkon: 3 years results Int J
Prosthodont 2008; 21: 217-222.
82. Sailer I, Gottner J, Kanel S, Hammerle C: Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic
posterior FPDs. A 3-year follow up Int J Prosthodont 2009;
22: 553-560.
83. Beuer F, Edelhoff D, Gernet W, Sorensen J: Three-year
clinical prospective evaluation of zirconia-based posterior
fixed dental prostheses Clin Oral Invest 2009; 13: 445-451.
84. Cehreli M, Kokat A, Akca K: CAD/CAM Zirconia Vs. slip-cast
glass-infiltrated alumina/zirconia all-ceramic crowns: 2year results of a randomized controlled clinical trial J Appl
Oral Sci 2009; 17 (1): 49-55.
’
85. Suarez
M, Lozano J, Paz Salido M, Mart›nez F: Three-year
clinical evaluation of In-Ceram Zirconia posterior FPDs The
International Journal of Prosthodontics 2004; 17 (1): 35-8.
86. Ozkurt Z, Kazazoglu E: Clinical success of zirconia in dental
applications J of Prosthodont 2010; 19: 64-68.
87. Carracho J, Razoog M: Removable partial denture abutments
restored with all-ceramic surveyed crowns Quintessence Int
2006; 37: 283-288.
88. Pellechia R, Kang K, Hirayama H: Fixed partial denture
supported by all-ceramic copings: a clinical report J
Prosthet Dent 2004; 92: 220-3.
89. Chevalier J, Cales B, Drouin J: Low-temperature aging of YTZP ceramics J Am Ceram Soc 1999; 82: 2150-2154.
90. Larsson C et al: Fracture strength of four unit YTZP FPD
cores designed with varying connector diameter. An in vitro
study J Oral Rehab 2007; 34: 702-709.
91. Sundh A, Molin M, Sjogren G: Fracture resistance of yttrium
oxide partially stabilized zirconia all-ceramic bridges after
veneering and mechanical fatigue testing Dental Materials
2005; 21: 476-482.
92. Vult von Steyern P: All-ceramic fixed partial dentures.
Studies on aluminum oxide- and zirconium dioxide-based
ceramic systems. Swed Dent J Suppl 2005; (173): 1-69.
93. Kamposiora P, Papavasiliou G, Bayne S, Felton D: Stress
concentration in all-ceramic posterior fixed partial dentures
Quintessence Int 1996; 27: 701-706.
94. Studart R, Filser F, Kocher P, Gauckler L: Fatigue of
zirconia under cyclic loading in water and its implications for
the design of dental bridges. Dent Mater 2007; 23 (1): 106-14.
95. Guazzato M, Albakry M, Swain M, Ironside J: Mechanical
properties of In-Ceram alumina and In-ceram Zirconia Int J
Prostodont 2002; 15: 339-346.
96. Schmitt J et al: Zirconia posterior fixed partial dentures: A
prospective clinical 3-year follow up Int J Prosthodont 2009;
22: 597-603.
97. Bicaro L, Bonfiglioli R, Soattin M, Vigolo P: An in vivo evaluation
of fit ofzirconium-oxide based ceramic single crowns,
generated with two CAD/CAM systems, in comparison to
metal ceramic single crowns. J Prosthodont 2013; 22: 36-41.
98. Komine F, Gerds T, Witkowski S, Strub J: Influence of
framework configuration on the marginal adaptation of
zirconium dioxide ceramic anterior four-unit frameworks.
Acta Odontol Scand 2005; 63: 361-6.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
38. Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta
D, Manicone PF, Raffaelli L, Rossi Iommetti P, Stewart A,
Cittadini A, Sgambato A: Development of a new zirconiatoughened alumina: promising mechanical properties and
absence of in vitro carcinogenicity. Int J Immunopathol
Pharmacol. 2009 Jul-Sep; 22 (3): 773-9.
39. Chai J, Chu F, Chow T, Liang B: Chemical solubility and FS of
Zirconia based ceramics. Int J Prosthodont 2007; 20: 587-595.
40. Christel P, Meunier A, Heller M, Torre J, Peile C: Mechanical
properties and short-term in vivo evaluation of yttriumoxide-parially-stabilized zirconia. J Biomed Mater Res
1989; 23: 45-61.
41. Montross C: Comparison of bulk properties of Mg-PSZ with
temperature- time contour diagrams. J Am Ceram Soc
1993; 76 (8): 1993-7.
42. Green D, Hannink R, Swain M: TransfÔrmation Toughening
of Ceramics. CRC Press, Boca Raton. FL, 1989: 98-103.
43. Hannink R, Howard C, Kisi E, Swain M: Relationship
between fracture toughness and phase assemblage in MgPSZ. J Am Ceram Soc 1994; 77: 571-579.
44. Sundh A, Sjoegren G: Fracture resistance of all-ceramic
zirconia bridges with differing phase stabilizers and quality
of sintering. Dent Mater 2006; 22: 778-84.
45. Gupta T, Bechtold J, Kuznicki R, Cadoff L, Rossing B:
Stabilization of tetragonal phase in polycrystalline zirconia
J Mater Sci 1977; 12 (12): 2421-6.
46. Gupta T, Lange F, Bechtold J: Effect of stress induced
phase transformation on the properties of polycrystalline
zirconia containing metastable tetragonal phase J Mater
Sci 1978; 13: 1464-70.
47. Ruiz L, Readey M: Effect of heat-treatment on grain size,
phase assemblage, and mechanical properties of 3 mol%
Y-TZP J Am Ceram Soc 1996; 79 (9): 2331-40.
48. Chevalier J, Deville S, Munch E, Jullian R, Lair F: Critical
effect of cubic phase on aging in 3mol% yttria-stabilized
zirconia ceramics for hip replacement prosthesis Biomaterials 2004; 25 (24): 5539-45.
49. Aboushelib M, Kleverlaan C, Feilzer A: Evaluation of a High
Fracture Toughness Composite Ceramic for Dental
Applications J of Prosthodontics 2008; 17: 538-544.
50. Sato T, Ohtaki S, Endo T, Shimada M: Transformation of yttriadoped tetragonal ZrO2 polycrystals by annealing in controlled
humidity conditions J Am Ceram Soc 1985; 168: 356-9.
51. Yi Y, Wang C, Wen N, Lin Y, Tian J: Structure and properties
of colored dental tetragonal zirconia stabilized by yttrium
ceramics. Hua Xi Kou Qiang Yi Xue Za Zhi. 2009 Oct; 27 (5):
473-8 (abstract).
52. Zhang Y, Sailer I, Lawn B: Fatigue of dental ceramics J of
Dentistry 2013; 41: 1135-47.
53. Zhang Y, Lee J, Srikanth R, Lawn B: Edge chipping and
flexural resistance of monolithic ceramics. Dent Mater
2013; 29 (12): 1201-8.
54. Boulouz M, Boulouz A, Giani A, Boyer A: Influence of substrate temperature and target composition on the properties
of yttria-stabilized zirconia thin films grown by r.f. reactive
magnetron sputtering Thin Solid Films 1998; 323: 85-92.
55. Heffernan M et al: Relative translucency of six all-ceramic
systems: Part II J Prosthet Dent 2002; 88: 10-5.
56. NÈ¿Ê·˜ X: OÏÈ΋ ·ÚıÚÔÏ·ÛÙÈ΋ Î·È Î·ÙÂÚÁ·Û›· ˘„ËÏÒÓ
Ù·¯˘Ù‹ÙˆÓ ÎÂÚ·ÌÈÎÒÓ ˘ÏÈÎÒÓ ¢È‰·ÎÙÔÚÈ΋ ¢È·ÙÚÈ‚‹
2009(EM¶).
57. Theunissen G, Bouma J,Winnbst A: Mechanical properties
of ultra fine grained zirconia ceramics Journal of materials
Science 1992; 27: 4429-4438.
58. Jasinski P, Petrovsky V, Toshio S, Petrovsky T, Anderson H:
Hellenic Stomatological Review 57: 101-137, 2013
99. Bindl A., Mormann W: Marginal and internal fit of all-ceramic
CAD/CAM crown-copings on chamfer preparations J of
Oral Rehab 2005; 32: 441-447.
100. Att W et al: Marginal adaptation of three different zirconium
dioxide three unit fixed dental prostheses J Prosthet Dent
2009; 101: 239-247.
101. Mehl C, Ludwig K, Steiner M, Kern M: Fracture strength of
prefabricated all-ceramic inlay-retained fixed dental
prostheses Dental Materials 2010; 26: 67-75.
102. Edelhoff D, Sorensen J: Tooth structure removal associated
with various preparation designs for posterior teeth. J
Prosthet Dent 2002; 22: 241-9.
103. Abou Tara M, Eschbach S, Wolfart S, Kern M: Zirconia
ceramic inlay-retained fixed dental prostheses - first clinical
results with a new design J Dent 2011 Mar; 39 (3): 208-11.
104. Wolfart S, Ludwig K, Uphaus A, Kern M: Fracture strength of
all ceramic posterior inlay retained fixed partial dentures
Dental Materials 2007; 23: 1513-1520.
105. Wolfart S, Bohlsen F, Wegner S K, Kern M: A prospective
evaluation up to five years of all ceramic crown and inlay
retained FPDs Int J Prosthodont 2005; 18: 497-505.
106. Rossentritt M et al: Zirconia resin-bonded fixed partial dentures
in the anterior maxilla Quintessence Int 2008; 39: 313-319.
107. Walker: Effect of simulated resin-bonded fixed partial
denture clinical conditions on resin cement mechanical
properties Journal of Oral Rehabilitation 2003; 30: 837-846.
108. Duarte S et al: Resin Bonded fixed partial dentures with a
new modified zirconia surface: a clinical report J Prosthet
Dent 2009; 102: 68-73.
109. Bergman B, Lundquist P, Sjögren U, Sundquist G: Restorative
and endodontic results after treatment with cast posts and
cores J Prosthet Dent 1989; 61 (1): 10-5.
110. Nothdurft F, Pospiech P: Clinical evaluation of pulpless
teeth restored with conventionally cemented zirconia
posts: A pilot study J Prosthet Dent 2006; 95: 311-14.
111. Bittner N, Hill T, Randi A: Evaluation of a one-piece milled
zirconia post and core with different post and core systems:
an in vitro study J Prosthet Dent 2010; 103: 369-379.
112. Toksavul S, Toman M, Uyulgan B, Schmage P, Nergiz I:
Effect of luting agents and reconstruction techniques on
the fracture resistance of pre-fabricated post systems. J
Oral Rehabil 2005; 32 (6): 433-40.
113. Baba NZ, Golden G, Goodacre CJ: Nonmetallic prefabricate
dowels: a review of compositions, properties, laboratory,
and clinical test results. J Prosthodont 2009; 18: 527-536.
114. Schwartz RS, Robbins JW: Post placement and restoration
of endodontically treated teeth: a literature review. J Endod
2004; 30: 289-301.
115. Spingate S, Winchester L: An evaluation of zirconium oxide
brackets: a preliminary laboratory and clinical report Br J of
Orthod 1991; 18 (199): 203-209.
116. Keith O, Kusy R, Whitley J: Zirconia brackets: an evaluation
of morphology and coefficients of friction. Am J Orthod
Dentofacial Orthop 1994; 106 (6): 605-14.
117. Douglass JB: Enamel wear caused by ceramic brackets
Am J Orthod Dentofacial Orthop 1989 Feb; 95 (2): 96-8.
118. Gomes A, Montero J: Zirconia implant abutments: a review
Med Oral Patol Oral Cir Bucal 2011; 16: e50-55.
119. Andersson B et al: Alumina ceramic implant abutments used
for single-tooth replacement: a prospective 1- to 3-year
multicenter study Int J Prosthodont 2001; 14 (5): 432-8.
120. Andersson B, Glauser R, Maglione M, Taylor A: Ceramic
implant abutments for short-span FPDs: a prospective 5year multicenter study. Int J Prosthodont 2003 Nov-Dec; 16
(6): 640-6.
133
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
134
Electrical properties of YSZ films prepared by net shape
technology J of the Electrochemical Society 2005; 152 (2):
A454-A458.
Garcia R, Ussui V, de Lima N, Muccillo E, Lazar D: Physical
properties of alumina/yttria-stabilized zirconia composites
with improved microstructure Journal of Alloys and
Compounds 2009; 486 (1-2): 747-753.
Rigney M, Funkenbusch E, Carr P: Physical and chemical
characterization of microporous zirconia Journal of
Chromatography 1990; 499: 291-304
Wang C, Ong S, Xu P, Chen C: Electrical properties of crystalline YSZ films on silicon as alternative gate dielectrics
Semicon Sci Technol 2001; 16: 13-16.
Bengisu M: Engineering ceramics Spinger 2007
Badwal S, Drennan J: Grain boundary sensitivity in Y-TZP
materials as a function of thermal history J Mater Sci 24
(1989) 88-96.
Chen C, Hsiang H, Hsu S: Preparation and characterization
of Y-TZP powders coated with alumina Journal of Ceramic
Processing Research. 2008; 8: 131-134.
Hannink R, Kelly P, Muddle B: Transformation Toughening
in Zirconia-Containing Ceramics J Am Ceram Soc, 2000; 83
(3): 461-87.
Komine F, Blatz M, Matsumura H: Current status of zirconiabased fixed restorations Journal Oral Science 2010; 52 (4):
531-539.
Parker R: Use of zirconia in restorative dentistry Dent Today
2007; 26 (3): 114-112.
Al-Amleh B, Lyons K, Swai M: Clinical trials in zirconia: a
systematic review J of Oral Rehabil 2010; 37: 641-652.
Griggs JA: Recent advances in materials for all-ceramic
restorations. Dent Clin North Am 2007; 51 (3): 713-27.
Creugers N, Kayser A, Van’t Hoff M: A meta-analysis of
durability data on conventional fixed bridges. Community
Dent Oral Epidemiol 1994; 22: 448-452.
Lucarroti P, Burke F: Analysis of an administrative database
of indirect restorations over 11 years Journal of Dentistry
2009; 37: 4-11.
Sadan A, Blatz M, Lang B: Clinical considerations for
densely sintered alumina and zirconia restorations: part 1
Int J Per Rest Dent 2005; 25: 213-219.
Bahhav V, Aras M: Zirconia-based fixed partial dentures: a
clinical review Quintessence Int 2011; 42: 173-182.
Koutayas S, Vagkopoulou T, Pelekanos S, Koidis P, Strub J:
Zirconia in dentistry: Part 2. Evidence-based clinical breakthrough The European Journal of Esthetic dentistry 2009; 4
(2): 348-380.
Akbar J, Petrie C, Walker M, Williams K, Eick J: Marginal
adaptation of Cerec 3 CAD/CAM composite crowns using
two different finish line preparation designs. J Prosthodont
2006; 15 (3): 155-63.
McLaren E, Hyo L: CAD/CAM update: technologies and
materials and clinical perspectives Inside Dentistry 2006;
Nov/Dec: 98-103.
Reich S, Petschelt A, Lohbauer U: The effect of finish line
preparation and layer thickness on the failure load and
fractography of ZrO2 copings. J Prosthet Dent 2008 May;
99 (5): 369-76.
Lin M et al: the effect of tooth preparation form on the fit of
Procera copings Int J Prosthodont 1998; 11: 580-90.
121. Nakamura K, Kanno T, Milleding P, Ortengren U: Zirconia as a dental implant abutment material: a systematic
review Int J Prosthodont. 2010 Jul-Aug; 23 (4): 299-309.
122. Holst S, Blatz MB, Hegenbarth E, Wichmann M, Eitner S:
Prosthodontic considerations for predictable singleimplant esthetics in the anterior maxilla. J Oral Maxillofac
Surg 2005; 63 (9 Suppl 2): 89-96.
123. Glauser R et al: Experimental zirconia abutments for
implant supported single tooth restorations in esthetically
demanding regions:4-year results of a prospective clinical
study Int J Prosthodont 2004; 17: 285-290.
124. Scarano A, Piattelli M, Caputi S, Favero G, Piattelli A:
Bacterial adhesion on commercially pure titanium and
zirconium oxide disks: an in vivo human study. J
Periodontol 2004; 75 (2): 292-6.
125. Raigrodski AJ, Hillstead MB, Meng KG, Chung KH: Survival
and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent 2012; 107: 170-7.
126. Fischer J, Grohman P, Stawarczyk B: Effect of zirconia
surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008; 27:
448-54.
127. Hill E, Lott J: A clinically focused discussion of luting
materials Australian Dent J 2011; 56 (1 suppl): 67-76.
128. Amaral R, Ozcan M, Valandro L, Balducci I, Bottino M: Effect
of conditioning methods on the microtensile bond strength
of phosphate monomer-based cement on zirconia ceramic
dry and aged conditions J Biomed Res Part B Appl
Biomater 2008; 85B: 1-9.
129. Siarampi E, Kontonasaki E, Papadopoulou L, Kantiranis N,
Zorba T, Paraskevopoulos KM, Koidis P: Flexural strength
and the probability of failure of cold isostatic pressed
zirconia core ceramics. J Prosthet Dent 2012; 108 (2): 84-95.
130. Vatali A, Siarampi E, Kontonasaki E, Kantiranis N, Zorba T,
Vouroutzis N, Paraskevopoulos KM, Koidis P: Effect of In
Vitro Ageing on a Cold Isostatic-Pressed Zirconia Ceramic
for All Ceramic Restorations. Key Engineer Mater 2012;
493-494: 604-608.
Corresponding author:
E. Tzanakakis
e-mail: [email protected]
e.n.: The clinical work described in this paper is performed
by the authors. Authors declare no financial interest
whatsoever on dental products and companies mentioned
in this article.
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
79. Conrad H, Seong W, Pesun I: current ceramc materials and
systems with clinical recommendations: A systematic
review J Prosthet Dent 2007; 98: 389-404.
80. Pogoncheff C, Duff R: Use of zirconia collar to prevent
interproximal porcelain fracture: a clinical report J Prosthet
Dent 2010; 104: 77-79.
81. Tinschert J et al: Clinical behavior of zirconia-based fixed
partial dentures made of DC-Zirkon: 3 years results Int J
Prosthodont 2008; 21: 217-222.
82. Sailer I, Gottner J, Kanel S, Hammerle C: Randomized
controlled clinical trial of zirconia-ceramic and metalceramic posterior FPDs. A 3-year follow up Int J
Prosthodont 2009; 22: 553-560.
83. Beuer F, Edelhoff D, Gernet W, Sorensen J: Three-year
clinical prospective evaluation of zirconia-based posterior
fixed dental prostheses Clin Oral Invest 2009; 13: 445-451.
84. Cehreli M, Kokat A, Akca K: CAD/CAM Zirconia Vs. slip-cast
glass-infiltrated alumina/zirconia all-ceramic crowns: 2year results of a randomized controlled clinical trial J Appl
Oral Sci 2009; 17 (1): 49-55.
’
85. Suarez
M, Lozano J, Paz Salido M, Mart›nez F: Three-year
clinical evaluation of In-Ceram Zirconia posterior FPDs The
International Journal of Prosthodontics 2004; 17 (1): 35-8.
86. Ozkurt Z, Kazazoglu E: Clinical success of zirconia in dental
applications J of Prosthodont 2010; 19: 64-68.
87. Carracho J, Razoog M: Removable partial denture
abutments restored with all-ceramic surveyed crowns
Quintessence Int 2006; 37: 283-288.
88. Pellechia R, Kang K, Hirayama H: Fixed partial denture
supported by all-ceramic copings: a clinical report J
Prosthet Dent 2004; 92: 220-3.
89. Chevalier J, Cales B, Drouin J: Low-temperature aging of YTZP ceramics J Am Ceram Soc 1999; 82: 2150-2154.
90. Larsson C et al: Fracture strength of four unit YTZP FPD
cores designed with varying connector diameter. An in vitro
study J Oral Rehab 2007; 34: 702-709.
91. Sundh A, Molin M, Sjogren G: Fracture resistance of yttrium
oxide partially stabilized zirconia all-ceramic bridges after
veneering and mechanical fatigue testing Dental Materials
2005; 21: 476-482.
92. Vult von Steyern P: All-ceramic fixed partial dentures.
Studies on aluminum oxide- and zirconium dioxide-based
ceramic systems. Swed Dent J Suppl 2005; (173) : 1-69.
93. Kamposiora P, Papavasiliou G, Bayne S, Felton D: Stress
concentration in all-ceramic posterior fixed partial dentures
Quintessence Int 1996; 27: 701-706.
94. Studart R, Filser F, Kocher P, Gauckler L: Fatigue of
zirconia under cyclic loading in water and its implications
for the design of dental bridges. Dent Mater 2007; 23 (1):
106-14.
95. Guazzato M, Albakry M, Swain M, Ironside J: Mechanical
properties of In-Ceram alumina and In-ceram Zirconia Int J
Prostodont 2002; 15: 339-346.
96. Schmitt J et al: Zirconia posterior fixed partial dentures: A
prospective clinical 3-year follow up Int J Prosthodont 2009;
22: 597-603.
97. Bicaro L, Bonfiglioli R, Soattin M, Vigolo P: An in vivo
evaluation of fit ofzirconium-oxide based ceramic single
crowns, generated with two CAD/CAM systems, in
comparison to metal ceramic single crowns. J Prosthodont
2013; 22: 36-41.
98. Komine F, Gerds T, Witkowski S, Strub J: Influence of
framework configuration on the marginal adaptation of
zirconium dioxide ceramic anterior four-unit frameworks.
Acta Odontol Scand 2005; 63: 361-6.
Hellenic Stomatological Review 57: 101-137, 2013
135
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
99. Bindl A, Mormann W: Marginal and internal fit of all-ceramic
CAD/CAM crown-copings on chamfer preparations J of
Oral Rehab 2005; 32: 441-447.
100. Att W et al: Marginal adaptation of three different zirconium
dioxide three unit fixed dental prostheses J Prosthet Dent
2009; 101: 239-247.
101. Mehl C, Ludwig K, Steiner M, Kern M: Fracture strength of
prefabricated all-ceramic inlay-retained fixed dental
prostheses Dental Materials 2010; 26: 67-75.
102. Edelhoff D, Sorensen J: Tooth structure removal associated
with various preparation designs for posterior teeth. J
Prosthet Dent 2002; 22: 241-9.
103. Abou Tara M, Eschbach S, Wolfart S, Kern M: Zirconia
ceramic inlay-retained fixed dental prostheses - first clinical
results with a new design J Dent 2011 Mar; 39 (3): 208-11.
104. Wolfart S, Ludwig K, Uphaus A, Kern M: fracture strength of
all ceramic posterior inlay retained fixed partial dentures
Dental Materials 2007; 23: 1513-1520.
105. Wolfart S, Bohlsen F, Wegner SK, Kern M: A prospective
evaluation up to five years of all ceramic crown and inlay
retained FPDs Int J Prosthodont 2005; 18: 497-505.
106. Rossentritt M et al: Zirconia resin-bonded fixed partial dentures
in the anterior maxilla Quintessence Int 2008; 39: 313-319.
107. Walker Effect of simulated resin-bonded fixed partial
denture clinical conditions on resin cement mechanical
properties Journal of Oral Rehabilitation 2003; 30: 837-846.
108. Duarte S: et al Resin Bonded fixed partial dentures with a
new modified zirconia surface: a clinical report J Prosthet
Dent 2009; 102: 68-73.
109. Bergman B, Lundquist P, Sjögren U, Sundquist G: Restorative and endodontic results after treatment with cast posts
and cores J Prosthet Dent 1989; 61 (1): 10-5.
110. Nothdurft F, Pospiech P: Clinical evaluation of pulpless
teeth restored with conventionally cemented zirconia
posts: A pilot study J Prosthet Dent 2006; 95: 311-14.
111. Bittner N, Hill T, Randi A: Evaluation of a one-piece milled
zirconia post and core with different post and core systems:
an in vitro study J Prosthet Dent 2010; 103: 369-379.
112. Toksavul S, Toman M, Uyulgan B, Schmage P, Nergiz I:
Effect of luting agents and reconstruction techniques on
the fracture resistance of pre-fabricated post systems. J
Oral Rehabil 2005; 32 (6): 433-40.
113. Baba NZ, Golden G, Goodacre CJ: Nonmetallic prefabricate
dowels: a review of compositions, properties, laboratory,
and clinical test results. J Prosthodont 2009; 18: 527-536.
114. Schwartz RS, Robbins JW: Post placement and restoration
of endodontically treated teeth: a literature review. J Endod
2004; 30: 289-301.
115. Spingate S, Winchester L: An evaluation of zirconium oxide
brackets: a preliminary laboratory and clinical report Br J of
Orthod 1991; 18 (199): 203-209.
116. Keith O, Kusy R, Whitley J: Zirconia brackets: an evaluation
of morphology and coefficients of friction. Am J Orthod
Dentofacial Orthop 1994; 106 (6): 605-14.
117. Douglass JB: Enamel wear caused by ceramic brackets
Am J Orthod Dentofacial Orthop 1989 Feb; 95 (2): 96-8.
118. Gomes A, Montero J: Zirconia implant abutments: a review
Med Oral Patol Oral Cir Bucal 2011; 16: e50-55.
119. Andersson B et al: Alumina ceramic implant abutments used
for single-tooth replacement: a prospective 1- to 3-year
multicenter study Int J Prosthodont 2001; 14 (5): 432-8.
120. Andersson B, Glauser R, Maglione M, Taylor A: Ceramic
implant abutments for short-span FPDs: a prospective 5year multicenter study. Int J Prosthodont. 2003 Nov-Dec;
16 (6): 640-6.
136
Hellenic Stomatological Review 57: 101-137, 2013
μÈ‚ÏÈÔÁÚ·ÊÈ΋ ∞Ó·ÛÎfiËÛË
Literature Review
121. Nakamura K, Kanno T, Milleding P, Ortengren U: Zirconia
as a dental implant abutment material: a systematic review
Int J Prosthodont 2010 Jul-Aug; 23 (4): 299-309.
122. Holst S, Blatz MB, Hegenbarth E, Wichmann M, Eitner S:
Prosthodontic considerations for predictable singleimplant esthetics in the anterior maxilla. J Oral Maxillofac
Surg 2005; 63 (9 Suppl 2): 89-96.
123. Glauser R et al: Experimental zirconia abutments for
implant supported single tooth restorations in esthetically
demanding regions:4-year results of a prospective clinical
study Int J Prosthodont 2004; 17: 285-290.
124. Scarano A, Piattelli M, Caputi S, Favero G, Piattelli A: Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol
2004; 75 (2): 292-6.
125. Raigrodski AJ, Hillstead MB, Meng KG, Chung KH: Survival
and complications of zirconia-based fixed dental prostheses:
a systematic review. J Prosthet Dent 2012; 107: 170-7.
126. Fischer J, Grohman P, Stawarczyk B: Effect of zirconia
surface treatments on the shear strength of zirconia
/veneering ceramic composites. Dent Mater J 2008; 27:
448-54.
127. Hill E, Lott J: A clinically focused discussion of luting
materials Australian Dent J 2011; 56: (1 suppl): 67-76.
128. Amaral R, Ozcan M, Valandro L, Balducci I, Bottino M: Effect
of conditioning methods on the microtensile bond strength
of phosphate monomer-based cement on zirconia ceramic
dry and aged conditions J Biomed Res PartB Appl
Biomater 2008; 85 B: 1-9.
129. Siarampi E, Kontonasaki E, Papadopoulou L, Kantiranis N,
Zorba T, Paraskevopoulos KM, Koidis P: Flexural strength
and the probability of failure of cold isostatic pressed
zirconia core ceramics. J Prosthet Dent 2012; 108 (2): 84-95.
130. Vatali A, Siarampi E, Kontonasaki E, Kantiranis N, Zorba T,
Vouroutzis N, Paraskevopoulos KM, Koidis P: Effect of In
Vitro Ageing on a Cold Isostatic-Pressed Zirconia Ceramic
for All Ceramic Restorations. Key Engineer Mater 2012;
493-494 : 604-608.
¢È‡ı˘ÓÛË ÁÈ· ÂÈÎÔÈÓˆÓ›·:
E. T˙·Ó·Î¿Î˘
e-mail: [email protected]
I‰È·›ÙÂÚ˜ ¢¯·ÚÈÛٛ˜ ÛÙËÓ Ù. ‰È¢ı‡ÓÙÚÈ· ÙÔ˘ K¤ÓÙÚÔ˘
EÚ‡Ó˘ ÂÏÏËÓÈ΋˜ ÁÏÒÛÛ·˜ Ù˘ Aη‰ËÌ›·˜ AıËÓÒÓ
Î. °È·ÎÔ˘Ì¿ÎË EÏ¢ıÂÚ›· ÁÈ· ÙË ÁψÛÛÈ΋ ÂÈ̤ÏÂÈ·
ÙÔ˘ ÂÏÏËÓÈÎÔ‡ ÎÂÈ̤ÓÔ˘ Î·È ÛÙÔ˘˜ Ô‰ÔÓÙÔÙ¯ӛÙ˜
Î. ¶··‰¿ÎË °. Î·È NÈÎÔÏÔ‡‰È· N.
ÁÈ· ÙË Û˘ÓÂÚÁ·Û›· ÙÔ˘˜.
Û.Û.: H ÎÏÈÓÈ΋ ÂÚÁ·Û›· Ô˘ ÂÚÈÁÚ¿ÊÂÙ·È ÛÙÔ ¿ÚıÚÔ ·˘Ùfi ¤¯ÂÈ
Ú·ÁÌ·ÙÔÔÈËı› ·fi ÙÔ˘˜ Û˘ÁÁÚ·Ê›˜. OÈ Û˘ÁÁÚ·Ê›˜
‰ËÏÒÓÔ˘Ó fiÙÈ ‰ÂÓ ¤¯Ô˘Ó ηӤӷ ÔÈÎÔÓÔÌÈÎfi fiÊÂÏÔ˜ ·fi
ÙË ¯Ú‹ÛË Î·È ÂÚÈÁÚ·Ê‹ ˘ÏÈÎÒÓ, ‚ÔËıËÙÈÎÒÓ Ì¤ÛˆÓ
Î·È ÂÙ·ÈÚÂÈÒÓ ÛÙÔ ¿ÚıÚÔ ·˘Ùfi.
Hellenic Stomatological Review 57: 101-137, 2013
137
Scarica

∑ÈÚÎÔÓ›·: ™‡Á¯ÚÔÓ˜ · fi„ÂȘ ÂÓfi˜ ÔÏ˘Û˘˙ËÙË̤ÓÔ˘ ˘ÏÈÎÔ‡. ¢ÔÌ‹, Â