SEÇÃO 11.: E-mail para o Politecnico di Milano [email protected] (22/8/2000) San Paolo del Brasile, 22/8/2000 To: [email protected] From: [email protected] Subject: (Proposal for new course) / RIFERIMENTO: proposta di “PROGRAMMA PROFESSORI VISITATORI” alla Ingegneria Informatica Online del Politecnico di Milano - Corso “ARITMETICA BOOLEANA: Un'introduzione delle Equazioni Booleane nell’Ingegneria di Sistemi”. Egregi Signori, Come una longinqua conseguenza del grande influsso ricevuto nella mia gioventù, dall’umanesimo della Matematica Italiana, tramite le indimenticabili aule, amministrate dal Professor Emerito di cara memoria Giacomo Albanese9, nel passato 1946, presso la “Escola Politécnica da Universidade de São Paulo” del Brasile, ricerche realizzate durante lunghi anni nel campo della logica matematica, rappresentata dal simbolismo letterale dell’Algebra Booleana, hanno avuto come risultato la creazione della corrispettiva matematicamente isomorfa e numerica, Aritmetica Booleana. Codeste ricerche matematiche sono continuate e adesso, le sue conclusioni sono state consolidate nel libro “Boolean Arithmetic and its Applications” (ALLEGATO 1: Vide copia in CD-ROM Address of SITE: <http://www.poli.usp.br/pea5737>, il cui testo è basico al Corso che prendo la libertà di proporre tramite il presente e-mail. Lo scopo di questo Corso è di riempire con la cognizione dell’Aritmetica Booleana e della Linguistica Tecnica (ossia, Linguistica Booleana), la lacuna che oggi esiste dovuta alla mancanza della Matematica nell’Ingegneria del Software e nell’Ingegneria del Firmware (Microprogrammazione), di modo ad offrire a codesti settori la medesima sicurezza che oggi esiste nell’Ingegneria dell’Hardware. Codesta sicurezza, che oggi esiste appena nell’Ingegneria dell’Hardware, è stata resa presente dall’Algebra Booleana e dalla Geometria Booleana che hanno permesso alla Tecnologia dare affidabilità logica nella fabbricazione dei “chips”della Microelettronica. A principio, il Programma del Corso è questo: 01 La presenza dell’Algebra Booleana nell’Informatica Moderna. 02 L’assenza della Matematica Booleana nell’Informatica Moderna. 03 La creazione dell’ Aritmetica Booleana e della Linguistica Tecnica nella Nuova Informatica. 04 La soluzione generale, analitica e numerica, di un Sistema Simultaneo d'Equazioni Booleane. 05 Funzioni Aritmetiche Booleane di Funzioni Aritmetiche Booleane e sue Operazioni Inverse. 06 Esperangol, Diritto e Riverso: il linguaggio matematico computazionale della Nuova Informatica. 07 Un’analisi Aritmetica Booleana dei Sillogismi Aristotelici. 9 Albanese, Giacomo (Geraci 1890 - San Paolo del Brasile 1947) - Matematico, professore a Catania, Palermo, Pisa, S. Paolo; importanti ricerche di geometria algebrica. 08 Deduzione di Testi e un’Analisi Aritmetiche Booleane della Matematica Riversa di Hilbert. 09 La Computazione “Non-Von Neumann”. 10 Il Modello Matematico della Computazione “Von Neumann”. Come conseguenza di queste ricerche, abbiamo ottenuto la creazione dell’ Aritmetica Booleana, matematicamente isomorfa all’Algebra Booleana, il cui linguaggio letterale è totalmente sostituito dal corrispettivo simbolismo numerico del linguaggio aritmetico delle cifre "0/1”. Questo ha reso possibile l’ottenimento di una completa e generale soluzione di qualsiasi Sistema d'Equazioni Booleane, non ancora ampiamente diffuso, essendo un argomento di gran rilievo per la Logica Matematica Computazionale. D’altra parte, l’ Aritmetica Booleana ha reso possibile la creazione della Linguistica Tecnica (ossia, Linguistica Booleana), causando l’arrivo di un unico linguaggio computazionale matematico che ho denominato “Esperangol” 10 (Vide Capitolo 9 pagg. 291-312 – del ALLEGATO 1). 2. I risultati ottenuti in queste ricerche si trovano riassunti nell’ALLEGATO Penso che le Aree d’Interesse per il Corso potrebbero essere le seguenti: Matematica Applicata, Ingegneria d’Energia ed Automazione Elettrica, Ingegneria Elettronica, Ingegneria Meccanica, Ingegneria Meccatronica, Ingegneria di Hardware, di Software e di Firmware e Interesse Generale. Nella fiduciosa attesa che la promissiva evoluzione riferita di queste ricerche, frutto longinquo delle aule ripiene d’umanesimo della Matematica Italiana profferite presso la Escola Politécnica da Universidade de São Paulo dall’indimenticabile e di grata memoria Dottor Giacomo Albanese che nel passato 1946 ha fatto destare in me l’attenzione ai problemi concettuali dei Fondamenti della Matematica, renda possibile e pertanto si possa realizzare, la presente offerta del Corso Proposto come Professor Visitatore. (b) Professor Wagner Waneck Martins e-mail: [email protected] Indirizzo Postale: Rua Barão de Itaúna, 155 05078-080 - São Paulo - SP - BRASIL. Telefono: 0055011 3836-4641 Fax: 0055 011 3836-4703 Telefono Cellulare: 0055 011 9262-0847 e-mail: <[email protected]> ALLEGATI: ALLEGATO 1: Vide copia in CD-ROM Address of SITE: http://www.poli.usp.br/pea5737, nella cui parte finale c’è il “Curriculum Vitae” dell’autore. “Esperangol”; Questo nome è stato dato per ricordare “Esperanto”, nome dato da Zamenhof, il creatore di codesto linguaggio universale nel 1887 – Zamenhof, Ludwig Lazarus (1859-1917). 10 ALLEGATO 2: The results of this lifetime research carried out at University of São Paulo - Polytechnic School - Department of Electrical Energy and Automation (Abstract). ALLEGATO 2 The results of a lifetime research carried out at University of São Paulo Polytechnic School - Department of Electrical Energy and Automation (Abstract). "Esperangol" replaces the present chaotic Machine Language since it is based on Mathematical Machine Language and therefore, it is Universal as well as being UNIQUE. I believe that people would be very interested in "Esperangol", a direct and reversible computer language, due to the following: 1st.: This new language makes the introduction of any kind of "virus" in the computer process, impossible; 2nd.: It allows the automatic production of software mathematically free of failures caused by human factors; 3rd. : It allows complete safety in computer real time operation, where there will be no more need of the "Ctrl+Alt+Del" keys. I think that even many circumstances might have been changed in these last years, until now, there was no interruption in the research carry out at that University. Although there was an incredible development of Information Science during this past time, solutions of some problems have not been found yet. These main problems are: .The chronic crisis in real time software; .The present viral proliferation in the sector; .The lack of common nucleus in the different applications of Artificial Intelligence; .The unobtainable software automatically free, .The fifth generation computer system. For these reasons, the research relative to this Pure Mathematical Field, led me to find a new area of studies, called Boolean Arithmetic, mathematically isomorphic to the Boolean Algebra, where problems mainly aroused by current computer language into the operations system, can be studied and solved. Then, a draft of my new book on “Boolean Arithmetic and its Applications” now is ready, whose CD-Rom copy is in the SITE: http://www.poli.usp.br/pea5737. Its CONTENTS presents some results of the researches, referring to the author’s Curriculum Vitæ inside annexed. This present enlarged work shows that Boolean Arithmetic solves problems using only bits. But, and as it is a mathematical logical system, it may prove to be a valuable instrument in remodeling computer programming in order to avoid the current computer languages, which may cause problems to the operational system. I think that my approach via Boolean Arithmetic can be transformed in a valuable instrument in remodeling computer programming. Nowadays, Software Engineering programs are empirically developed. I may say that Mathematics is not yet used in Programming, whereas, Hardware Engineering is strongly based in Boolean Mathematics, through the algebraic and geometrical isomorphic aspects. This Boolean Arithmetic could be useful in searching solution for current problems in the computer operation of any software or firmware engineering programs. The same safety operation which we have in the hardware computing can be achieved in the operation of the software and firmware computing, without any logical “bug” which blocks the computer operation. For this purpose in Chapter 5 of the referred CD-Rom copy of “Boolean Arithmetic and its Applications”, I presented the 2nd Example (pp. 142-146) and the 3rd Example (pp. 146-151), which represent graphically a part of a general computing program. These simple examples show us that incompatibility, may cause logical “bug”, and are not due to HUMAN FACTORS as it is ordinarily admitted. These examples solved by Analytical Method are repeated in Chapter 6 (pp. 162172), using numerical method as Partition Method, Doubling Operators, etc. The idea is to maintain the Nodal Decisions when the “forbidden eras”, could be technologically eliminated. In Section “11.2 – THE NODAL AUTOMATIC TRANSITION ANALYSIS (NATA)”, these examples are again repeated as a Problem on pp. 355-369, with more details, using the BAF(BAF) properties of Chapter 7 (pp.179-266). It was shown how these “bugs” can be mathematically eliminated without any alteration in the CONCLUSION (or, NODAL DECISION) of that part of programming. The last Chapter of the “Boolean Arithmetic and its applications”, refers to my book, “ESÇÃO (n~m~p): A Non-Von Neumann Computer”, published in 1985. The mathematical fundamentals of that Non-Von Machines and Non-Von Programming Styles which was seen in the previous Sections of the referred book “Boolean Arithmetic and its applications”, can be found in some publications referred in p.457, based on the last book. Other publications as referred on p.457, show the mathematical fundamentals of that Non-Von Machines and Non-Von Programming Styles, which enable us to find the solution for the problem. I think, in conclusion, that the most important part of this book is that it probably allows: 1st To establish that any pure sequential program can be recorded into a simple EPROM chip or CD-ROM device, without use of any current computational language; 2nd To establish a true Mathematical Model to the current Von Neumann Machines in order to eliminate the current logical bugs, mainly in the real time applications without the ordinary use of empirical methods. This elimination is guaranteed with some data alterations, but without any modification in its formal logical nodal decisions; 3rd To establish a true Non-Von Mathematical Model, with the elimination the microprocessor as a subsystem of the present computational machines. Thus, it will remain only the memory unit and the respective input/output devices. Then, the “Von Neumanns’s bottleneck” disappears, establishing a pure parallel processing without any resource to the present situation; 4th To establish a mathematical programming in the field of the hardware, software and firmware engineering, with the creation of a Technical Linguistics in the adequate field of the Negative Logic; 5th To re-establish new lines of logical mathematical researches in the field of Information Sciences, which has been broken since 1938 in Shannon’s time, with the Mathematical Von Neumann Deviation, as it was described in Chapter 13 (p. 416); 6th To establish promising researches in the field of the Reverse Mathematics, as it was seen as an application in Chapter 11 (p. 344) in the sense of Hilbert’s Program proposal; 7th To establish new promising researches in the field of Quantum Logic Gates of Quantum-Mechanical Computers, since it is possible to establish the Mathematical Model as a Quantum-Mechanical Non- Von Computers; 8th To establish new promising researches in the field of Genetics through Boolean Mathematical Models in computing applications of the Theoretical Biology. The Text Deduction of the Chapter 11, for instance, could be suggested its use instead of the computing of empirical models and isolated facts. Thus, paradoxically, the absence of mathematics in the Information Science, which revealed the 4th Great Crisis in Mathematics and allowed the extraordinary technological development, began to demand in its growing and wide employment of the logical artificial thought, more and more fundamentals of the utilized scientific true. e-mail: [email protected]