UNIVERSITÀ DEGLI STUDI DI PAVIA
FACOLTÀ DI ECONOMIA
Il calcolo economico.
Le relazioni tra costi e prezzi.
Capitolo 6
Chiara Demartini
[email protected]
1
RELAZIONI TRA COSTI E PREZZI

Nel cap. 5 si analizza la procedura del calcolo dei costi di
produzione.

Affrontiamo ora il problema di come correlare
significativamente:
i costi di produzione ed i ricavi di vendita
 o, a livello unitario, i costi unitari medi ed i prezzi
pP  = cP = cum
 al fine di stabilire il

livello minimo dei prezzi e/o
 volumi minimi di produzione
 il programma per il mix ottimale di produzione


per ottenere un dato (o il massimo) risultato operativo.
EA BASE - PAVIA
3
LA CORRELAZIONE PREZZI-COSTI
METODI DI COSTING


1.
2.

Nelle imprese pluriprodotto la BEA non può essere applicata
ma può essere adattata con il Direct Costing Method.
Premessa - Per quantificare i risultati analitici nelle imprese
pluriprodotto possono essere seguiti due metodi di costing:
il metodo del costo pieno meglio noto come Full Costing
Method o anche absorption costing method;
il metodo del costo diretto variabile più noto come Direct
Costing Method o anche variable costing method o anche
marginal costing.
Le due logiche presuppongono, come nella BEA, la possibilità
di costruire le funzioni di costo per ogni produzione e di
quantificare i ricavi ed i costi sulla base di una data quantità
normale di produzione, QN (supponiamo che i calcoli siano a
12
preventivo).
EA BASE - PAVIA
IL FULL COST (DETERMINAZIONE)
Da:
CP(Q) = cv Q + CoF
otteniamo, dunque:
full cost = fc = CP(Q) / QN =cv + cf
essendo:
 cv
 cf = CoF / QN
 fc =cv + cf
EA BASE - PAVIA
= quota unitaria di costo variabile
= quota unitaria di costo fisso
= costo pieno (full cost) unitario
14
LE 3 REGOLE DEL FULL COSTING
Per correlare i prezzi ai costi, il Full Costing Method pone tre
semplici regole di calcolo economico:
1.
R1) un prodotto che presenta un prezzo p < fc, non deve
essere fabbricato, in quanto il prezzo non è in grado di
coprire i costi di produzione; la sua produzione
comporterebbe inevitabilmente una perdita per l'impresa;
2.
R2) il prezzo di vendita deve essere fissato in misura
sempre superiore al full cost, fc:
p > (cv + cf)
EA BASE - PAVIA
17
LE 3 REGOLE DEL FULL COSTING
3.
R3) tra due prodotti che presentano diversi utili unitari,
occorre potenziare la produzione di quello più
remunerativo, cioè di quello con maggiore ru.

In particolare, se l'impresa ottenesse le produzioni ALFA
e BETA, la prima con un utile unitario e la seconda con
una perdita unitaria, sarebbe necessario sospendere la
produzione di Beta per evitare le perdita che essa
comporta.
18
EA BASE - PAVIA
IL LIVELLO DEL PREZZO

D
C
La regola R1 non è corretta.
Tabella 1 - Decisione di sospendere una produzione con il
Full Costing Method con un solo prodotto
Si produce ALFA Si sospende ALFA
Quantità venduta
Prezzo unitario
Ricavo totale
100.000
49,00
4.900.000,00
0
49,00
0,00
Costo var. unitario
Costo var. totale
Margine di contribuzione
31,50
3.150.000,00
1.750.000,00
31,50
0,00
0,00
Costi fissi
2.000.000,00
2.000.000,00
-250.000,00
-2.000.000,00
Perdita totale ALFA
EA BASE - PAVIA
19
I LIMITI DELLA PRIMA REGOLA
Conclusione - La regola R1 del Full Costing Method
secondo la quale
l'impresa non ha convenienza a fabbricare un
prodotto che presenti una perdita unitaria
vale solo se l'impresa può sostituire quel prodotto
con un altro che, con quegli stessi costi fissi,
consenta un margine di contribuzione più elevato.
In caso contrario, l'impresa deve continuare la
produzione per ridurre le perdite.
EA BASE - PAVIA
20
I LIMITI DELLA SECONDA REGOLA
Anche la regola R2 secondo la quale:
il prezzo di vendita deve essere sempre superiore
al full cost
non appare corretta.
Il prezzo p può anche scendere al di sotto del full
cost, a condizione che sia comunque superiore al
costo variabile, cv, in modo da lasciare un margine
di contribuzione complessivo MC = (p – cv) Q utile
per coprire una quota dei costi fissi.
EA BASE - PAVIA
21
ABBANDONARE PRODUZIONI IN PERDITA
Tabella 2 - presenza di due prodotti
Produzione BETA
Produzione
GAMMA
Totali
Quantità venduta
Prezzo unitario
Ricavo totale
100.000
30,00
3.000.000
200.000
35,00
7.000.000
10.000.000
Costo var. unitario
Costo var. totale
Margine di contribuzione
15,00
1.500.000
1.500.000
25,00
5.000.000
2.000.000
6.500.000
3.500.000
Costi fissi
Coeff. Imputaz. CF = ricavi
1.200.000
30%
2.800.000
70%
4.000.000
100%
Costi totali
fc - full cost unitario
2.700.000
27,0
7.800.000
39,0
10.500.000
300.000,00
-800.000,00
-500.000,00
Perdita totale ALFA
EA BASE - PAVIA
ru (BETA) = 30 – 27 = 3
ru (GAMMA) = 35 – 39 = - 4 !!!
22
TABELLA 3 – SI ABBANDONA UNA PRODUZIONE
Produzione BETA
Produzione
GAMMA
Totali
Quantità venduta
Prezzo unitario
Ricavo totale
100.000
30,00
3.000.000
0
35,00
0
3.000.000
Costo var. unitario
Costo var. totale
Margine di contribuzione
15,00
1.500.000
1.500.000
25,00
0
0
1.500.000
1.500.000
Costi fissi
Coeff. Imputaz. CF = ricavi
4.000.000
100%
0
0%
4.000.000
100%
Costi totali
fc - full cost unitario
5.500.000
55,0
0
5.500.000
Perdita BETA
-2.500.000
0
-2.500.000
23
EA BASE - PAVIA
LA RELATIVITÀ DEL FC E L’IMPUTAZIONE
Un inconveniente da non sottovalutare:
il calcolo del full cost da confrontare con il prezzo
rende necessario il riparto dei costi fissi comuni alle
diverse produzioni.
Di conseguenza, le decisioni che si basano sui
risultati unitari determinati con il metodo del costo
pieno dipendono dai criteri di imputazione dei costi
fissi.
24
EA BASE - PAVIA
TABELLA 4 DECISIONE DI SOSPENDERE UNA
PRODUZIONE CON IL FULL COSTING IN RELAZIONE
AI CRITERI DI IMPUTAZIONE DEI COSTI FISSI.
Produzione BETA
Produzione
GAMMA
Totali
Quantità venduta
Prezzo unitario
Ricavo totale
100.000
30,00
3.000.000
200.000
35,00
7.000.000
10.000.000
Costo var. unitario
Costo var. totale
Margine di contribuzione
15,00
1.500.000
1.500.000
25,00
5.000.000
2.000.000
6.500.000
3.500.000
Costi fissi
Coeff. Imputaz. CF = MC
1.714.286
43%
2.285.714
57%
4.000.000
100%
Costi totali
fc - full cost unitario
3.214.286
32,1
7.285.714
36,4
10.500.000
-214.286
-285.714
-500.000
Risultati operativi
EA BASE - PAVIA
25
IL MIX NON OTTIMALE DI PRODUZIONE
TABELLA.5 - 3 PRODOTTI E FULL COSTING METHOD
Direct e full costing a confronto
Prodotti
VOCI
Quantità
Prezzo medio
Ricavi
mix
Costo variabile unitario
Valori
ALFA
BETA
GAMMA
100.000
100.000
totali
100.000
10
10
10
1.000.000
33%
1.000.000
33%
1.000.000
33%
4
5
2
2
3
di cui lavoro diretto
Margine di contribuzione unitario
Costi variabili
Margine di contribuzione lordo
Costi fissi specifici
Margine di contribuzione netto
Costi fissi comuni
Costi fissi comuni imputati
Costi fissi imputati per unità di P
Costi totali di produzione
2
3
3
fc unitario
Risultati operativi analitici
prezzi (copia della riga 3.)
cum = costo unitario medio
rum = risultato unitario medio
EA BASE - PAVIA
6
5
4
400.000
600.000
300.000
300.000
500.000
500.000
200.000
300.000
600.000
400.000
100.000
300.000
300.000
200.000
100.000
2
700.000
7
7
10
7,00
3,0
700.000
2.100.000
300.000
900.000
7
300.000
10
7,00
1.500.000
1.500.000
600.000
900.000
600.000
1
700.000
300.000
3,0
3.000.000
100%
6
di cui materie
3
EXCEL
10
7,00
3,0
26
IL DIRECT COSTING

Gli inconvenienti del Full Costing Method sono
eliminati con il Direct Costing Method.

Secondo il Direct Costing Method, il confronto
prezzo/costo deve avvenire tra il prezzo di vendita
p e il costo diretto unitario, o direct cost – dc:
dc = cv
27
EA BASE - PAVIA
IL DIRECT COSTING

Poiché il direct cost risulta pari ai costi variabili unitari, il
metodo in esame viene anche definito variable costing
method o anche «marginal costing method».

Si suppone allora che ogni unità di produzione ottenuta e
venduta debba necessariamente «coprire» i costi variabili,
cv, sostenuti per il suo ottenimento e debba offrire un
margine di contribuzione complessivo, MC, per assorbire i
costi fissi complessivi COF.

Con il Direct Costing non ha senso quantificare l'utile o la
perdita per unità di prodotto; l'utile (o la perdita) si deve
calcolare solo per tutte le produzioni insieme attivate
dalla impresa.
EA BASE - PAVIA
28
LE REGOLE DEL DIRECT COSTING

Il Direct Costing Method pone le seguenti regole di
calcolo economico razionale:

R1) il prezzo di vendita p deve sempre superare il direct
cost: p > cv, al fine di lasciare un margine unitario di
contribuzione: mc = p - cv; di conseguenza, un prodotto
che presenti un prezzo p > cv, può essere fabbricato;

R2) se l'impresa non ha vincoli alla capacità produttiva,
tra due prodotti che presentano diversi margini unitari
occorre potenziare la produzione di quello che presenta
29
il maggiore margine di contribuzione unitario;
EA BASE - PAVIA
LE REGOLE DEL DIRECT COSTING (SEGUE)

R3) se l'impresa ha vincoli di capacità produttiva, nel
senso che ha quantità limitata di uno o più fattori da
destinare alle diverse produzioni, deve potenziare la
produzione del prodotto Pi che presenta il maggiore
rapporto tra margine di contribuzione unitario mci e
quantità unitaria qFM,L,I(Pi) di fattore a disponibilità
limitata;
mc(alfa)
mc(beta)
-------------------
--------------------
qFM,L,I(alfa)
qFM,L,I(beta)
 R4) se l'impresa ha più vincoli di capacità produttiva si
30
ricorre alla programmazione lineare.
EA BASE - PAVIA
PRICING E MIX CON IL DIRECT COSTING

In Tabella 1 abbiamo la dimostrazione della validità
della prima regola: se non è possibile sostituire
una produzione in perdita con altra, occorre
continuare a produrre fino a quando il prezzo di
vendita non scenda la di sotto dei costi variabili; in
questo modo si possono coprire, almeno in parte, i
costi fissi aziendali.

Risulta anche dimostrato che un'impresa consegue
un utile RO da una produzione non tanto quando il
prezzo supera il costo pieno unitario, cioè il full
cost, ma quando il prezzo lascia un margine di
contribuzione sufficiente per coprire i costi fissi.
EA BASE - PAVIA
31
PRICING E MIX CON IL DIRECT COSTING
Questa conclusione è perfettamente coerente con
la regola R3 di calcolo economico del Direct
Costing Method: in presenza di vincoli di capacità
produttiva, occorre potenziare il prodotto che
presenta il più elevato rapporto tra margine unitario
di contribuzione e quantità di risorsa scarsa
necessaria per produrre un'unità di prodotto.
 Riprendendo la Tabella 5 e supponendo i seguenti
vincoli di fattore scarso:

Margine di contribuzione unitario
6
5
4
quantità unitaria di fattore scarso
2
4
1
rapporto di valore del fattore sc.
3,00
1,25
4,00
EA BASE - PAVIA
32
PRICING E MIX CON IL DIRECT COSTING
3 PRODOTTI E FULL COSTING METHOD GAMMA
Direct e full costing a confronto
VOCI
Prodotti
B
A
Quantità
Prezzo medio
Ricavi
mix
Valori
totali
C
100.000
10
1.000.000
33%
99.999
10
999.990
33%
100.004
10
1.000.040
33%
Costo variabile unitario
4
5
6
di cui materie
2
2
3
di cui lavoro diretto
2
3
3
Margine di contribuzione unitario
Costi variabili
Margine di contribuzione lordo
Costi fissi specifici
Margine di contribuzione netto
6
5
400.000
600.000
300.000
300.000
3.000.030
100%
4
499.995
499.995
200.000
299.995
600.024
400.016
100.000
300.016
1.500.019
1.500.011
600.000
900.011
Costi fissi comuni
-
Costi fissi comuni imputati
Costi fissi imputati per unità di P
-
-
3,00
2,00
1,00
700.000
699.995
700.024
fc = cum = costo unitario medio
Risultati operativi analitici
prezzi (copia della riga 3.)
7,00
300.000
10
7,00
299.995
10
7,00
300.016
10
Base di imputazione
Percentuale di imputazione
EA BASE - PAVIA
-
Costi totali di produzione
fc = cum = costo unitario medio
rum = risultato unitario medio
7,00
3,0
7,00
3,0
2.100.019
900.011
7,00
3,0
1
33%
1
33%
1
33%
Margine di contribuzione unitario
6
5
4
quantità unitaria di fattore scarso
2
4
1
3,00
1,25
4,00
rapporto di valore del fattore sc.
EXCEL
3
100%
33
PRICING E MIX CON IL DIRECT COSTING
3 PRODOTTI E FULL COSTING METHOD ALFA
Direct e full costing a confronto
VOCI
Prodotti
B
A
Quantità
Prezzo medio
Ricavi
mix
100.002
10
1.000.020
33%
99.999
10
999.990
33%
100.000
10
1.000.000
33%
Costo variabile unitario
4
5
6
di cui materie
2
2
3
di cui lavoro diretto
Margine di contribuzione
unitario
Costi variabili
Margine di contribuzione lordo
Costi fissi specifici
Margine di contribuzione netto
2
3
3
6
400.008
600.012
300.000
300.012
Valori
totali
C
5
499.995
499.995
200.000
299.995
3.000.010
100%
4
600.000
400.000
100.000
300.000
Costi fissi comuni
1.500.003
1.500.007
600.000
900.007
-
Costi fissi comuni imputati
Costi fissi imputati per unità di P
3,00
2,00
1,00
Costi totali di produzione
700.008
699.995
700.000
fc = cum = costo unitario medio
7,00
7,00
7,00
Risultati operativi analitici
300.012
299.995
300.000
prezzi (copia della riga 3.)
10
10
10
fc = cum = costo unitario medio
7,00
7,00
7,00
rum = risultato unitario medio
3,0
3,0
3,0
Base di imputazione
Percentuale di imputazione
EA BASE - PAVIA
EXCEL
1
Margine di contribuzione
unitario
quantità unitaria di fattore
scarso
2
rapporto di valore del fattore sc.
1
1
2.100.003
900.007
3
33%
33%
33%
6
5
4
100%
34
4
3,00
1
1,25
4,00
LA PROGRAMMAZIONE LINEARE

Con la regola R3, il Direct Costing estende la Break Even
Analysis al caso di imprese pluriprodotto con un solo
vincolo di capacità.

Quando sono presenti numerosi vincoli di capacità
produttiva - rappresentati dai macchinari o dalle materie o
dalla mano d’opera disponibili in quantità limitata - occorre
arrivare alla produzione di un mix ottimale dei prodotti in
modo da rendere massima l'economicità complessiva dei
diversi processi in presenza di quei vincoli.

Tra le diverse tecniche per attuare tale forma di calcolo
economico la più semplice e potente è rappresentata dalla35
programmazione lineare.
EA BASE - PAVIA
LA FORMULAZIONE MATEMATICA DEL
PROBLEMA

Dati N prodotti, 1 i N, occorre trovare il massimo
della seguente funzione obiettivo:
N
MAX
R
mc i q i
CFi
CFT
i 1

sistema dei vincoli cui la funzione obiettivo deve
essere sottoposta:
c q b
N
1i
i
1
c 2i q i
b2
c Mi q i
bM
i 1
N
i 1
...
N
i 1

condizioni di non negatività:
q i 0 per i=l, 2, ..., N.
EA BASE - PAVIA
36
Scarica

Slide capitolo 6 - Economia - Università degli studi di Pavia