D.I.E.I. - Università degli Studi di Perugia h-quasi planar drawings of bounded treewidth graphs in linear area Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani University of Perugia 13th Italian Conference on Theoretical Computer Science 19-21 September 2012, Varese, Italy D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Graph Drawing and Area Requirement Graph G 19/09/2012 Straight-line grid drawing of G ICTCS ’12 - Varese, Italy 2 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Graph Drawing and Area Requirement w h Graph G Straight-line grid drawing of G Area requirement of straight-line drawings is a widely studied topic in Graph Drawing 19/09/2012 ICTCS ’12 - Varese, Italy 3 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area Requirement for planar drawings • Area requirement problem mainly studied for planar straightline grid drawings: – planar graphs have planar straight-line grid drawings in O(n2) area (worst case optimal) [de Fraysseix et al.; Schnyder; 1990] – sub-quadratic upper bounds: • trees – O(n log n) [Crescenzi et al., 1992] • outerplanar graphs – O(n1.48) [Di Battista, Frati, 2009] – super-linear lower bound: • series-parallel graphs – Ω(n2√(log n)) [Frati, 2010] 19/09/2012 ICTCS ’12 - Varese, Italy 4 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area Requirement for planar drawings • Planarity imposes severe limitations on the optimization of the area 19/09/2012 ICTCS ’12 - Varese, Italy 5 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area Requirement for planar drawings • Planarity imposes severe limitations on the optimization of the area – Non-planar straight-line drawings in O(n) area exist for k-colorable graphs [Wood, 2005] – no guarantee on the type and on the number of crossings A drawing by Wood’s technique 19/09/2012 ICTCS ’12 - Varese, Italy 6 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Beyond planarity: crossing complexity • Non-planar drawings should be considered: – How can we “control” the crossing complexity of a drawing? 19/09/2012 ICTCS ’12 - Varese, Italy 7 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Crossing complexity measures • Large Angle Crossing drawings (LAC) or Right Angle Crossing drawings (RAC), [Didimo et al., 2011] RAC drawing 19/09/2012 ICTCS ’12 - Varese, Italy 8 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Crossing complexity measures • h-Planar drawings: at most h crossings per edge 1-planar drawing 19/09/2012 ICTCS ’12 - Varese, Italy 9 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Crossing complexity measures • h-Quasi Planar drawings: at most h-1 mutually crossing edges 3-quasi planar drawing 19/09/2012 ICTCS ’12 - Varese, Italy 10 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani The problem • We investigate trade-offs between area requirement and crossing complexity • We focus on h-quasi planarity as a measure of crossing complexity 19/09/2012 ICTCS ’12 - Varese, Italy 11 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Our contribution 1/2 (h-quasi planar drawings) • General technique: Every n-vertex graph with treewidth ≤ k, has an h-quasi planar drawing in O(n) area with h depending only on k 19/09/2012 ICTCS ’12 - Varese, Italy 12 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Our contribution 1/2 (h-quasi planar drawings) • General technique: Every n-vertex graph with treewidth ≤ k, has an h-quasi planar drawing in O(n) area with h depending only on k • Ad-hoc techniques: Smaller values of h for specific subfamilies of planar partial k-trees (outerplanar, flat series-parallel, proper simply nested) 19/09/2012 ICTCS ’12 - Varese, Italy 13 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Our contribution 2/2 (h-quasi planarity vs h-planarity) • Comparison: There exist n-vertex series-parallel graphs (partial 2-trees) such that every h-planar drawing requires super-linear area for any constant h – 11-quasi planar drawings in linear area always exist 19/09/2012 ICTCS ’12 - Varese, Italy 14 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Our contribution 2/2 (h-quasi planarity vs h-planarity) • Comparison: There exist n-vertex series-parallel graphs (partial 2-trees) such that every h-planar drawing requires super-linear area for any constant h – 11-quasi planar drawings in linear area always exist • Additional result: There exist n-vertex planar graphs such that every h-planar drawing requires quadratic area for any constant h 19/09/2012 ICTCS ’12 - Varese, Italy 15 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani What’s coming next • Basic definitions • Results on h-quasi planarity • Comparison with h-planarity • Conclusions and open problems 19/09/2012 ICTCS ’12 - Varese, Italy 16 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani BASIC DEFINITIONS 19/09/2012 ICTCS ’12 - Varese, Italy 17 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? 19/09/2012 ICTCS ’12 - Varese, Italy 18 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 19 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree • the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is a k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 20 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree • the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is a k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 21 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree • the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is a k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 22 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree • the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is a k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 23 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Bounded treewidth graphs • What’s a k-tree? • a clique of size k is a k-tree • the graph obtained from a k-tree by adding a new vertex adjacent to each vertex of a clique of size k is a k-tree • A subgraph of a k-tree is a partial k-tree • A graph has treewidth ≤ k it is a partial k-tree 3-tree construction 19/09/2012 ICTCS ’12 - Varese, Italy 24 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track assignment • t-track assignment of a graph G [Dujmović et al., 2004] = t vertex coloring + total ordering <i in each color class Vi 3-track assignment 19/09/2012 ICTCS ’12 - Varese, Italy 25 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track assignment • t-track assignment of a graph G [Dujmović et al., 2004] = t vertex coloring + total ordering <i in each color class Vi – (Vi ,<i ) = track τi , 1 ≤ i ≤ t track 3-track assignment 19/09/2012 ICTCS ’12 - Varese, Italy 26 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track assignment • t-track assignment of a graph G [Dujmović et al., 2004] = t vertex coloring + total ordering <i in each color class Vi – (Vi ,<i ) = track τi , 1 ≤ i ≤ t – X-crossing = (u, v), (w, z): u,w ∈ Vi, v, z ∈ Vj , u <i w and z <j v, for i ≠ j X-crossing 19/09/2012 ICTCS ’12 - Varese, Italy 27 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track assignment • t-track assignment of a graph G [Dujmović et al., 2004] = t vertex coloring + total ordering <i in each color class Vi – (Vi ,<i ) = track τi , 1 ≤ i ≤ t – X-crossing = (u, v), (w, z): u,w ∈ Vi, v, z ∈ Vj , u <i w and z <j v, for i ≠ j NOT an X-crossing 19/09/2012 ICTCS ’12 - Varese, Italy 28 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track layout • (c, t)-track layout of G = t-track assignment + edge c-coloring: no two edges of the same color form an X-crossing (2,3)-track layout 19/09/2012 ICTCS ’12 - Varese, Italy 29 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track layout • (c, t)-track layout of G = t-track assignment + edge c-coloring: no two edges of the same color form an X-crossing (2,3)-track layout 19/09/2012 ICTCS ’12 - Varese, Italy 30 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Track layout • (c, t)-track layout of G = t-track assignment + edge c-coloring: no two edges of the same color form an X-crossing (2,3)-track layout 19/09/2012 ICTCS ’12 - Varese, Italy 31 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani THE GENERAL TECHNIQUE: COMPUTING COMPACT H-QUASI PLANAR DRAWINGS OF K-TREES 19/09/2012 ICTCS ’12 - Varese, Italy 32 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Ingredients of the result • assume to have a (c,t)-track layout: we show how to compute a [c(t-1)+1]-quasi planar drawing in O(t3 n) area 19/09/2012 ICTCS ’12 - Varese, Italy 33 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Ingredients of the result • assume to have a (c,t)-track layout: we show how to compute a [c(t-1)+1]-quasi planar drawing in O(t3 n) area • we prove that every partial k-tree has a (2,t)-track layout where t depends on k but it does not depend on n 19/09/2012 ICTCS ’12 - Varese, Italy 34 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Ingredients of the result • assume to have a (c,t)-track layout: we show how to compute a [c(t-1)+1]-quasi planar drawing in O(t3 n) area • we prove that every partial k-tree has a (2,t)-track layout where t depends on k but it does not depend on n every partial k-tree has a O(1)-quasi planar drawing in area O(n) 19/09/2012 ICTCS ’12 - Varese, Italy 35 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example INPUT: A partial k-tree G 19/09/2012 ICTCS ’12 - Varese, Italy 36 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example INPUT: A partial k-tree G G = 2-tree 19/09/2012 ICTCS ’12 - Varese, Italy 37 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example INPUT: A partial k-tree G 1. Compute a (2,tk)-track layout of G 19/09/2012 ICTCS ’12 - Varese, Italy 38 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example 1) = (2,t)-track layout of G t=4 19/09/2012 ICTCS ’12 - Varese, Italy 39 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example INPUT: A partial k-tree G 1. Compute a (2,tk)-track layout of G 2. Construct an hk-quasi planar drawing from OUTPUT: The drawing 19/09/2012 ICTCS ’12 - Varese, Italy 40 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example 2) = h-quasi planar drawing of G h ≤ c(t-1)+1 = 2(4-1)+1 = 7 19/09/2012 ICTCS ’12 - Varese, Italy 41 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example INPUT: A partial k-tree G 1. Compute a (2,tk)-track layout of G 2. Construct an hk-quasi planar drawing from OUTPUT: The drawing 19/09/2012 ICTCS ’12 - Varese, Italy 42 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing • Lemma 1: every n-vertex graph G admitting a (c,t)-track layout, also admits an h-quasi planar drawing in O(t3n) area, where h = c(t − 1) + 1 19/09/2012 ICTCS ’12 - Varese, Italy 43 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani An example 19/09/2012 ICTCS ’12 - Varese, Italy 44 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing place the vertices along segments 19/09/2012 ICTCS ’12 - Varese, Italy 45 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing any edge connecting a vertex on a segment i to a vertex on a segment j (i < j) do not overlap with any vertex on a segment k s.t. i < k <j 19/09/2012 ICTCS ’12 - Varese, Italy 46 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing any edge connecting a vertex on a segment i to a vertex on a segment j (i < j) do not overlap with any vertex on a segment k s.t. i < k <j 19/09/2012 ICTCS ’12 - Varese, Italy 47 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing 19/09/2012 ICTCS ’12 - Varese, Italy 48 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing A = O(t3n) t O(t2n) 19/09/2012 ICTCS ’12 - Varese, Italy 49 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • We prove that at most c(t − 1) edges mutually cross 19/09/2012 ICTCS ’12 - Varese, Italy 50 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • We prove that at most c(t − 1) edges mutually cross – every edge (u,v) with u ϵ si and v ϵ sj is completely contained in a parallelogram Πi,j si parallelogram Πi,j sj 19/09/2012 ICTCS ’12 - Varese, Italy 51 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h at most c mutually crossing edges in each parallelogram 19/09/2012 ICTCS ’12 - Varese, Italy 52 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h at most c mutually crossing edges in each parallelogram + at most t − 1 parallelograms mutually overlap (to prove) 19/09/2012 ICTCS ’12 - Varese, Italy 53 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h at most c mutually crossing edges in each parallelogram + at most t − 1 parallelograms mutually overlap (to prove) = at most c(t − 1) mutually crossing edges in our drawing 19/09/2012 ICTCS ’12 - Varese, Italy 54 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • Simplified (but consistent) model – segments = points 19/09/2012 ICTCS ’12 - Varese, Italy 55 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • Simplified (but consistent) model – segments = points – parallelograms = curves 19/09/2012 ICTCS ’12 - Varese, Italy 56 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • An overlap occurs iff 1 - two curves form a crossing 19/09/2012 ICTCS ’12 - Varese, Italy 57 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • An overlap occurs iff 2 - two curves share an endpoint and the other two endpoints are either before or after the one in common 19/09/2012 ICTCS ’12 - Varese, Italy 58 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • Simplified (but consistent) model – an overlap occurs iff 1 - two curves form a crossing 2 - two curves share an endpoint and the other two endpoints are either before or after the one in common 4 mutually overlapping parallelograms 19/09/2012 ICTCS ’12 - Varese, Italy 59 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • To prove: at most t − 1 parallelograms mutually overlap • Proof by induction on t 19/09/2012 ICTCS ’12 - Varese, Italy 60 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • To prove: at most t − 1 parallelograms mutually overlap • Proof by induction on t – t = 2: one parallelogram, OK 19/09/2012 ICTCS ’12 - Varese, Italy 61 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h • To prove: at most t − 1 parallelograms mutually overlap • Proof by induction on t – t = 2: one parallelogram, OK – t > 2: • Ot = biggest set of mutually overlapping parallelograms in Γt – suppose by contradiction that |Ot| > t – 1 • By induction |Ot-1| ≤ t - 2 19/09/2012 ICTCS ’12 - Varese, Italy 62 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h 1 2 i1 i2 ip ip + 1 t-1 t • Ot = P U R 19/09/2012 ICTCS ’12 - Varese, Italy 63 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h 1 2 i1 i2 ip ip + 1 t-1 t • P = subset of parallelograms of Ot having st as a side – t − 2+ |P| ≥ t |P| ≥ 2 19/09/2012 ICTCS ’12 - Varese, Italy 64 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h 1 2 i1 i2 ip ip + 1 t-1 t • P = subset of parallelograms of Ot having st as a side – t − 2+ |P| ≥ t |P| ≥ 2 • R = Ot \ P – they must have a side sj , 1 ≤ j ≤ i1 and a side sl , ip + 1 ≤ l ≤ t − 1 they are present in Γt-1 – |Ot| = |R| + |P| and |Ot| ≥ t |R| ≥ t − |P| 19/09/2012 ICTCS ’12 - Varese, Italy 65 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (c,t)-track layout h-quasi planar drawing: upper bound on h 1 2 i1 i2 ip ip + 1 t-1 t • Let ih + 1 ≤ l ≤ t − 1 be the greatest index among the segments in R – parallelograms Πi2,l ,…, Πip,l and all the parallelograms in R mutually overlap • they form a bundle of mutually overlapping parallelograms in Γt−1 whose size is at least t − |P| + |P| − 1 > t - 2, a contradiction, OK 19/09/2012 ICTCS ’12 - Varese, Italy 66 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani (2, tk)-track layout of k-trees • Theorem 1: Every partial k-tree admits a (2, tk)-track layout, where tk is given by the following set of equations: 19/09/2012 ICTCS ’12 - Varese, Italy 67 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Putting results together • Theorem 2: Every partial k-tree with n vertices admits a hk -quasi planar grid drawing in O(tk3n) area, where hk = 2(tk − 1) + 1 and tk is given by the following set of equations: 19/09/2012 ICTCS ’12 - Varese, Italy 68 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Some values (1,t)-track layouts K 1 2 3 19/09/2012 h_k (our result) h_k [Di Giacomo et al., 2005] 3 3 11 15 299 5415 ICTCS ’12 - Varese, Italy 69 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani COMPARING H-QUASI PLANARITY WITH H-PLANARITY 19/09/2012 ICTCS ’12 - Varese, Italy 70 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees • Theorem 6: Let h be a positive integer, there exist nvertex series-parallel graphs such that any h-planar straight-line drawing requires Ω(n2√(log n)) area • Hence, h-planarity is more restrictive than h-quasi planarity in terms of area requirement for partial 2-trees 19/09/2012 ICTCS ’12 - Varese, Italy 71 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof a graph G 19/09/2012 ICTCS ’12 - Varese, Italy 72 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof G* = l-extension of G l 19/09/2012 ICTCS ’12 - Varese, Italy 73 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Lemma 5: Let h be a positive integer, and let G be a planar graph. In any h-planar drawing of the 3hextension G* of G, there are no two edges of G crossing each other. 19/09/2012 ICTCS ’12 - Varese, Italy 74 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Lemma 5: Let h be a positive integer, and let G be a planar graph. In any h-planar drawing of the 3hextension G* of G, there are no two edges of G crossing each other. u z if 2 edges of G cross… w 19/09/2012 ICTCS ’12 - Varese, Italy v 75 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Lemma 5: Let h be a positive integer, and let G be a planar graph. In any h-planar drawing of the 3hextension G* of G, there are no two edges of G crossing each other u …one vertex will be inside a triangle 19/09/2012 z w ICTCS ’12 - Varese, Italy v 76 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Lemma 5: Let h be a positive integer, and let G be a planar graph. In any h-planar drawing of the 3hextension G* of G, there are no two edges of G crossing each other u …at least one edge of the triangle will receive h+1 crossings…!!! 19/09/2012 z w h ICTCS ’12 - Varese, Italy v 77 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Consider the n-vertex graph G of the family of seriesparallel graphs described in [Frati, 2010] – Ω(n2√(log n)) area may be required in planar s.l. drawings G 19/09/2012 ICTCS ’12 - Varese, Italy 78 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Area lower bound for h-planar drawings of partial 2-trees: sketch of proof • Construct the 3h-extension G* of G – n* = 3m + n = Θ(n) – G* is a series-parallel graph – G must be drawn planarly in any h-planar drawing of G* 3h 19/09/2012 G ICTCS ’12 - Varese, Italy 79 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Extending the lower bound to planar graphs • Theorem 7: Let ε > 0 be given and let h(n) : N → N be a function such that h(n) ≤ n0.5− ε ∀n ϵ N. For every n > 0 there exists a graph G with Θ(n) vertices such that any h(n)-planar straight-line grid drawing of G requires Ω(n1+ 2ε) area – Ω(n2) area necessary if h is a constant 19/09/2012 ICTCS ’12 - Varese, Italy 3h 80 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani CONCLUSIONS AND OPEN PROBLEMS 19/09/2012 ICTCS ’12 - Varese, Italy 81 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Conclusions and remarks • We studied h-quasi planar drawings of partial k-trees in linear area – drawings with optimal area and controlled crossing complexity 19/09/2012 ICTCS ’12 - Varese, Italy 82 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Conclusions and remarks • We studied h-quasi planar drawings of partial k-trees in linear area – drawings with optimal area and controlled crossing complexity • Interesting also in the case of planar graphs – Are there h-quasi planar drawings of planar graphs in o(n2) area where h ϵ o(n)? 19/09/2012 ICTCS ’12 - Varese, Italy 83 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Conclusions and remarks • We studied h-quasi planar drawings of partial k-trees in linear area – drawings with optimal area and controlled crossing complexity • Interesting also in the case of planar graphs – Are there h-quasi planar drawings of planar graphs in o(n2) area where h ϵ o(n)? • O(n) area and h ϵ O(1) can be simultaneously achieved for some families of planar graphs 19/09/2012 ICTCS ’12 - Varese, Italy 84 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Conclusions and remarks • We studied h-quasi planar drawings of partial k-trees in linear area – drawings with optimal area and controlled crossing complexity • Interesting also in the case of planar graphs – Are there h-quasi planar drawings of planar graphs in o(n2) area where h ϵ o(n)? • O(n) area and h ϵ O(1) can be simultaneously achieved for some families of planar graphs • Theorem 8: Every planar graph with n vertices admits a O(log16 n)-quasi planar grid drawing in O(n log48 n) area 19/09/2012 ICTCS ’12 - Varese, Italy 85 D.I.E.I. - Università degli Studi di Perugia E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani Some open problems • h-quasi planar drawings of planar graphs: – is it possible to achieve both O(n) area and h ϵ O(1)? • h-quasi planar drawings of partial k-trees: – studying area - aspect ratio trade offs: O(n) area and o(n) aspect ratio? 19/09/2012 ICTCS ’12 - Varese, Italy 86