Muon System Electronics Upgrade Meeting Summary Alessandro Cardini / INFN Cagliari Roma, October 10, 2014 A. Cardini / INFN Cagliari 2 nSYNC Architecture TDC + Histogram builder: • 4 bit TDC (1.5 ns resolution @ 40 MHz) • 16 bins of 224 entries each. The counts stop when any of the bins saturates. Dead time free in hit capture. Muon Trigger TELL40 Interface: • Sends synchronized hits every machine cycle (40 MHz). • Prog. buffer depth to guarantee the synchronization between different nSYNC sending data through the same GBT TDC ZS: • Zero Suppression of TDC’s data not related to hit events. TDC TELL40 Interface: • Sends synchronized ZS TDC data every machine cycle (40 MHz). • Prog. buffer depth to guarantee the synchronization between different nSYNC sending data through the same GBT I2C Interface: • Configure through the ECS. • Triple-voted configuration S. Cadeddu - INFN Cagliari Roma - 08/10/14 3 nSYNC: alcuni punti (quasi) fermi • Tecnologia: – Al momento UMC 130 nm – In attesa di notizie/decisioni dal CERN sulla TSMC 130 nm • 48 canali – 1 GBT per nSYNC => 4 link indipendenti per nODE – 1 GBT_TFC per nODE – 1 GBT_SCA per nODE • Clock – 40 MHz di sistema (da dove?) – 80/160/320 MHz per interfacce GBT (quale frequenza?; Il clock generato dal GBT stesso?) • Interfaccia ECS – I2C o SPI (?) S. Cadeddu - INFN Cagliari Roma - 08/10/14 4 • 1 GBTx forTFC/ECS GBTx VTTx – MasterGBT GBTx • 1 GBT-SCA • 2 VTTx • 1 VTRx VTRx GBTx ECS GBT SCA nSYNC nSYNC nSYNC 8/10/2014 Paolo Ciambrone INFN- LNF – 12 out of 48 channels (25% occupancy) – Truncation event by event TDC out Trig hit TDC out Trig hit GBTx 48Input ch • 16 bits for header • 48 bits for data hits • 48 bits for TDC data 48Input ch VTTx nSYNC 48Input ch GBTx • 4 GBTx for hit+ TDC data – Slave GBT – Widebus 112 bits TDC out Trig hit TDC out Trig hit • nSYNC @ 48 channels 48Input ch nODE NOW • Livelli logici usati – SLVS e CMOS 8/10/2014 GBTx clock • Input clock – Power-up • Ha bisogno di un reference clock per effettuare la procedura di startup del chip e di inizializzazione del link • 3 opzioni Low-jitter external clock opzione consigliate per i GBT slave External clock+internal XPLL opzione consigliate per i GBT slave Internal XPLL in XOSC mode (usa un quarzo incapsulato nel package) opzione consigliate per i GBT master • La scelta viene effettuata tramite un pin esterno tra opt. 1 e 2/3 e con un registro interno tra opt.2 e 3 • Alla fine della procedure di power-on ( 2ms) vengono generati dei segnali di ready – rxRdy (receiver ready): the receiver part of the GBTX is ready for operation – txRdy (transmitter ready): the transmitter part of the GBTX is ready for operation – Dopo l’init del link ottico il clock del GBTx è sincrono con: • il clock estratto dai dati del link ottico se il GBTx lavora in modalità duplex • il reference clock se il GBTx lavora in modalità Simplex-TX Paolo Ciambrone INFN- LNF 1. 2. 3. • Occorre scegliere uno schema che – Garantisca la massima flessibilità – Minimizzi il numero di input verso l’nSYNC 8/10/2014 GBTx clock Paolo Ciambrone INFN- LNF – Nota: bisogna capire se/come sincronizzare il clock con i comandi del TFC • • 4 bit Header (H) field (2 types) 2 bit Internal Control (IC) field used to control and monitor the GBTX operation • 2 bit External Control (EC) field to implement a slow control channel (e.g. for the GBT-SCA) • 112 bit Data (D) field for generic transmission of data – Its use is strictly reserved for the GBTX control. – its use is not restricted to this application and can be used for generic data transmission applications. 8/10/2014 Paolo Ciambrone INFN- LNF GBTx wide frame format 8/10/2014 • Recommended communication links within a FE module Paolo Ciambrone INFN- LNF TFC+ECS 8/10/2014 • List of mandatory monitoring counters in an FE module Paolo Ciambrone INFN- LNF ECS interface PCIe40 Firmware • In Rome2 the PCIe40 firmware development environment is ready • Minidaq boad expected by the end of the month – currently under test in Marseille • Then: – start Minidaq standalone testing – Useful environment to start developing new ECS software (M. Carletti) – Will purchase few GBT test board (with VTTRx, GBT & GBT-SCA) MiniDaq Roma, October 10, 2014 MiniDaq A. Cardini / INFN Cagliari GBT test b. 11 New Service Board Module (multiple GBT old Backplane) Long line I2C FE converter E-Link 80 Mbits/s Flash FPGA GBT-SCA I2C CLK40 BC Pulse test pulse logic IGLOO2 Actel Flash FPGA 12 x I2C lines SCL SDA_IN SDA_OUT Test/Pulse RESET 1 2 Test/pulse Long line I2C FE converter Test/pulse Long line I2C FE converter Test/pulse Long line I2C FE converter 3 1 2 3 1 2 3 1 2 Test/pulse 3x LVDS I2c each ELMB 3 ttl/lvds converter Valerio Bocci 2014 New Pulse Distribution Module single GBT GBT Fiber 16 x E-Link 80Mbits/s GBT I2C BC counter BC Pulse Generator IGLOO2 Actel Flash FPGA 40 MHz Machine CLK 2 LVDS 2 LVDS Sync BC pulse Valerio Bocci 2014 New Custom Backplane 80 Mbits/s E-LINK P D M S L O T New Custom Backplane routing 80 Mbits/s E-Link Lines And Service line Valerio Bocci 2014 LVDS Test of the new IGLOO2 Flash FPGA Cardiacs Patch bypass lvds LVDS Test using IGLOO2 bypassing SB SB EB Igloo2 LVDS • Service Board • IGLOO2 Evaluation Board • Microcontroller Board to drive standard I2C Valerio Bocci 2014 Removing HW Muon LLT option • The final design of the nSYNC ASIC and of the nODE board depend also on how we are planning to implement the Muon LLT • A SW-only muon LLT will allow an hardware simplification and an important money saving (fewer pins on the nSYNC, fewer optical link on the nODE) because we could remove the output lines to the LLT • In addition, further changes to the current muon system layout are only possible in the case of a full software LLT • Discussions have already started during an electronics upgrade meeting on June 27th, 2014; there are no opposition in principle (SW LLT is already the baseline) • In Orsay we decided to approve this choice at next TB in December. A documents describing advantages/disadvantages will be prepared together with Julien C. Orsay, 16/09/2014 A. Cardini / INFN Cagliari 16