LINGUISTICA GENERALE E COMPUTAZIONALE CLASSIFICAZIONE DI TESTI CLASSIFICAZIONE • Un CLASSIFICATORE e’ una FUNZIONE da oggetti che si vogliono classificare a etichette – Assegnare la parte del discorso a parole – Assegnare valore SPAM/NO SPAM a email – Positivo / negativo • I vari aspetti dell’interpretazione del linguaggio che abbiamo visto nella prima lezione (disambiguazione delle parti del discorso, analisi sintattica, etc) possono essere tutti visti come problemi di classificazione ESEMPIO: DISAMBIGUAZIONE DELLE PARTI DEL DISCORSO COME CLASSIFICAZIONE • La disambiguazione delle parti del discorso (POS tagging) puo’ essere vista come un classificatore che determina l’interpretazione piu’ probabile di ogni parola (nome, verbo, etc) SECONDO ESEMPIO: DISAMBIGUAZIONE DEI SIGNIFICATI SENSES OF “line” • Product: “While he wouldn’t estimate the sale price, analysts have estimated that it would exceed $1 billion. Kraft also told analysts it plans to develop and test a line of refrigerated entrees and desserts, under the Chillery brand name.” • Formation: “C-LD-R L-V-S V-NNA reads a sign in Caldor’s book department. The 1,000 or so people fighting for a place in line have no trouble filling in the blanks.” • Text: “Newspaper editor Francis P. Church became famous for a 1897 editorial, addressed to a child, that included the line “Yes, Virginia, there is a Santa Clause.” • Cord: “It is known as an aggressive, tenacious litigator. Richard D. Parsons, a partner at Patterson, Belknap, Webb and Tyler, likes the experience of opposing Sullivan & Cromwell to “having a thousand-pound tuna on the line.” • Division: “Today, it is more vital than ever. In 1983, the act was entrenched in a new constitution, which established a tricameral parliament along racial lines, with separate chambers for whites, coloreds and Asians but none for blacks.” • Phone: “On the tape recording of Mrs. Guba's call to the 911 emergency line, played at the trial, the baby sitter is heard begging for an ambulance.” 5 UNA VISIONE GEOMETRICA DELLA CLASSIFICAZIONE SPAM NON-SPAM ESEMPIO DI CLASSIFICATORE: DECISION TREE IL RUOLO DELL’APPRENDIMENTO AUTOMATICO • Nella linguistica computazionale moderna, questi classificatori non vengono specificati a mano, ma vengono APPRESI AUTOMATICAMENTE a partire da esempi. CLASSIFICAZIONE PROBABILISTICA • Ad ogni etichetta e’ tipicamente associata una PROBABILITA’ • Il classificatore puo’ essere sviluppato a mano o APPRESO da (grandi quantita’ di) ESEMPI usando metodi di APPRENDIMENTO AUTOMATICO POS TAGGER PROBABILISTICI • Un POS TAGGER e’ un classificatore che riceve come input informazioni sulla parola (FEATURES) – – – – UNIGRAM PROBABILITY: P(N|salto), P(V|salto) AFFIXES (‘ing’, ‘ould’) N-GRAM PROBABILITIES: P(NN|un salto) …. • Produce in output una probabilita’ – P(N|UProb,AFF,Nprob) = … – P(V|UProb,AFF,Nprob) = … TIPI DI CLASSIFICATORI • SUPERVISIONATI (SUPERVISED) – Imparano da esempi etichettati – Modellano l’apprendimento tramite insegnanti • NON SUPERVISIONATI (UNSUPERVISED) – Scoprono da soli la struttura del problema – Modellano l’apprendimento del linguaggio • SEMI-SUPERVISED – Ricevono come input pochi esempi poi procedono per somiglianza SUPERVISED CLASSIFICATION FOR POS TAGGING • L’algoritmo di apprendimento riceve come input un corpus di TRAINING classificato con POS tags – La/Art gatta/N fece/V un/Art salto/N ./. – Giuseppe/PN e’/V matto/Adj ./. • Si estrae le features / calcola le probabilita’ • Costruisce un MODELLO che puo’ poi essere usato per classificare ALTRI testi TRAIN/TEST METODI PER L’APPRENDIMENTO • DECISION TREES • NAÏVE BAYES NAÏVE BAYES • Metodi Bayesiani: decisione su classificazione basata su – un modello PROBABILISTICO – che coniuga uso di informazioni A PRIORI ed A POSTERIORI come nella regola di Bayes • Metodi NAÏVE BAYES: si fanno assunzioni che semplificano molto il calcolo delle probabilità Legge di Bayes P(C , X ) P(C | X ) P( X ) P( X | C ) P(C ) P( X | C ) P(C ) P(C | X ) P( X ) Bayes applicata alla classificazione di testi P(Classe|Proprietà) = P(Proprietà|Classe)*P(Classe) / P(Proprietà) Maximum a posteriori Hypothesis hMAP argmax P(h | D) hH hMAP P( D | h ) P( h ) argmax P( D ) hH hMAP argmax P( D | h) P(h) hH Naive Bayes Classifiers Task: Classify a new instance based on a tuple of attribute values x1 , x2 ,, xn cMAP argmax P(c j | x1 , x2 ,, xn ) c j C cMAP argmax c j C P( x1 , x2 ,, xn | c j ) P(c j ) P(c1 , c2 ,, cn ) cMAP argmax P( x1 , x2 ,, xn | c j ) P(c j ) c j C Naïve Bayes Classifier: Assumptions • P(cj) – Can be estimated from the frequency of classes in the training examples. • P(x1,x2,…,xn|cj) – O(|X|n•|C|) – Could only be estimated if a very, very large number of training examples was available. Conditional Independence Assumption: Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities. The Naïve Bayes Classifier Flu X1 runnynose X2 sinus X3 cough X4 fever X5 muscle-ache • Conditional Independence Assumption: features are independent of each other given the class: P( X 1 ,, X 5 | C ) P( X 1 | C ) P( X 2 | C ) P( X 5 | C ) Learning the Model C X1 X2 X3 X4 X5 X6 • Common practice:maximum likelihood – simply use the frequencies in the data N (C c j ) ˆ P (c j ) N Pˆ ( xi | c j ) N ( X i xi , C c j ) N (C c j ) Problem with Max Likelihood Flu X1 runnynose X2 sinus X3 cough X4 fever X5 muscle-ache P( X 1 ,, X 5 | C ) P( X 1 | C ) P( X 2 | C ) P( X 5 | C ) • What if we have seen no training cases where patient had no flu and muscle aches? N ( X 5 t , C nf ) ˆ P( X 5 t | C nf ) 0 N (C nf ) • Zero probabilities cannot be conditioned away, no matter the other evidence! arg max c Pˆ (c)i Pˆ ( xi | c) Smoothing to Avoid Overfitting Pˆ ( xi | c j ) N ( X i xi , C c j ) 1 N (C c j ) k # of values of Xi • Somewhat more subtle version Pˆ ( xi ,k | c j ) overall fraction in data where Xi=xi,k N ( X i xi ,k , C c j ) mpi ,k N (C c j ) m extent of “smoothing” Using Naive Bayes Classifiers to Classify Text: Basic method • Attributes are text positions, values are words. cNB argmax P(c j ) P( xi | c j ) c jC i argmax P(c j ) P( x1 " our" | c j ) P( xn " text" | c j ) c jC Naive Bayes assumption is clearly violated. Example? Still too many possibilities Assume that classification is independent of the positions of the words Use same parameters for each position ESEMPIO DI CLASSIFICAZIONE: DOCUMENT CLASSIFICATION (NLTK book, p. 227-228) VALUTAZIONE • ACCURACY: percentuale di risposte corrette • Nel caso di problemi in cui la classe di interesse rappresenta una percentuale minima del totale: PRECISION e RECALL PRECISION E RECALL ESEMPIO DI CLASSIFICAZIONE: GENDER IDENTIFICATION (NLTK book, p. 222-227) APPRENDERE DECISION TREES • Top-down: dato un certo insieme di esempi, trovare la proprieta’ che permette di dividerli in sottogruppi piu’ COERENTI • Poi si procede ricorsivamente • Scelta della proprieta’: INFORMATION GAIN Top-down DT induction • Partition training examples into good “splits”, based on values of a single “good” feature: (1) Sat, hot, no, casual, keys -> + (2) Mon, cold, snow, casual, no-keys -> (3) Tue, hot, no, casual, no-keys -> (4) Tue, cold, rain, casual, no-keys -> (5) Wed, hot, rain, casual, keys -> + Top-down DT induction keys? yes Drive: 1,5 no Walk: 2,3,4 Top-down DT induction • Partition training examples into good “splits”, based on values of a single “good” feature (1) Sat, hot, no, casual -> + (2) Mon, cold, snow, casual -> (3) Tue, hot, no, casual -> (4) Tue, cold, rain, casual -> (5) Wed, hot, rain, casual -> + • No acceptable classification: proceed recursively Top-down DT induction t? cold Walk: 2,4 hot Drive: 1,5 Walk: 3 Top-down DT induction t? cold hot Walk: 2,4 day? Sat Wed Tue Drive: 1 Walk: 3 Drive: 5 Top-down DT induction t? cold hot Walk: 2,4 Mo, Thu, Fr, Su day? Sat Wed Tue Drive: 1 Walk: 3 Drive: 5 ? Drive Selezione della proprieta’ • La scelta della proprieta’ da usare per dividere l’insieme corrente in sottinsiemi piu’ coerenti si basa su un criterio di RIDUZIONE DEL DISORDINE basato sulla nozione di ENTROPIA ENTROPIA Entropy and Decision Trees keys? no Walk: 2,4 E(Sno)=0 E(S)=-0.6*lg(0.6)-0.4*lg(0.4)= 0.97 yes Drive: 1,3,5 E(Skeys)=0 Entropy and Decision Trees t? cold Walk: 2,4 E(Scold)=0 E(S)=-0.6*lg(0.6)-0.4*lg(0.4)= 0.97 hot Drive: 1,5 Walk: 3 E(Shot)=-0.33*lg(0.33)-0.66*lg(0.66)= 0.92 INFORMATION GAIN Information gain • For each feature f, compute the reduction in entropy on the split: Gain(S,f)=E(S)-∑(Entropy(Si)*|Si|/|S|) f=keys? : Gain(S,f)=0.97 f=t?: Gain(S,f)=0.97-0*2/5-0.92*3/5=0.42 f=clothing?: Gain(S,f)= ? TEXT CATEGORIZATION WITH DT • Build a separate decision tree for each category • Use WORDS COUNTS as features Reuters Data Set (21578 - ModApte split) • 9603 training, 3299 test articles; ave. 200 words • 118 categories – An article can be in more than one category – Learn 118 binary category distinctions Common categories (#train, #test) • • • • • Earn (2877, 1087) Acquisitions (1650, 179) Money-fx (538, 179) Grain (433, 149) Crude (389, 189) • • • • • Trade (369,119) Interest (347, 131) Ship (197, 89) Wheat (212, 71) Corn (182, 56) 44 AN EXAMPLE OF REUTERS TEXT Foundations of Statistical Natural Language Processing, Manning and Schuetze Decision Tree for Reuter classification Foundations of Statistical Natural Language Processing, Manning and Schuetze Information gain & text classification