Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted Amand Faessler, 22. Oct. 2004 1 Oνββ-Decay (forbidden) P P Left ν Phase Space Left 106 x 2νββ n n only for Majorana Neutrinos ν = νc Amand Faessler, 22. Oct. 2004 4 GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: Amand Faessler, 22. Oct. 2004 5 P P ν e- L/R n e- ν l/r n Amand Faessler, 22. Oct. 2004 6 P P l/r ν light ν heavy N l/r Neutrinos n n Amand Faessler, 22. Oct. 2004 7 Supersymmetry Bosons ↔ Fermions ----------------------------------------------------------------------P P e- e- Proton u u u d d Proton u Neutron Neutron n n Neutralinos Amand Faessler, 22. Oct. 2004 8 Theoretical Description: Simkovic, Rodin, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel, Stoica, Suhonen, Civitarese, Tomoda et al. 0+ k k 1+ P P e1 ν k e2 Ek 2n n Ei 0+ 0+ 0νββ Amand Faessler, 22. Oct. 2004 9 Amand Faessler, 22. Oct. 2004 10 The best choice: Quasi-Particle- Pairing (a) Quasi-Boson-Approx.: (b) Particle Number non-conserv. (important near closed shells) Unharmonicities Proton-Neutron Pairing (c) (d) Amand Faessler, 22. Oct. 2004 11 Amand Faessler, 22. Oct. 2004 12 Amand Faessler, 22. Oct. 2004 14 Amand Faessler, 22. Oct. 2004 15 M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus 76Ge 100Mo 130Te 136Xe their(QRPA, 1.254) 3.33 2.97 3.49 4.64 our(QRPA, 1.25) 2.68(0.12) 1.30(0.10) 1.56(0.47) 0.90(0.20) A different procedure of fixing gpp to single beta decays. What is their g(pp) with error? How well is the 2-neutrino decay reproduced? Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)! Amand Faessler, 22. Oct. 2004 16 M0ν (R-QRPA; 1.25) S. Stoica, H.V. KlapdorKleingrothaus, NPA 694 (2001) 269 The same procedure of fixing g(pp) Higher order terms of nucleon current not considered Nucleus 76Ge 100Mo 130Te 136Xe l.m.s s.m.s 1.87 (l=12) 3.74 (s=9) 3.40 4.36 3.00 4.55 1.02 1.57 our 2.40(.12) 1.20(.15) 1.46(.46) 0.85(.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA! Amand Faessler, 22. Oct. 2004 19 Neutrino-Masses from the 0νbb and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance: Amand Faessler, 22. Oct. 2004 22 Reactor Neutrinos (Chooz): CP Amand Faessler, 22. Oct. 2004 24 OSCILLATIONS AND DOUBLE BETA DECAY Bilenky, Faessler, Simkovic P. R. D 70(2004)33003 Hierarchies: mν Normal Inverted m2 m1 m3 m2 m1 m1<<m2<<m3 m3 m3<<m1<<m2 Amand Faessler, 22. Oct. 2004 26 (Bild) Amand Faessler, 22. Oct. 2004 27 Summary: Accuracy of Neutrino Masses from 0nbb Fit the g(pp) by 2nbb in front of the particleparticle NN matrixelement include exp. Error of 2nbb. Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the 0nbb. Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2nbb)). Amand Faessler, 22. Oct. 2004 28 Summary: Results from 0nbb <m(n)>(0nbb Ge76, Exp. Klapdor) < 0.47 [eV] <M(heavy n)> > 1.2 [GeV] <M(heavy Vector B)> > 5600 [GeV] SUSY+R-Parity: l‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk: m(n) < 2.2 [eV] Astro Physics (SDSS): Sum{ m(n) } < 1 to 2 [eV] Klapdor et al. from 0nbb Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV], if confirmed. The Theory Groups must check their Results against each other. THE END Amand Faessler, 22. Oct. 2004 29 Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry →MajoranaNeutrino = Antineutrinos P P P P u d n n d d u n <m(n)> < 0.47 eV; u u u d u n l‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] Amand Faessler, 22. Oct. 2004 30 3. Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = 0.002 – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV] ββ Experiment: <mββ> < 0.47 [eV] Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV] THE END Amand Faessler, 22. Oct. 2004 31 ν-Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos: Amand Faessler, 22. Oct. 2004 32 Loop Diagrams: X X Figure 0.1: quark-squark 1-loop contribution to mv Majorana Neutrino Amand Faessler, 22. Oct. 2004 33 X Block Diagonalis. X Figure 0.2: lepton-slepton 1-loop contribution to mv (7x7) Mass-Matrix: Amand Faessler, 22. Oct. 2004 34 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible Amand Faessler, 22. Oct. 2004 35 Super-K: Amand Faessler, 22. Oct. 2004 36 Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking: Amand Faessler, 22. Oct. 2004 37 How to calculate λ‘i33 (and λi33) from λ‘333? U(1) charge conserved! 1,2,3 = families Amand Faessler, 22. Oct. 2004 38 gPP fixed to 2νββ; M(0nbb) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values Amand Faessler, 22. Oct. 2004 39 Assuming only Electron Neutrinos: (ES) 2.35*106 [Φ] (CC) 1.76*106 [Φ] (NC) 5.09*106 [Φ] Including Muon and Tauon ν: Φ(νe) = 1.76*106 Φ(νμ+ντ) = 3.41*106 Φ(νe+νμ+ντ) = 5.09*106 (CC) (CC+ES) (NC) Φ(ν-Bahcall) = 5.14*106 Amand Faessler, 22. Oct. 2004 40 Amand Faessler, 22. Oct. 2004 41