PRESERVARE PER PROLUNGARE CONTROLLO DEL BILANCIO DEI FLUIDI CON BCM Dott. Gianpaolo Amici, U.O. Nefrologia e Dialisi, Ospedale di Treviso USRDS 2009 Adjusted mortality rates USRDS 2009 Change in hospitalization rates USRDS 2004 Risk of death (cause and modality) Ipervolemia, ipertensione e patologia cardiovascolare in DP Lameire N, et al. Cardiovascular diseases in peritoneal dialysis patients: the size of the problem. Kidney Int Suppl. 1996 Nov;56:S28-36. Lameire N, Van Biesen W. Importance of blood pressure and volume control in peritoneal dialysis patients. Perit Dial Int. 2001 Mar-Apr;21(2):206-11. Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part I: Recent concepts in pathogenesis. Adv Perit Dial. 2003;19:36-43. Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part II: Newer insights in management. Adv Perit Dial. 2003;19:44-52. Wang AY. Cardiovascular risk factors in peritoneal dialysis patients revisited. Perit Dial Int. 2007 Jun;27 Suppl 2:S223-7. Wang AY. The John F. Maher Award Recipient Lecture 2006. The "heart" of peritoneal dialysis:residual renal function. Perit Dial Int. 2007 Mar-Apr;27(2):116-24. Van Biesen W, et al. Residual renal function and volume status in peritoneal dialysis patients: a conflict of interest? J Nephrol. 2008 May-Jun;21(3):299-304. Brunkhorst R. Hypervolemia, arterial hypertension and cardiovascular disease: a largely neglected problem in peritoneal dialysis. Clin Nephrol. 2008; Apr;69(4):233-8. Carvalho MJ, Rodrigues A. Importance of residual renal function and peritoneal dialysis in anuric patients. Contrib Nephrol. 2009;163:155-60. Piraino B. Cardiovascular complications in peritoneal dialysis patients. Contrib Nephrol. 2009;163:102-9. Wang MC, et al. BLOOD PRESSURE AND LEFT VENTRICULAR HYPERTROPHY IN PATIENTS ON DIFFERENT PERITONEAL DIALYSIS REGIMENS Perit Dial Int 2001; 21: 36–42 “In this study, ambulatory nighttime systolic BP load >30% had an independent association with LVH. Office and home BP measurements were correlated with ABPM in PD patients. The result that CCPD patients had a higher LVMI than CAPD patients may be due to a relative volume overload during the daytime in CCPD patients”. Nutritional Assessment Using Body Composition Monitoring in Peritoneal Dialysis Patients. Variables Determining Body Mass, Fat Tissue and Lean Tissue Index. Covic A (Van Biesen W), et al. Objective Apart from adequate management of the fluid status in peritoneal dialysis (PD) patients the nutritional aspect of the therapy is equally important for the patient’s morbidity and mortality. In this cross-sectional study body composition data was obtained with the Body Composition Monitor (BCM, Fresenius Medical Care) to identify relevant variables for optimized nutritional outcomes. Methods We screened 973 PD patients from 28 centers in 6 European countries. 639 patients met the inclusion/exclusion criteria. Body composition, blood pressure (BP), dialysis modality and prescription, pre-existing diseases, comorbidities, and antihypertensive medication were documented and analyzed. Results Mean body mass index (26.3±5.1 kg/mq) and fat tissue index (12.6±6.0 kg/mq) were slightly above the normal range whereas mean lean tissue index (13.4±3.4 kg/mq, LTI) was within normal range at a mean weight of 72.2±15.4kg and height of 166±9.6 cm. Patients on glucose PD solutions alone had a statistically significantly better outcome than those on polyglucose or amino acid solutions in regard of nutritional parameters like lean tissue index. Conclusions The study provides essential information on nutritional status in a large representative cohort of European PD patients. BCM measurement enables clinicians to obtain objective data on patient’s body composition regarding fat tissue, lean tissue, and fluid status in routine clinical practice to optimize PD therapy and patient outcomes. Devolder I, et al. BODY COMPOSITION, HYDRATION, AND RELATED PARAMETERS IN HEMODIALYSIS VERSUS PERITONEAL DIALYSIS PATIENTS. Perit Dial Int 2010; 30: 208–214 “Although much clinical attention is paid to volume status, 24% of patients still have clinically relevant volume overload. Implementation of a reliable and clinically applicable tool to assess volume status is therefore necessary. It is possible to obtain comparable volume status in PD and HD patients”. BCM-Body Composition Monitor Principio di base delle frequenze multiple ECW Zero frequency measurement Cell (Cell behaves as an insulator) Medium frequency ECW (50 kHz) (Cell behaves as a partial insulator) i(t) Cell U(t) ~ High frequency (Cell behaves as an ordinary conductor) Apply AC ECW Cell Range di misurazione: la curva dell‘impedenza Information about body composition Reaktance g a b Meas. range BIS Physiologic impedance curve of patient BIA (50 kHz) 1MHz Rinf BIA BIS 5kHz R0 Resistance Solo con Bioimpedance spectroscopy (BIS) è possibile valutare la curva fisiologica dell‘impedenza. Come sono le curve di impedenza nei pazienti? healthy subject 60 Reaktance [Ohm] 50 malnourished patient 40 30 fluid overloaded 20 patient 10 0 200 300 400 500 600 700 800 900 Resistance [Ohm] The impedance curves of patients are very different from healthy subjects. To assess the body composition in healthies the complete curve must be measured. Impedenza multifrequenza e composizione corporea Reactance 1MHz 5kHz R0 R Weight, Height Resistance Fluid Model • ECW, ICW Body Model • Lean tissue • Fat • excess Fluid Il modello a 3 compartimenti Base del modello di composizione corporea del BCM …. Proteins & minerals ≈ 100% water 70% water Excess fluid Lean tissue Lipids & minerals Adipose tissue 20 % water Moissl UM, et al. Physiol Meas 2006; 27: 921-933. Chamney PW, et al. Am J Clin Nutr 2007; 85: 80-9. BCM – aspetto delle schermate … quantifies individual overhydration (L) … determines urea distribution volume (L) … measures non-invasively, fast and easy … provides a basis for nutritional assessment Grafico analisi di un singolo paziente nel tempo con software BCM Body Composition measured with BCM 70 Overhydration BCM weight [kg] 60 50 LTM BCM 40 30 20 10 Fat BCM 10.4.06 17.4.06 24.4.06 1.5.06 8.5.06 15.5.06 22.5.06 29.5.06 BP [mmHg] Combining Blood Pressure and Fluid Overload • • 140 • • hypertension normovolemia hypertension hypervolemia - heart disease - medication • • normotension normovolemia Normotension • • -1.1 L normotension hypervolemia 1.1 L Normovolemia Fluid Overload PA e idratazione con BCM in dialisi Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload P. Wabel, et al. NDT, 2008. 500 prevalent HD patients from 8 European centers (Germany, Poland, UK, Portugal, Cz) Letteratura sul BCM Moissl UM, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006 Sep;27(9):921-33. Chamney PW, et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007 Jan;85(1):80-9. Wizemann V, et al. Whole-body spectroscopy (BCM) in the assessment of normovolemia in hemodialysis patients. Contrib Nephrol. 2008;161:115-8. Wabel P, et al. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008 Sep;23(9):2965-71. Wizemann V, et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009 May;24(5):1574-9. Wabel P, et al. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009;27(1):75-80. Crepaldi C, et al. Application of body composition monitoring to peritoneal dialysis patients. Contrib Nephrol. 2009;163:1-6. Machek P, et al. Guided optimization of fluid status in haemodialysis patients. Nephrol Dial Transplant. 2010 Feb;25(2):538-44. Devolder I, et al. Body composition hydration and related parameters in hemodialysis versus peritoneal dialysis patients. Perit Dial Int 2010; 30: 208— 14. Phi 50 kHz [°] BCM e BIA - PhA Bivariate Fit of Phase A By Phi 50 kHz [°] Matched Pairs 9 Difference: Phi 50 kHz [°]-Phase A Difference: Phi 50 kHz [°]-Phase A 8 Phase A 7 6 5 4 3 2 3 4 5 6 7 Phi 50 kHz [°] 1,5 1,0 0,5 0,0 -0,5 -1,0 -1,5 -2,0 3 Bivariate Normal Ellipse P=0,950 4 5 6 7 8 Mean: (Phase A+Phi 50 kHz [°])/2 Correlation Variable 2,0 Mean Std Dev Phi 50 kHz [°] 5,110769 1,040727 Phase A 5,284615 1,089311 Correlation Signif. Prob Number 0,887227 0,0000 39 Phi 50 kHz [°] 5,11077 Phase A 5,28462 Mean Difference -0,1738 Std Error 0,08134 Upper95% -0,0092 Low er95% -0,3385 N 39 Phase A Correlation 0,88723 t-Ratio DF Prob > |t| Prob > t Prob < t -2,13718 38 0,0391 0,9805 0,0195 BCM e BIA - R Bivariate Fit of R BIA By Z 50 kHz [Ohm] Matched Pairs 750 Difference: Z 50 kHz [Ohm]-R BIA 700 Difference: Z 50 kHz [Ohm]-R BIA 50 650 R BIA 600 550 500 450 400 350 300 300 350 400 450 500 550 600 650 700 750 Z 50 kHz [Ohm] 40 30 20 10 0 -10 -20 -30 -40 -50 300 350 400 450 500 550 600 650 700 750 Bivariate Normal Ellipse P=0,950 Mean: (R BIA+Z 50 kHz [Ohm])/2 Correlation Variable Mean Std Dev Correlation Signif. Prob Number Z 50 kHz [Ohm] 512,0513 81,50739 R BIA 504,4359 79,51028 0,991845 0,0000 39 Z 50 kHz [Ohm] R BIA Mean Difference Std Error Upper95% Low er95% N Correlation 512,051 504,436 7,61538 1,67703 11,0103 4,22044 39 0,99185 t-Ratio DF Prob > |t| Prob > t Prob < t 4,541 38 <.0001 <.0001 1,0000 Massa magra con BCM e PhA BIA Bivariate Fit of Phase A By LTI [kg/m²] 9 8 Phase A 7 6 5 4 3 2 6 8 10 12 14 16 18 20 LTI [kg/m²] Bivariate Normal Ellipse P=0,950 Correlation Variable LTI [kg/m²] Phase A Mean Std Dev 13,23243 2,910332 5,275676 1,100355 Correlation Signif. Prob Number 0,665987 0,0000 37 Iperidratazione e dati ecocardiografici in 40 pazienti di Treviso Bivariate Fit of ECC FE% By OH [L] Bivariate Fit of LVMI Devereux-Penn g/mq By OH [L] 85 LVMI Devereux-Penn g/mq 80 ECC FE% 75 70 65 60 55 50 45 250 200 150 100 40 -3 -2 -1 0 1 2 3 4 5 6 -3 -2 OH [L] 1 2 3 4 5 6 Bivariate Normal Ellipse P=0,950 Correlation OH [L] ECC FE% 0 OH [L] Bivariate Normal Ellipse P=0,950 Variable -1 Correlation Mean Std Dev Correlation Signif. Prob Number 1,331429 67,07714 1,923198 8,726501 -0,33729 0,0475 35 Variable Mean Std Dev Correlation Signif. Prob Number OH [L] 1,331429 1,923198 LVMI Devereux-Penn g/mq 164,0497 50,15456 0,346941 0,0412 35 Funzione renale e iperidratazione con BCM in 40 pazienti di Treviso Bivariate Fit of Diuresi residua By OH [L] Bivariate Fit of GFR ml/min By OH [L] 8 2000 7 GFR ml/min Diuresi residua 6 1500 1000 500 5 4 3 2 1 0 0 -1 -3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 OH [L] 3 4 5 6 Bivariate Normal Ellipse P=0,950 Correlation OH [L] Diuresi residua 2 OH [L] Bivariate Normal Ellipse P=0,950 Variable 1 Correlation Mean Std Dev 1,228947 1,74339 638,4211 521,4145 Correlation Signif. Prob Number -0,32197 0,0487 38 Variable OH [L] GFR ml/min Mean Std Dev Correlation Signif. Prob Number 1,165714 2,36 1,795082 2,222174 -0,41823 0,0124 35 Composizione corporea e tempo in DP in 40 pazienti di Treviso Bivariate Fit of rel Fat [%] By Età dial Bivariate Fit of BMI [kg/m²] By Età dial 50 40 30 rel Fat [%] BMI [kg/m²] 35 25 30 20 20 10 15 0 25 50 75 100 125 0 150 25 50 125 150 Bivariate Normal Ellipse P=0,950 Bivariate Normal Ellipse P=0,950 Correlation Correlation Età dial BMI [kg/m²] 100 Età dial Età dial Variable 75 Mean Std Dev Correlation Signif. Prob Number 32,4114 25,12687 32,33393 3,861442 0,357082 0,0278 38 Variable Età dial rel Fat [%] Mean Std Dev Correlation Signif. Prob Number 34,05556 32,62222 32,44065 9,435226 0,449396 0,0060 36