PRESERVARE PER PROLUNGARE
CONTROLLO DEL BILANCIO DEI
FLUIDI CON BCM
Dott. Gianpaolo Amici, U.O. Nefrologia
e Dialisi, Ospedale di Treviso
USRDS 2009 Adjusted mortality rates
USRDS 2009 Change
in hospitalization rates
USRDS 2004 Risk of
death (cause and
modality)
Ipervolemia, ipertensione e patologia
cardiovascolare in DP
Lameire N, et al. Cardiovascular diseases in peritoneal dialysis patients: the size of the
problem. Kidney Int Suppl. 1996 Nov;56:S28-36.
Lameire N, Van Biesen W. Importance of blood pressure and volume control in peritoneal
dialysis patients. Perit Dial Int. 2001 Mar-Apr;21(2):206-11.
Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part
I: Recent concepts in pathogenesis. Adv Perit Dial. 2003;19:36-43.
Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part
II: Newer insights in management. Adv Perit Dial. 2003;19:44-52.
Wang AY. Cardiovascular risk factors in peritoneal dialysis patients revisited. Perit Dial Int.
2007 Jun;27 Suppl 2:S223-7.
Wang AY. The John F. Maher Award Recipient Lecture 2006. The "heart" of peritoneal
dialysis:residual renal function. Perit Dial Int. 2007 Mar-Apr;27(2):116-24.
Van Biesen W, et al. Residual renal function and volume status in peritoneal dialysis patients: a
conflict of interest? J Nephrol. 2008 May-Jun;21(3):299-304.
Brunkhorst R. Hypervolemia, arterial hypertension and cardiovascular disease: a largely
neglected problem in peritoneal dialysis. Clin Nephrol. 2008; Apr;69(4):233-8.
Carvalho MJ, Rodrigues A. Importance of residual renal function and peritoneal dialysis in
anuric patients. Contrib Nephrol. 2009;163:155-60.
Piraino B. Cardiovascular complications in peritoneal dialysis patients. Contrib Nephrol.
2009;163:102-9.
Wang MC, et al.
BLOOD PRESSURE AND LEFT VENTRICULAR
HYPERTROPHY IN PATIENTS ON DIFFERENT
PERITONEAL DIALYSIS REGIMENS
Perit Dial Int 2001; 21: 36–42
“In this study, ambulatory
nighttime systolic BP load >30%
had an independent association
with LVH. Office and home BP
measurements were correlated with
ABPM in PD patients. The result
that CCPD patients had a higher
LVMI than CAPD patients may be
due to a relative volume overload
during the daytime in CCPD
patients”.
Nutritional Assessment Using Body Composition Monitoring in
Peritoneal Dialysis Patients. Variables Determining Body Mass,
Fat Tissue and Lean Tissue Index. Covic A (Van Biesen W), et al.
Objective
Apart from adequate management of the fluid status in peritoneal dialysis (PD) patients the
nutritional aspect of the therapy is equally important for the patient’s morbidity and
mortality. In this cross-sectional study body composition data was obtained with the Body
Composition Monitor (BCM, Fresenius Medical Care) to identify relevant variables for
optimized nutritional outcomes.
Methods
We screened 973 PD patients from 28 centers in 6 European countries. 639 patients met the
inclusion/exclusion criteria. Body composition, blood pressure (BP), dialysis modality and
prescription, pre-existing diseases, comorbidities, and antihypertensive medication were
documented and analyzed.
Results
Mean body mass index (26.3±5.1 kg/mq) and fat tissue index (12.6±6.0 kg/mq) were slightly
above the normal range whereas mean lean tissue index (13.4±3.4 kg/mq, LTI) was within
normal range at a mean weight of 72.2±15.4kg and height of 166±9.6 cm. Patients on
glucose PD solutions alone had a statistically significantly better outcome than those on
polyglucose or amino acid solutions in regard of nutritional parameters like lean tissue index.
Conclusions
The study provides essential information on nutritional status in a large representative cohort
of European PD patients. BCM measurement enables clinicians to obtain objective data on
patient’s body composition regarding fat tissue, lean tissue, and fluid status in routine clinical
practice to optimize PD therapy and patient outcomes.
Devolder I, et al.
BODY COMPOSITION, HYDRATION, AND RELATED PARAMETERS
IN HEMODIALYSIS VERSUS PERITONEAL DIALYSIS PATIENTS.
Perit Dial Int 2010; 30: 208–214
“Although much clinical attention is paid to volume
status, 24% of patients still have clinically relevant
volume overload. Implementation of a reliable and
clinically applicable tool to assess volume status is
therefore necessary. It is possible to obtain
comparable volume status in PD and HD patients”.
BCM-Body Composition Monitor
Principio di base delle frequenze multiple
ECW
Zero frequency
measurement
Cell
(Cell behaves as an
insulator)
Medium frequency
ECW
(50 kHz)
(Cell behaves as a
partial insulator)
i(t)
Cell
U(t)
~
High frequency
(Cell behaves as an
ordinary conductor)
Apply AC
ECW
Cell
Range di misurazione: la curva
dell‘impedenza
Information about body
composition
Reaktance
g
a
b
Meas. range BIS
Physiologic
impedance curve
of patient
BIA
(50 kHz)
1MHz
Rinf
BIA  BIS
5kHz
R0
Resistance
Solo con Bioimpedance spectroscopy (BIS) è possibile
valutare la curva fisiologica dell‘impedenza.
Come sono le curve di impedenza nei
pazienti?
healthy subject
60
Reaktance [Ohm]
50
malnourished patient
40
30 fluid overloaded
20
patient
10
0
200
300
400
500
600
700
800
900
Resistance [Ohm]
The impedance curves of patients are very different from healthy subjects.
To assess the body composition in healthies the complete curve must be measured.
Impedenza multifrequenza e
composizione corporea
Reactance
1MHz
5kHz
R0
R
Weight, Height 
Resistance
Fluid Model
• ECW, ICW
Body Model
• Lean tissue
• Fat
• excess Fluid
Il modello a 3 compartimenti
Base del modello di composizione corporea del BCM ….
Proteins
& minerals
≈ 100%
water
70%
water
Excess
fluid
Lean
tissue
Lipids &
minerals
Adipose
tissue
20 %
water
Moissl UM, et al. Physiol Meas 2006; 27: 921-933.
Chamney PW, et al. Am J Clin Nutr 2007; 85: 80-9.
BCM – aspetto delle schermate
… quantifies
individual overhydration (L)
… determines
urea distribution volume (L)
… measures
non-invasively, fast and easy
… provides
a basis for nutritional
assessment
Grafico analisi di un singolo paziente
nel tempo con software BCM
Body Composition measured with BCM
70
Overhydration BCM
weight [kg]
60
50
LTM BCM
40
30
20
10
Fat BCM
10.4.06 17.4.06 24.4.06 1.5.06 8.5.06 15.5.06 22.5.06 29.5.06
BP [mmHg]
Combining Blood Pressure and Fluid Overload
•
•
140
•
•
hypertension
normovolemia
hypertension
hypervolemia
- heart disease
- medication
•
•
normotension
normovolemia
Normotension
•
•
-1.1 L
normotension
hypervolemia
1.1 L
Normovolemia
Fluid Overload
PA e idratazione con BCM in dialisi
Towards improved cardiovascular management: the necessity of
combining blood pressure and fluid overload
P. Wabel, et al. NDT, 2008. 500 prevalent HD patients from 8 European
centers (Germany, Poland, UK, Portugal, Cz)
Letteratura sul BCM
Moissl UM, et al. Body fluid volume determination via body composition
spectroscopy in health and disease. Physiol Meas. 2006 Sep;27(9):921-33.
Chamney PW, et al. A whole-body model to distinguish excess fluid from the
hydration of major body tissues. Am J Clin Nutr. 2007 Jan;85(1):80-9.
Wizemann V, et al. Whole-body spectroscopy (BCM) in the assessment of
normovolemia in hemodialysis patients. Contrib Nephrol. 2008;161:115-8.
Wabel P, et al. Towards improved cardiovascular management: the necessity of
combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008
Sep;23(9):2965-71.
Wizemann V, et al. The mortality risk of overhydration in haemodialysis patients.
Nephrol Dial Transplant. 2009 May;24(5):1574-9.
Wabel P, et al. Importance of whole-body bioimpedance spectroscopy for the
management of fluid balance. Blood Purif. 2009;27(1):75-80.
Crepaldi C, et al. Application of body composition monitoring to peritoneal dialysis
patients. Contrib Nephrol. 2009;163:1-6.
Machek P, et al. Guided optimization of fluid status in haemodialysis patients.
Nephrol Dial Transplant. 2010 Feb;25(2):538-44.
Devolder I, et al. Body composition hydration and related parameters in
hemodialysis versus peritoneal dialysis patients. Perit Dial Int 2010; 30: 208—
14.
Phi 50 kHz [°]
BCM e BIA - PhA
Bivariate Fit of Phase A By Phi 50 kHz [°]
Matched Pairs
9
Difference: Phi 50 kHz [°]-Phase A
Difference: Phi 50 kHz [°]-Phase A
8
Phase A
7
6
5
4
3
2
3
4
5
6
7
Phi 50 kHz [°]
1,5
1,0
0,5
0,0
-0,5
-1,0
-1,5
-2,0
3
Bivariate Normal Ellipse P=0,950
4
5
6
7
8
Mean: (Phase A+Phi 50 kHz [°])/2
Correlation
Variable
2,0
Mean
Std Dev
Phi 50 kHz [°] 5,110769 1,040727
Phase A
5,284615 1,089311
Correlation Signif. Prob Number
0,887227
0,0000
39
Phi 50 kHz [°]
5,11077
Phase A
5,28462
Mean Difference -0,1738
Std Error
0,08134
Upper95%
-0,0092
Low er95%
-0,3385
N
39
Phase
A
Correlation
0,88723
t-Ratio
DF
Prob > |t|
Prob > t
Prob < t
-2,13718
38
0,0391
0,9805
0,0195
BCM e BIA - R
Bivariate Fit of R BIA By Z 50 kHz [Ohm]
Matched Pairs
750
Difference: Z 50 kHz [Ohm]-R BIA
700
Difference: Z 50 kHz [Ohm]-R BIA
50
650
R BIA
600
550
500
450
400
350
300
300 350 400 450 500 550 600 650 700 750
Z 50 kHz [Ohm]
40
30
20
10
0
-10
-20
-30
-40
-50
300 350 400 450 500 550 600 650 700 750
Bivariate Normal Ellipse P=0,950
Mean: (R BIA+Z 50 kHz [Ohm])/2
Correlation
Variable
Mean
Std Dev Correlation Signif. Prob Number
Z 50 kHz [Ohm] 512,0513 81,50739
R BIA
504,4359 79,51028
0,991845
0,0000
39
Z 50 kHz [Ohm]
R BIA
Mean Difference
Std Error
Upper95%
Low er95%
N
Correlation
512,051
504,436
7,61538
1,67703
11,0103
4,22044
39
0,99185
t-Ratio
DF
Prob > |t|
Prob > t
Prob < t
4,541
38
<.0001
<.0001
1,0000
Massa magra con BCM e PhA BIA
Bivariate Fit of Phase A By LTI [kg/m²]
9
8
Phase A
7
6
5
4
3
2
6
8
10
12
14
16
18
20
LTI [kg/m²]
Bivariate Normal Ellipse P=0,950
Correlation
Variable
LTI [kg/m²]
Phase A
Mean
Std Dev
13,23243 2,910332
5,275676 1,100355
Correlation Signif. Prob Number
0,665987
0,0000
37
Iperidratazione e dati ecocardiografici in 40
pazienti di Treviso
Bivariate Fit of ECC FE% By OH [L]
Bivariate Fit of LVMI Devereux-Penn g/mq By OH [L]
85
LVMI Devereux-Penn g/mq
80
ECC FE%
75
70
65
60
55
50
45
250
200
150
100
40
-3
-2
-1
0
1
2
3
4
5
6
-3
-2
OH [L]
1
2
3
4
5
6
Bivariate Normal Ellipse P=0,950
Correlation
OH [L]
ECC FE%
0
OH [L]
Bivariate Normal Ellipse P=0,950
Variable
-1
Correlation
Mean
Std Dev
Correlation
Signif. Prob
Number
1,331429
67,07714
1,923198
8,726501
-0,33729
0,0475
35
Variable
Mean
Std Dev Correlation Signif. Prob Number
OH [L]
1,331429 1,923198
LVMI Devereux-Penn g/mq 164,0497 50,15456
0,346941
0,0412
35
Funzione renale e iperidratazione con BCM in
40 pazienti di Treviso
Bivariate Fit of Diuresi residua By OH [L]
Bivariate Fit of GFR ml/min By OH [L]
8
2000
7
GFR ml/min
Diuresi residua
6
1500
1000
500
5
4
3
2
1
0
0
-1
-3
-2
-1
0
1
2
3
4
5
6
-3
-2
-1
0
OH [L]
3
4
5
6
Bivariate Normal Ellipse P=0,950
Correlation
OH [L]
Diuresi residua
2
OH [L]
Bivariate Normal Ellipse P=0,950
Variable
1
Correlation
Mean
Std Dev
1,228947
1,74339
638,4211 521,4145
Correlation Signif. Prob Number
-0,32197
0,0487
38
Variable
OH [L]
GFR ml/min
Mean
Std Dev
Correlation
Signif. Prob
Number
1,165714
2,36
1,795082
2,222174
-0,41823
0,0124
35
Composizione corporea e tempo in DP in 40
pazienti di Treviso
Bivariate Fit of rel Fat [%] By Età dial
Bivariate Fit of BMI [kg/m²] By Età dial
50
40
30
rel Fat [%]
BMI [kg/m²]
35
25
30
20
20
10
15
0
25
50
75
100
125
0
150
25
50
125
150
Bivariate Normal Ellipse P=0,950
Bivariate Normal Ellipse P=0,950
Correlation
Correlation
Età dial
BMI [kg/m²]
100
Età dial
Età dial
Variable
75
Mean
Std Dev
Correlation
Signif. Prob
Number
32,4114
25,12687
32,33393
3,861442
0,357082
0,0278
38
Variable
Età dial
rel Fat [%]
Mean
Std Dev
Correlation
Signif. Prob
Number
34,05556
32,62222
32,44065
9,435226
0,449396
0,0060
36
Scarica

Diapositiva 1