Microelettronica Anno Accademico 2006-2007 Prof. Adelio Salsano Presentazione e programma del corso 1: Introduction CMOS VLSI Design Slide 1 OBIETTIVO Tecnologie, blocchi elementari e architetture per l’analisi e la sintesi di circuiti e sistemi microelettronici ALTERNATIVE Circuiti non programmabili Circuiti programmabili Circuiti dedicati Soluzioni miste Il corso fornisce le competenze necessarie per la valutazione delle prestazioni di circuiti e sistemi elettronici come prerequisito per la sintesi 1: Introduction CMOS VLSI Design Slide 2 Notizie sul corso Orario Mercoledì Giovedì Venerdì 11,30 11,30 11,30 Aula 9 Aula 7 Aula 12 Materiale didattico Diapositive lezioni N.H.E. Weste, D. Harris “Principles of CMOS VLSI Design”, Addison Wesley R. L. Geiger, P.E. Allen, N.R. Strader VLSIdesign techniques for analog and digital Circuits, Mac Graw Hill Int. Ed. 1: Introduction CMOS VLSI Design Slide 3 PROGRAMMA DEL CORSO Introduzione Considerazioni generali Aspetti tecnici ed economici Richiami circuitali: – Inverter, NAND, NOR – Pass transistor, transmission gate – Latch, flip flop – Regole di progetto Il transistor MOS – Caratteristiche I-V – Caratteristiche C-V – Modelli delle capacità G,S,D – Effetti non ideali 1: Introduction CMOS VLSI Design Slide 4 (segue Programma) Inverter CMOS – Caratteristiche in DC – Beta, rapporto dei beta, margini di rumore – Inverter dipendenti dal rapporto dei beta Inverter a pass transistor e tristate Modelli RC di ritardo Tecnologie CMOS: – Litografia,formazione del canale, ossidazione, contatti e metallizzazione – Regole di progetto Elementi circuitali: transistor, caoacità, resistenze, transistor bipolari, memorie 1: Introduction CMOS VLSI Design Slide 5 (segue Programma) Stima delle prestazioni – Ritardi dei circuiti elementari: sforzo logico – Dissipazione di potenza – nterconnessioni – Margini progettuali Affidabilità e diagnostica dei circuiti integrati: – elettromigrazione, riscaldamento, latchup – guasti transitori e permanenti – testing on line e off line – modelli di guasto – design for testability 1: Introduction CMOS VLSI Design Slide 6 (segue Programma) La simulazione circuitale: SPICE Logica a pass transistor Circuiti BICMOS Confronto tra le famiglie Logica statica e dinamica Sistemi digitali complessi: latch, flip flop, sincronizzazione – microprocessori, memorie, logica programmabile Circuiti e sistemi analogici: – Interruttori e resistenze attive – specchio di corrente – riferimenti di corrente e tensione – amplificatori invertenti e differenziali – amplificatore operazionale 1: Introduction CMOS VLSI Design Slide 7 Brief History Till 1970 I.C. bipolar, afterwards MOSFET SSI 1-100 MOS MSI 100-1000 MOS LSI 1000-100.000 MOS VLSI 100.000 -106 MOS ULSI > 106 MOS 1: Introduction CMOS VLSI Design Slide 8 Brief History (cont.) 1958: First integrated circuit – Flip-flop using two transistors – Built by Jack Kilby at Texas Instruments 2003 – Intel Pentium 4 mprocessor (55 million transistors) – 512 Mbit DRAM (> 0.5 billion transistors) 53% compound annual growth rate over 45 years – No other technology has grown so fast so long Driven by miniaturization of transistors – Smaller is cheaper, faster, lower in power! – Revolutionary effects on society 1: Introduction CMOS VLSI Design Slide 9 Vantaggi della tecnologia integrata Dimensioni: Fette di silicio (2003) fino a 12 pollici Velocità Consumo di potenza Dimensioni del sistema Costo del sistema CHIP Legge di MOORE: raddoppio ogni anno e mezzo del numero di componenti per chip 1: Introduction CMOS VLSI Design Slide 10 MERCATO DEI CIRCUITI INTEGRATI 1: Introduction CMOS VLSI Design Slide 11 COMPLESSITA’ MICRO INTEL 1: Introduction CMOS VLSI Design Slide 12 FREQUENZE 1: Introduction MICRO INTEL CMOS VLSI Design Slide 13 Silicon Lattice Transistors are built on a silicon substrate Silicon is a Group IV material Forms crystal lattice with bonds to four neighbors 1: Introduction Si Si Si Si Si Si Si Si Si CMOS VLSI Design Slide 14 Dopants Silicon is a semiconductor Pure silicon has no free carriers and conducts poorly Adding dopants increases the conductivity Group V: extra electron (n-type) Group III: missing electron, called hole (p-type) 1: Introduction Si Si Si Si Si Si As Si Si B Si Si Si Si Si - + + - CMOS VLSI Design Si Si Si Slide 15 p-n Junctions A junction between p-type and n-type semiconductor forms a diode. Current flows only in one direction 1: Introduction p-type n-type anode cathode CMOS VLSI Design Slide 16 nMOS Transistor Four terminals: gate, source, drain, body Gate – oxide – body stack looks like a capacitor – Gate and body are conductors – SiO2 (oxide) is a very good insulator – Called metal – oxide – semiconductor (MOS) capacitor Source Gate Drain Polysilicon – Even though gate is SiO2 no longer made of metal n+ n+ p 1: Introduction CMOS VLSI Design bulk Si Slide 17 nMOS Operation Body is commonly tied to ground (0 V) When the gate is at a low voltage: – P-type body is at low voltage – Source-body and drain-body diodes are OFF – No current flows, transistor is OFF Source Gate Drain Polysilicon SiO2 0 n+ n+ S p 1: Introduction D bulk Si CMOS VLSI Design Slide 18 nMOS Operation Cont. When the gate is at a high voltage: – Positive charge on gate of MOS capacitor – Negative charge attracted to body – Inverts a channel under gate to n-type – Now current can flow through n-type silicon from source through channel to drain, transistor is ON Source Gate Drain Polysilicon SiO2 1 n+ n+ S p 1: Introduction D bulk Si CMOS VLSI Design Slide 19 pMOS Transistor Similar, but doping and voltages reversed – Body tied to high voltage (VDD) – Gate low: transistor ON – Gate high: transistor OFF – Bubble indicates inverted behavior Source Gate Drain Polysilicon SiO2 p+ p+ n 1: Introduction CMOS VLSI Design bulk Si Slide 20 Power Supply Voltage GND = 0 V In 1980’s, VDD = 5V VDD has decreased in modern processes – High VDD would damage modern tiny transistors – Lower VDD saves power VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, … 1: Introduction CMOS VLSI Design Slide 21 Transistors as Switches We can view MOS transistors as electrically controlled switches Voltage at gate controls path from source to drain d nMOS pMOS g=1 d d OFF g ON s s s d d d g OFF ON s 1: Introduction g=0 s CMOS VLSI Design s Slide 22 CMOS Inverter A VDD Y 0 1 A A Y Y GND 1: Introduction CMOS VLSI Design Slide 23 CMOS Inverter A VDD Y 0 1 OFF 0 A=1 Y=0 ON A Y GND 1: Introduction CMOS VLSI Design Slide 24 CMOS Inverter A Y 0 1 1 0 VDD ON A=0 Y=1 OFF A Y GND 1: Introduction CMOS VLSI Design Slide 25 CMOS NAND Gate A B 0 0 0 1 1 0 1 1 Y Y A B 1: Introduction CMOS VLSI Design Slide 26 CMOS NAND Gate A B Y 0 0 1 0 1 1 0 1 1 1: Introduction ON ON Y=1 A=0 B=0 CMOS VLSI Design OFF OFF Slide 27 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1: Introduction OFF ON Y=1 A=0 B=1 CMOS VLSI Design OFF ON Slide 28 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1 1: Introduction ON A=1 B=0 CMOS VLSI Design OFF Y=1 ON OFF Slide 29 CMOS NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1 0 1: Introduction OFF A=1 B=1 CMOS VLSI Design OFF Y=0 ON ON Slide 30 CMOS NOR Gate A B Y 0 0 1 0 1 0 1 0 0 1 1 0 1: Introduction A B Y CMOS VLSI Design Slide 31 3-input NAND Gate Y pulls low if ALL inputs are 1 Y pulls high if ANY input is 0 1: Introduction CMOS VLSI Design Slide 32 3-input NAND Gate Y pulls low if ALL inputs are 1 Y pulls high if ANY input is 0 Y A B C 1: Introduction CMOS VLSI Design Slide 33 CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different materials are deposited or etched Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process 1: Introduction CMOS VLSI Design Slide 34 Inverter Cross-section Typically use p-type substrate for nMOS transistors Requires n-well for body of pMOS transistors A GND VDD Y SiO2 n+ diffusion n+ n+ p+ p+ n well p substrate nMOS transistor 1: Introduction p+ diffusion polysilicon metal1 pMOS transistor CMOS VLSI Design Slide 35 Well and Substrate Taps Substrate must be tied to GND and n-well to VDD Metal to lightly-doped semiconductor forms poor connection called Schottky Diode Use heavily doped well and substrate contacts / taps A GND VDD Y p+ n+ n+ p+ p+ n+ n well p substrate substrate tap 1: Introduction well tap CMOS VLSI Design Slide 36 Inverter Mask Set Transistors and wires are defined by masks Cross-section taken along dashed line A Y GND VDD nMOS transistor pMOS transistor well tap substrate tap 1: Introduction CMOS VLSI Design Slide 37 Detailed Mask Views Six masks – n-well – Polysilicon – n+ diffusion – p+ diffusion – Contact – Metal n well Polysilicon n+ Diffusion p+ Diffusion Contact Metal 1: Introduction CMOS VLSI Design Slide 38 Fabrication Steps Start with blank wafer Build inverter from the bottom up First step will be to form the n-well – Cover wafer with protective layer of SiO2 (oxide) – Remove layer where n-well should be built – Implant or diffuse n dopants into exposed wafer – Strip off SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 39 Oxidation Grow SiO2 on top of Si wafer – 900 – 1200 C with H2O or O2 in oxidation furnace SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 40 Photoresist Spin on photoresist – Photoresist is a light-sensitive organic polymer – Softens where exposed to light Photoresist SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 41 Lithography Expose photoresist through n-well mask Strip off exposed photoresist Photoresist SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 42 Etch Etch oxide with hydrofluoric acid (HF) – Seeps through skin and eats bone; nasty stuff!!! Only attacks oxide where resist has been exposed Photoresist SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 43 Strip Photoresist Strip off remaining photoresist – Use mixture of acids called piranah etch Necessary so resist doesn’t melt in next step SiO2 p substrate 1: Introduction CMOS VLSI Design Slide 44 n-well n-well is formed with diffusion or ion implantation Diffusion – Place wafer in furnace with arsenic gas – Heat until As atoms diffuse into exposed Si Ion Implanatation – Blast wafer with beam of As ions – Ions blocked by SiO2, only enter exposed Si SiO2 n well 1: Introduction CMOS VLSI Design Slide 45 Strip Oxide Strip off the remaining oxide using HF Back to bare wafer with n-well Subsequent steps involve similar series of steps n well p substrate 1: Introduction CMOS VLSI Design Slide 46 Polysilicon Deposit very thin layer of gate oxide – < 20 Å (6-7 atomic layers) Chemical Vapor Deposition (CVD) of silicon layer – Place wafer in furnace with Silane gas (SiH4) – Forms many small crystals called polysilicon – Heavily doped to be good conductor Polysilicon Thin gate oxide n well p substrate 1: Introduction CMOS VLSI Design Slide 47 Polysilicon Patterning Use same lithography process to pattern polysilicon Polysilicon Polysilicon Thin gate oxide n well p substrate 1: Introduction CMOS VLSI Design Slide 48 Self-Aligned Process Use oxide and masking to expose where n+ dopants should be diffused or implanted N-diffusion forms nMOS source, drain, and n-well contact n well p substrate 1: Introduction CMOS VLSI Design Slide 49 N-diffusion Pattern oxide and form n+ regions Self-aligned process where gate blocks diffusion Polysilicon is better than metal for self-aligned gates because it doesn’t melt during later processing n+ Diffusion n well p substrate 1: Introduction CMOS VLSI Design Slide 50 N-diffusion cont. Historically dopants were diffused Usually ion implantation today But regions are still called diffusion n+ n+ n+ n well p substrate 1: Introduction CMOS VLSI Design Slide 51 N-diffusion cont. Strip off oxide to complete patterning step n+ n+ n+ n well p substrate 1: Introduction CMOS VLSI Design Slide 52 P-Diffusion Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact p+ Diffusion p+ n+ n+ p+ p+ n+ n well p substrate 1: Introduction CMOS VLSI Design Slide 53 Contacts Now we need to wire together the devices Cover chip with thick field oxide Etch oxide where contact cuts are needed Contact Thick field oxide p+ n+ n+ p+ p+ n+ n well p substrate 1: Introduction CMOS VLSI Design Slide 54 Metalization Sputter on aluminum over whole wafer Pattern to remove excess metal, leaving wires Metal Metal Thick field oxide p+ n+ n+ p+ p+ n+ n well p substrate 1: Introduction CMOS VLSI Design Slide 55 Layout Chips are specified with set of masks Minimum dimensions of masks determine transistor size (and hence speed, cost, and power) Feature size f = distance between source and drain – Set by minimum width of polysilicon Feature size improves 30% every 3 years or so Normalize for feature size when describing design rules Express rules in terms of l = f/2 – E.g. l = 0.3 mm in 0.6 mm process 1: Introduction CMOS VLSI Design Slide 56 Simplified Design Rules Conservative rules to get you started 1: Introduction CMOS VLSI Design Slide 57 Inverter Layout Transistor dimensions specified as Width / Length – Minimum size is 4l / 2l, sometimes called 1 unit – In f = 0.6 mm process, this is 1.2 mm wide, 0.6 mm long 1: Introduction CMOS VLSI Design Slide 58 Summary MOS Transistors are stack of gate, oxide, silicon Can be viewed as electrically controlled switches Build logic gates out of switches Draw masks to specify layout of transistors Now you know everything necessary to start designing schematics and layout for a simple chip! 1: Introduction CMOS VLSI Design Slide 59