SVT upgrade AM 32kpat 128kpat • SVT upgrade: Road Warrior a) E’ parte dei DAQ upgrades per aumentare “Trigger bandwidths” b) Tracce SVX only per migliorare il trigger di leptone inclusivo • DAQ upgrades a CDF: 6 M$ • Chi saremo – Schedule Paola Giannetti – Gruppo I Lecce - 24 settembre 2003 SVT: Silicon Vertex Trigger XFT + SVX 4/4 6/2003) (fino a XFT + SVX 4/5, more efficient Instead of XFT: XFT tracks SVX hits m 1<h<1.5 e 1<h<2.5 New Functionalities: m + SVX 4/5, 1< h< 1.5 e + SVX 4/5, 1< h< 2.5 I limiti ai rate dei tre livelli di trigger XFT (2227 k$) L2 (429 k$) SRC (Done) SVT (? K$) 350 Hz (L3-EVB) 15 kHz (L2 proc. Time) TDC (2132 k$) EVB (680 k$) L3 (631 k$) upgrade L1 Accept rate (Hz) L2 Accept rate (Hz) upgrade Time (sec) Dead Time CSL (?k$) Offline (1M$) upgrade 70-80 Hz (L3-CSL) L3 Accept rate 5% Time (sec) DeadTime Accurate deadtime model (ModSim) to M. Schmidt 1. Two SRCs in parallel understand DAQ upgrades 2. L2 processor upgrade 3. 4. 5. 4/4 87 bit SVX digit. -3 ms in SVT proc.time cut SVT tails above 27 msec 20 kHz 5% 4/4 – 4/5 35 kHz 25 kHz 1. 2. 3. L1A rate (kHz) BUT the recent use of 4/5 in SVT changes the conditions! match piu’ debole Ghost roads 5 layers: Pattern + larghi 4/4 – 4/5 27 msec Time (ms) WHY 4/5? Signal Yields with 4/5 D0 1430 4/5 J/psi D0 970 4/4 Marco Rescigno CSL review 6/23/03 Signal Yields in 4/5 Several studies: • D0 peaks in RUN 164303 (4/4) and 164304 (4/5) (Rolf) • EXPRESS_JPSI stream for 4/5 runs with svtsim emulation of 4/4 to get directly the yield increase of J/psi with both legs an SVT track • BGEN MC with realistic simulation of BsDsp(fp) p • Increase in signal yield match almost exactly the increase in L3 yield: S/B unchanged GAIN 50-60 % source 4/4 D0 yield 11.2 (nb) 17.5 (nb) 1.55 ±0.06 663 974 1.5 J/psi yield Bs MC (Pt_b>5.5; |h_b|<1.3) Bs MC after offline reconstructi on (Ivan F.) 4/5 R 1.59 ±0.05 1.58 Marco Rescigno CSL review 6/23/03 Tempi di processamento: come agisce l’upgrade ? raw data from SVX front end NUOVA AM piu’ grande Hit Finders Sequencer Associative Memory COT tracks fromXTRP roads x 12 phi sectors Road Warrior 12 fibers hits Track Fitter Merger hits to Level 2 Hit Buffer Ricetta per velocizzare il tempo di esecuzione di SVT: 1. pattern piu’ sottili (AM grande) meno fits. 2. Road Warrior per rimuovere i ghosts 4/5 – 128kp – RW – All Annovi/Belforte Gli upgrade riportano la distribuzione dei tempi del 4/5 su quella del 4/4 ! 4/5 – upgraded 4/5 – 4/4 Detector Ghosts XFT svx SVT ha recentemente attivato il 4/5. Complessita’ e tempo di esecuzione sono aumentati. L1_TWO_TRK_PT2 L1_TWO_TRK2_&_TWO _CJET5 Zbb B physics SVTconfiguration 4/5 # of fits # of fits 32 kpatt 4/4 3.9 9.4 32 kpat 4/5 (now) 39.1 94 32 kpat 4/5 + RW 17.6 42 128 kpat 4/5 + RW 9.3 23 Detector ghost 4.3 14.5 ROAD WARRIOR e AM ++ riportano il tempo di esecuzione a quello del 4/4 ! Accurate deadtime model (ModSim) 18 16 Total Dead Time M. Schmidt 4/5+SVTupgrade 4/4 20 4/5+SVTupgrade+L2upgrade 4/5 now 14 12 Ini_lum=44*1030 10 3 8 6 4/4 RUN 168640 4/4L2UP-L2A 300Hz 4 4/4L2UP-L2A 300Hz 2 4/4NOUP-L2A 140 Hz 4/4NOUP-L2A 300 Hz 0 0 10 16 20 30 40 50 L1A rate (kHz) Ini_lum=32*1030 Ini_lum= 17.5 *1030 Ini_lum=22*1030 17kHz Trigger di muoni in avanti (Annovi - Catastini – Cerri) 1<h<1.25 (FRONT) L1 ora: BMU*BSU(F)*XFT11 BMU 1<h<1.25 BSU(F) rate 8-16Hz @ 4E31 L2: RateLimited @ 0.7 Hz 1.25<h<1.5 BSU(R) 1.25<h<1.5 (REAR) L1 ora: BMU*BSU(R)*TSU Rate 200-400Hz @ 4E31 TSU L2: RateLimited @ 1.3 Hz Usiamo SVT*BMU*BSU per un unico trigger, senza bias in h ! Goal reiezione ~ 20-50. •leptoni pronti di alto Pt solo 30kpatterns 95% efficiente per Pt>8 GeV e d0<500mm (ottima efficienza fino a 4 GeV). Implementiamo il 4/5. SVX STUDIO del NUOVO TRIGGER • Qualita’ delle tracce SVX only: studio su dati e MC • Efficienza selezione L2: studio tagli su dati Z0 mm • Regezione del fondo: studio su dati selezionati da L1 ora Selection # eventi Z0 # eventi L1_BMU_REAR L1_MU 250 4678 match Df<2.5º Pt>4 & 2<10 132 362 + h match 126 213 Efficiency L2 sel. 0.50 Rejection L2 sel. 22 J/Psi: MC vs SVT SVT: 2<10; |MCf0 – SVTf0|< 0.015 sPt/Pt2=0.08 MCCRV-SVTCRV MCf-SVTf MCPt-SVTPt s(f)=0.007 QUALITA’ delle tracce SVX only? Limit: s(f) = 0.002, sPt/Pt2 = 0.07 L1_MU data: offline vs SVT SVT 2<10; |offlf0 – SVTf0|<0.015 s(f)=0.008 f(SVT)- f(offl) sPt/Pt2=0.095 c(SVT)- c(offl) f match h match Pt match f effic. h effic. Pt effic, 60% 60% 60% Scegliamo il trigger di livello 2: quali tagli? fBMU–f0 offl Z0 eff ~ 50% Z0->mm data : Pt>4 & 2<10 fBMU– 0 offlfvs 0f offl BMU (best) fBMU– 0 SVTfvs 0 SVT fBMU (best) 5o Pt>4 & 2<10+|fBMU–f0 SVT|< 5O ff0BMU– offl vs f0foffl BMU(best) CUT fBMU–f0 SVT ff0BMU– SVT fvs0 f SVT BMU(best) f matching cut L1 MU data Per stimare la reiezione Reiezione fondo ~ 22 Conclusioni • L’upgrade di SVT permettera’ un raddoppio della banda passante di L1 ed e’ parte fondamentale del DAQ upgrade. • L’uso di tracce SVX only permette un trigger inclusivo di muoni in avanti e di abbassare le soglie di trigger per gli elettroni nel plug. Pisa: Annovi Bardi Dell’Orso Giannetti Spinella dottorando ingegnere - art. 23 prof. Associato dirigente di ricerca assegnista INFN Damiani Sartori Tripiccione Cotta Chiozzi assegnista assegnista prof. Ordinario tecnologo tecnico Ferrara: (100%) (100%) (100%) (100%) (50%) (10%) (50%) (10%) (10%) (20%) “A Standard Cell based Content-Addressable Memory System for Pattern Recognition” A. Cisternino et al., CERN/LHCC/98-36 TEMPI DI REALIZZAZIONE • Nuova AM-board: inizio estate 2004 (Pisa) durante estate 2004: test con FPGA (Pisa) • Progetto prototipo AM-chip: luglio 2004 (Ferrara-Pisa) consegna chip ~2 mesi – disponibile ad ottobre. • Nuova LAMB: montare nuovo AM-chip a ottobre 2004 (Pisa) • test del chip + scheda: ottobre – dicembre 2004 (Pisa-Ferrara) • produzione: inizio 2005 (Pisa-Ferrara) • installazione: estate 2005 (Pisa-Ferrara) • Altri DAQ/Trigger upgrade: previsti nel 2006 RUN Multiprojects di Europractice: nel 2003 tutti i mesi eccetto luglio e Dicembre http://www.europractice.imec.be/europractice/ Road Warrior: fattibilita’ in Pulsar S. Belforte (~60 k$ Fermilab) messa in opera entro fine 2003 F. Spinella Backup slides Il tempo morto (< 5%) genera limiti alla banda passante dei 3 livelli • ………………. • L1 accept rate of 30kHz appears to be achievable – Two SRCs, 7-bit digitization – SVT improvements – L2 upgrade • L2 peak rate limited by Event-builder J. Lewis CDF CSL Review 23 June 2003 – Current limit ~350 Hz – EVB group: 450 is possible- TDC improvements coming • Will keep up at high luminosity • Level 3 Limitations – Input: CPU power ….. – Output: Logging Rate…… Level 1 @Lum=40x1030 cm-2 sec-1 • Two Major Components – Calorimeter Triggers: Jets, electrons, photons, etc. In SVT: L1_JET10_&_SET90 (Higgs multijet) ~4-5 kHz L1_TWO_TRK2_&_TWO_CJET5 (Zbb) L1_MET15_&_TWO_TRK2 (Higgs Z nn) L1_TWO_TRK10_DPHI20 (Di TAU exotic) L1_EM8 (Gamma + bjet) L1_CEM4_PT4 (B electron) L1_CMUP6_PT4 (B muon) – Hadronic B Decays: Two XFT tracks ~2 kHz ~11-12 kHz • Using three classes of B triggers – Scenario A • pT>2, pT,1+pT,2>5.5, opp. charge, Df<135; DPS for safety only – Scenario C • pT>2.5, pT,1+pT,2>6.5, opp. charge, Df<135; NO DPS – Low PT • pT>2, Df<90; Heavy DPS, saturate bandwidth • Not considered for long-term J. Lewis CDF CSL Review 23 June 2003 50 45 40 35 30 25 20 15 10 5 0 SRC (Done) SVT (? K$) upgrade Rate (Hz) Rate (kHz) Level 2 Predictions Level 1 Predictions XFT (2227 k$) L2 (429 k$) 500 450 400 350 300 250 200 150 100 50 0 High-pt + Sc. C High-pt + Sc. A TDC (2132 k$) EVB (680 k$) L3 (631 k$) upgrade 0 10 20 30 40 50 60 70 80 90 100 Luminosity (e30) 0 10 20 30 40 50 60 70 80 90 100 Luminosity (e30) J. Lewis CDF CSL Review 23 June 2003 20 Data Volume (Mb/s) With baseline cuts, saturate bandwidth at ~7e31 if 30 kHz allowed @L1 18 High-pt + Sc. C 16 High-pt + Sc. A 14 12 CSL Bandwidth: Aggressive Trigger Model To stay below 21Mb/s Some physics losses 10 CSL (?k$) Offline (1M$) upgrade 8 6 4 2 0 0 10 20 30 40 50 60 70 80 90 100 Luminosity (e30) Year chip boards 2003? 120 kE 10 kE (test b.) 5 kE 135 kE 2004 - 10 kE (protot.) 30 kE 40 kE 2005 53 kE 40 kE (produc.) Ferrara devel. Total 60 kE 153 k Pisa Road Warrior e’ pagato da USA: sottratti i 35 kE corrispondenti nel 2005 (grazie Stefano!) Level 2 Operation • Approximate Timing Diagram 1 Setup 5 Digitize 10 15 Time Since L1A (msec) 20 25 30 Silicon SVX R/O r-phi r-z ISL R/O R/O L00 R/O R/O (16us Read-All) SVT SVT Processing Load in a CF, m , track…Process and Load Process in a 35 40 45 Unpack, Algorithms, TS Handshake Ready to load next event 18 18 16 16 14 14 L1A L1A rate rate (kHz) (kHz) 12 12 L1Arate rate(2.4) (2.4) L1A L1Arate rate(2.87) (2.87) L1A 10 10 L1Arate rate(3.9) (3.9) L1A L1Arate rate(4.15) (4.15) L1A L1Arate rate(4.15)B (4.15)B L1A L1Arate rate(5.0) (5.0) L1A 88 L1Arate rate(3.5) (3.5) L1A 66 44 22 00 20 20 30 30 40 40 50 50 60 60 Ist. Lum. (10**30 sec-1 cm-2) Inst. 70 70 80 80 3D info from SVT Due categorie di tracce SVT: 1. (Dz=0) Tracce che entrano escono dallo stesso barrel 2. Tracce che attraversano i barrel. Conosciamo il sengo di h. Una traccia SVT corrisponde ad una traccia offline se Dz=0 oppure se Dz ha lo stesso segno di h. Z DT1< Thr. DT2< Thr. L1 Trigger: (DT1< Thr. OR DT2< Thr.) AND BSU Camere dei MU (BMU) + scintillatori esterni (BSU) Come migliorare il fattore di reiezione per il trigger di m Migliorabile con semplici accorgimenti aggiuntivi: 1. Uso dell’informazione di hadron timing 2. Riduzione della finestra temporale per gli scintillari BSU e TSU 3. Usare il beam constraint per il track fitter • Migliora la risoluzione in Pt • Riduce il numero delle tracce false Z0 TRIGGER STUDY 0.9 0.9 0.8 0.7 5 GeV Higgs bb (mass = 110 GeV) Z0 ha efficienze minori (mass = 90 GeV) RUN IB Minimum Bias events Why 4/5 is more complex? 5/5 4/5 This road share all hits with the 5/5. It’s a ghost. 4/5 4/5 These 3 roads share all hits. Two are ghosts. Ghosts are 60-70% of 4/5 roads. Removing them speeds up 4/5 processing time. NOW pattern recognition with 5 SVX layers uses larger patterns w.r.t. 4 SVX layers More fake roads and more hits inside roads Solution: More AM thinner patterns reduce fakes 4/5 Sorgenti di inefficienza per m da Z0 Silicon & clustering wedge crossing AM coverage Ineff % 15 2 cut 10 5 5 Pt cut h, f match 7 6 Tracking in 2 steps: find Roads, then find Tracks inside Roads Super Pattern Super Bin Full Resolution Hits use most significant bits only Road Road TRACKING WITH PATTERN MATCHING The Event The Pattern Bank The Associative Memory (AM) • Dedicated device-maximum parallelism: • each pattern has its private hardware to compare with the event. • Roads search during detector readout AM = BINGO PLAYERS PATTERN 5 PATTERN 4 PATTERN 1 PATTERN 2 PATTERN 3 PATTERN N HIT # 1447 Bingo scorecard ... SVX only 2 distribution