CIRCUITO EQUIVALENTE DEL
GENERATORE SINCRONO
• Caratteristiche funzionali e costruttive.
• Ipotesi di validità dei modelli utilizzati.
• Circuito equivalente in regime permanente
(circuito di sequenza diretta)
CARATTERISTICHE
FUNZIONALI
E
COSTRUTTIVE
I1
If
Vf
V3
C, W
V1
I3
a2
f
a1
a3
IPOTESI DI VALIDITA’ DEI
MODELLI UTILIZZATI
• Linearità dei legami tra tensioni e
correnti.
• Assenza di perdite nel rame di
armatura, nel ferro e meccaniche.
• Isotropia magnetica del generatore.
• Funzionamento a regime permanente o
in regime lentamente variabile.
ULTERIORI IPOTESI
• Le correnti che circolano in un qualunque
avvolgimento (sia di statore che di rotore)
provocano nel traferro un flusso che ha una
distribuzione spaziale sinusoidale, che è centrato
sull’asse magnetico dell’avvolgimento
considerato e che ha una ampiezza
proporzionale all’intensità della corrente che lo
provoca.
Flusso di traferro dell’avvolgimento di
eccitazione
W
F
Nota: il flusso prodotto
dalla corrente che circola
in un qualunque
avvolgimento di statore è
equivalente a quello
prodotto dalla corrente di
eccitazione, ma centrato
sull’asse magnetico
dell’avvolgimento
considerato.
Teorema di Galileo Ferraris applicato
alle correnti che circolano negli
avvolgimenti di statore
Un sistema di correnti equilibrate che scorre negli
avvolgimenti statorici provoca nel traferro un flusso
che ha una distribuzione spaziale sinusoidale, una
ampiezza costante pari a 3/2 l’ampiezza del flusso
prodotto dalla singola corrente che scorre in uno degli
avvolgimenti e che ruota ad una velocità angolare
costante e pari alla pulsazione delle correnti che lo
hanno prodotto.
a2
FS
a1
f
a3
Forze Elettromotrici Indotte
•Il flusso prodotto dall’avvolgimento di eccitazione
ruota alla velocità del rotore e induce negli
avvolgimenti di statore 3 f.e.m. sinusoidali la cui
pulsazione è uguale alla velocità meccanica del
rotore.
•Il campo elettromagnetico prodotto dalle correnti che
circolano nello statore (teorema di Galileo Ferraris)
ruota ad una velocità pari alla pulsazione delle
correnti che circolano negli avvolgimenti di statore ed
induce negli stessi 3 f.e.m. sinusoidali la cui
pulsazione è pari a quella delle correnti.
•I due campi e le relative f.e.m. sono sincroni.
wm
a2
Ff
a1
E1
a3
E2
E3
a1
Ff
f
W
a2
Fs
Fv
a3
SCHEMA DEL CIRCUITO IN
REGIME PERMANENTE
Id
Vf
Vd
Cd , W
Sovrapponendo opportunamente al piano fisico
del generatore un piano complesso di Gauss
con asse immaginario coincidente con l’asse
magnetico della fase 1 di statore, allora i vettori
rappresentativi delle onde di induzione sul
piano fisico rappresentano anche sul piano
complesso i vettori rotanti che descrivono le
grandezze sinusoidali “flussi concatenati con la
fase 1 di statore” provocati dai campi rotanti.
Inoltre il fasore “flusso rotante provocato dalle
correnti statoriche” rappresenta anche in altra
scala la corrente sinusoidale che scorre nella
fase uno di statore.
a1
Ff
f
W
a2
Fs
Fv
a3
a1
jX
I
s
d
+j
E
Ff
f
Vd
a2
Fs
r
Fv
a3
IL CIRCUITO DI SEQUENZA DIRETTA IN
REGIME PERMANENTE
Id
+
E
Xs
Vd
-
POTENZE E COPPIA DOVUTE ALLE
GRANDEZZE DI SEQUENZA DIRETTA
• La potenza elettrica entrante dalla porta
costituita dall’avvolgimento di eccitazione
finisce tutta in perdite Joule nel medesimo
avvolgimento.
• La potenza elettrica entrante dalla porta
trifase statorica viene trasformata in potenza
meccanica. (in virtù dell’ipotesi di assenza di
perdite nel ferro e nel rame statorico)
CALCOLO DELLE POTENZE IN ARRIVO
DEL DOPPIO BIPOLO
*
Na =
3Vd  Id*
 Vd - E
= 3Vd  
 =
 jX s 
Vd Vd* - VdE *
= 3
=
-jX s
2
b

V
VdE sin
d - VdE  cosb
-3
+ 3j
Xs
Xs
ESPRESSIONE DELLE POTENZE E
DELLA COPPIA DOVUTE ALLE
GRANDEZZE DI SEQUENZA DIRETTA
Potenza attiva:
VdE  sinb
P = -3
Xs
Potenza reattiva:
Vd - VdE  cosb
Q = 3j
Xs
Coppia:
VdE  sinb
C = -3
W  Xs
2
Coppia
generatore
0
motore
-
angolo b

Scarica

to get the file