Le Malattie Rare : un Utile Modello Fisiopatologico Prof. Giovambattista Capasso Cattedra di Nefrologia Seconda Università di Napoli MALATTIE RARE Malattie rare = Malattie ‘orfane’ Ad oggi si conoscono circa 8000 malattie rare, che nel complesso interessano 30 milioni di persone in Europa e circa 0.5 milione in Italia Perche studiare la malattie rare? Motivi etici Il bene più grande della società è la SALUTE della popolazione e quello alla salute è un diritto universale Motivi socio-economici Migliorare la conoscenza delle malattie rare si traduce in vantaggi per lo stato di salute e la qualità della vita Motivi scientifici Lo studio di patologie rare rappresenta uno strumento utile alla comprensione di processi di fisiologia e patologia Aim of this lecture To show whether rare diseases have been used as models to delineate specific aspects of renal physiology and pathology Lesson to be learned The study of rare disease may lead to an understanding of common disorders BASIS OF HYPERTENSION SECONDARY HYPERTENSION: 10% Serie1; 10% 1 Serie1; 90% ESSENTIAL HYPERTENSION: 90% Essential hypertension.: contribution of enviromental factors (obesity, smoke,atherosclerosis, hormones,etc.) and predisposing inheritable factors Secondary hypertension: known pathophysiological factors, among which genetic inheritable mutations 2 Normal Na+ handling in renal tubules DCT 5% OF Na+ REABSORBED CNT - PT 2-5% OF Na+ REABSORBED Na+ Na+ + Na+ Na CD 60% OF Na+ REABSORBED 25% OF Na+ REABSORBED TAL Na+ handling mediated by ENaC in ASDN cells (DCT2-CNT-CD) - - -- LUMEN Na+ Na+ CNT INCREASED LUMEN ELECTRONEGATIVITY ENaC DCT ENaC ROMK H+ATP ase CD H+ H+ H+ Na+ PT TAL DCT Em=-65mV Na+ Na+ Na+ Na+ INTERSTITIUM ATPase K+ K+ K+ K+ K+ Subcellular Localization of ENaC Changes with Dietary Na+ Intake Na+ 1.0 % 10 d Aldosteron ~30 ng/dl Na+ 0.01% 10 d Aldosteron ~160 ng/dl Loffing et al. AJP 279: F252 (2000) Liddle’s Syndrome: clinical features: Heterogeneous Syndrome • Autosomal dominant inheritance with high penetrance • Early onset: mostly in childhood but also in youth (10-30 years) • Clinical signs typical of primary hyperaldosteronism: hypertension resistant to common therapies, metabolic alkalosis, hypokalemia, normal renal function, suppressed PRA and low/untreaceble plasmatic aldosterone. •Severe cardiovascular sequelae when left untreated • Normalization of BP with ENaC blocking agents (amiloride, triamterene) and low sodium diet. Liddle’s Syndrome: clinical features Hypokalemia Hypertension Liddle’s Syndrome Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+Na+ Increased Po UBIQUIT. PROTEOSOMIC DEGRADATION UBIQUIT. - PROTEOSOME UBIQUIT. UBIQUIT. Connecting tubule profile from wild type and Liddle mice Pradervand J Am Soc Nephrolo 2003 Analogies between LS and Obesity-related hypertension Liddle syndrome Hypertension resistant to conventional therapy Hypokalemia Hypercativation of ENaC due to genetic mutaion Obesity-related hypertension Hypertension resistant to conventional therapy Hypokalemia Hyperactivation of ENaC due to hormonal stimuli (insulin, aldosteron) Na absorption along the TAL and DT 3Na+ Na+ DT 2K+ DT cell Cl- Cl- TAL 3Na+ Na+ 2Cl K+ recycling K+ 2K+ TAL cell Cl- Tubular localization of the molecular defects DCT TAL Bartter Gitelman Transport proteins involved in the pathogenesis of Bartter syndrome Na+ Type 1 2Cl- K+ Type 2 X X NKCC ROMK Ca2+ 2 K+ ATP X CaSR K+ Cl- X X ClCKa/b Bartin 3 Na+ Type 5 Type 3 Type 4 Mg2+ Lumen Blood Molecular defects in Gitelman syndrome Na+ Cl- X 2 K+ Calbindin 28KD Calbindin 28KD Ca+2 Ca+2 Calbindin 28KD ATP 3 Na+ ATP Calbindin 28KD Calbindin 28KD Cl- Lumen Blood Bartter’s syndrome Polyhydramnios Prematurity Metabolic alkalosis Hypokalemia Dehydration Polyuria Polydipsia Hypercalciuria/nephrocalcinosi Orthostatic hypotension Gitelman’s syndrome Hypokalemia Metabolic alkalosis Hypomagnesemia with urinary magnesium wasting Low urinary calcium excretion Childhood Orthostatic hypotension Familiar Hyperkaliemia and Hypertension (FHH) (Pseudohypoaldosteronism type II or Gordon Syndrome) FHH is an autosomal dominant disorder characterized by: Hyperkalemia with hypertension Normal GFR Low renin Hypercalciuria High response to thiazide diuretics Severe FHH clinical features are : Muscular weakness Hyperchloremic metabolic acidosis Short stature Intelligence below average History of FHH 1964 - Paver & Pauline described the first case of 15-year-old Australian boy affected by hyperkalemia with hypertension and normal renal function 1969 - Arnold & Healy restudied the same patient; they measured plasma renin and aldosterone that were found to be low 1970 - Gordon et al. reported the case of 10-year-old Australian girl who presented with short stature, hypertension and hyperkalemia. Plasma renin activity was undetectable, aldosterone secretion was low-normal 1973 - de Wardener included Gordon’s syndrome with Liddle’s and Bartter’s syndrome in the disorders resulting from congenital defects of tubular function 2001 - Wilson et al. demonstrated the mutations in WNK kinases Two syndromes with ‘mirror’ features Gitelman syndrome Hypokalemia Metabolic Alcalosis Hypocalciuria Hypereninemia Hypotension/Normal blood pressure Gordon syndrome Hyperkalemia Metabolic Acidosis Hypercalciuria Hyporeninemia Hypertension Effects of WNK4 on NCCT expression in Xenopus oocytes Uninjected NCCT WNK4 + NCCT Wilson FH et al. PNAS 2003 Effects of WNK1 and WNK4 on NCC mediated uptake in Xenopus oocytes 22Na 22 Na Uptake (% of NCCT alone) 6 cRNA 5 cRNA + HCTZ 4 3 2 1 0 H2 O Yang et al. - J Clin Invest 2003 NCC WNK1 WNK4 NCC + WNK1 NCC + WNK4 NCC + WNK1+ WNK4 Effects of WNK4 NCCT mediated 22Na flux in Xenopus oocytes NS 22 Na Uptake (% of NCCT alone) 140 NS P< 1x10-9 120 100 80 60 40 20 0 NCCT NCCT WNK4 (WT) NCCT WNK4 (Kinase - Dead) NCCT WNK4 (Q562E) Wilson FH et al PNAS 2003 WNK : a “molecular switch” that controls renal excretion of Na+ and K+ K+ K+ K+ K+ K+ K+ K+ Blood K+ K+ WNK4 WNK4 Lumen WNK4 Cl- Cl- Cl- Cl- Cl- Na+ Na+ Baseline Normal Aldosterone Na+ Hypovolemia High Aldosterone Na+ Na+ Hyperkaliemia High Aldosterone CONCLUSIONI • Lo studio delle malattie rare è utile alla comprensione di aspetti di fisiologia e fisiopatologia • L’osservazione clinica di patologie rare ha contribuito alla caratterizzazione della funzione renale nell’equilibrio idro-elettrolitico e nel controllo della BP • I Meccanismi fisiopatologici alla base di malattie rare spesso sono condivisi da disordini comuni, pertanto la loro conoscenza può fornire il razionale per lo sviluppo di strategie terapeutiche per altre patologie