The growth of tumor masses G. Dattoli ENEA FRASCATI The point of view of a laser physicist (a theoritician) Power laws Math. Formulation y ( x) a x k log( y ( x)) log( a ) k log( x), 1 a x0 k x y ( x) x0 k , • Self- Symilarity (Invariance under • Scale trasformation, Kallan-Szymanzik) x x y ( x) k y( x) TAYLOR-”Law” Et2 R(t ) 1 5 Bode-law • • Distance of planets from the sun n=n-th planet d ( n ) a bn ( n ), a 44, but depending on units, b 1.73, (n ) weak oscillator y function of n with amplitude 0.1 Astrophysics M r 2.1 Biology& Echology The New fronteer • Volterra-Lotka, Malthus, Gompertz, Damouth, Kleiber… Echology: Damouth-law P l 2.25 Biology & Ecology: the Paradise of the scaling law • Kleiber:massmetabolyc rate RkM 3 4 3 4 RkM , 3 4 k 90 cal /( s Kg ) Kleiber-Law 18-orders of magnitude!!!!! …3/4 ??? Card.rate -1/4 Card. 1/4 period Life 1/4 Duration Diam, Aorta 3/4 Mass. Brain 3/4 Consumption 3/4 O(ml/s) Gluc mg/m 3/4 E R T M , L c const Kleiber and dynamics… • Rate eq. (West, Brown, Enquist (1997)) d Nc B N c Bc Ec , dt N c Number of cells , Bc Cell . Metabolyc rate Ec Energy per cell . B total metabolyc rate Eq. Di evoluzione B N c Bc Ec d Nc , dt m N c mc mc Bc d m B ( m) m, dt Ec Ec B ( m ) B0 m 3 4 B0 mc d m m dt Ec m0 m0 3 4 Bc m, Ec Living body Evolution Von-Bartalanffy- Quantitative laws in metabolism and growth-Quarterly review on Biology 32, 217-231 (1957). d m B0mc 43 Bc m m, dt Ec Ec m0 m0 , dm a m b m ,Von Bartalanffy ( Biol .) dt Ginzburgh Landau ( phase transitions ) D. G. , P. L. Ottaviani FEL... Logistic-function, Gompertz…. • The solutions of the Eq. 3 d m B0 mc 4 Bc m m, dt Ec Ec m0 m0 • Is a logistic type m m(t ) M 4 0 e 1 M 4 Ec 1 Bc t B0 mc M B 1 e 1 , c 4 t T 4 4 , T 1 4 Ec m ln( 1 0 ) Bc M 4 Ec nc0 3 4 0 B0 m Analisi dei dati West & Brown) Growth of tumor masses Prostate cancer Mass (grams) of the human prostate cancer vs. time (days) using the WBE equation and the parameters Ec 2.110 5 J , mc 3 10 9 g , Bct (0) 1.753 10 6 J / day, B (0) 2.94 10 g t 0 3 3 4 J / day. 800 600 400 200 0 100 200 300 Prostate and breast cancer and energetic 800 • age 40 years 600 400 1 10 6 1 10 5 1 10 4 1 10 3 100 10 200 1 0 50 100 150 0 2 200 4 t s 3 3 ME t 1 e c E B0t m(t ' ) dt ' 4 (1) s m s s 1 s c 0 t 3 4 6 8 10 , 4 MEc t E , mc 1 ( Pc t ) 4 E 4 , 4 Ec 3 3 aEc B0t mc 1 Pc t t t t 4 , P B m , B , B , E[ J ] 0.85 (t ( day )) 4 c 0 c 0 c 4 3 4 4 Ec mc M 4 E B 2.94 10 g t 0 3 3 4 2 / day 3.4 10 W g 3 4 , Bct 1.753 10 6 J / day 2 10 11W Tumor cell evolution r3 3 nc mc Evolution of the tumor cell number vs time, final mass 671 g, different evolution times 1 10 12 1 48 days 1 10 11 1 10 10 1 12 days n( t 1 1) 1 109 n( t 4 1) 1 108 n( t 12 1) 1 10 7 7 1 144 days 10 1 10 6 1 10 5 9 10 11 10 1 10 4 1 10 3 100 10 1 0.01 0.1 1 10 t 100 1 10 3 1 10 4 Tumor and host organ • Human prostate cancer mass in grams (continuous line) and cancer metabolic rate in (continuous line), vs time in days (the dash curve refers to the average human metabolic rate). The cancer power density has been calculated assuming that the tumour has a spherical shape with a density comparable to that of the water. 600 400 200 0 0 20 40 60 80 100 Required Power 3 4 • P(t ) B0 m(t ) • For a practically vanishing initial tumour mass and at small times we can evaluate the power associated to the tumour evolution, during its early stages is given by • 1 Pc4 3 PT 3 t , 4 E c3 Pc B0 m 3 4 c • while the energy used to generate the corresponding tumour mass is • 1 ( Pc t ) 4 E 4 4 E c3 Carrying Capacity and critical times for methastases spreading P C T PO t* 4 Ec Pc 3 PO Pc 1 10 6 P m* 3 O B0 4 1 10 5 1 10 4 P( t ) 1 10 86400 2 100 10 10 86400 1 10 3 0.1 0.01 1 10 3 0.1 1 10 t 100 1 10 3 Tumor and methastases • Statistical model, Poissonian distribution n(t )s p (t ) exp( n(t )) s! • Il parametro is, along with the growth time, a measure of the tumour aggressivity Evolution of methastasis • • • Probability vs. time (days) that s-malignant cells leaves the primary tumour s=10 cells (solid line), s=50 cells (dash line), s=130 cells (dot line) for M=671 g and 106 , 1 6.5 years 103 , 1 120 days 10 10 1 1 0.1 0.1 0.01 0.01 1 10 3 1 10 3 1 10 4 1 10 4 1 10 5 1 10 5 1 10 1 10 6 6 7 1 10 7 1 10 8 1 10 8 1 10 9 1 10 9 1 10 1 10 100 1 10 3 1 10 4 1 10 100 1 10 3 1 10 4 1 10 5 Probability of spreading 10 1 0.1 0.01 1 10 3 1 10 4 1 • 10 100 3 1 10 1 10 4 Probability of colony formation vs. time (days) for a tumour with days and 1 colony (solid line), 10 colonies (dot line), 50 colonies (dash line), number of cells normalized to the saturation number (dash-dot), the parallel line corresponds to the clinical level (cells) Angiogenesis Conclusions • • • • Biol. Evolution relies on complex mechanisms Simple mathematical models are welcome The same applies to tumor mass evolution Concepts like carrying capacity e methastases spreading could be understoo in enegetic terms • The Kleiber “law” should be considered as the manifestation of a more general LAW • The dependence on the temperature should be included • 3 Ei kT 4 B( M , T ) M e …Conclusions 1 4 l c1M e • Ei KT E=6 eV typical value of biochemical reactions Frattali e legge di Kleiber ….Fractal dimensions …