European Coordination for Accelerator Research and Development Work package 8: ColMat Collimators & materials for higher beam power beam 2nd WP meeting - 22 March 2010 L. Peroni, M. Scapin Dipartimento di Meccanica, Politecnico di Torino DIMEC Dipartimento di Meccanica POLITO Actions 3 DIMEC Dipartimento di Meccanica A fundamental aspect of this task is the development of competences and methodologies of analysis based to numerical simulations of the complete problem. To do this, it is essential to look to a multidisciplinary approach. As a matter of fact, the problem involves different fields, such as structural and mechanical engineering, thermodynamics, hydrodynamics and physics. Thermodynamics/hydrodynamics Physics GSI - BIG2 Structural/mechanical engineering CERN -FLUKA Pressure, density, temperature Energy Complex geometry, material behaviour, boundaries… CERN -ANSYS Stress, strain, damage The task 4 DIMEC Dipartimento di Meccanica In each point of the structure we must identify the stress tensor; it can be expressed as the sum of two other stress tensors: a mean hydrostatic or volumetric stress tensor which tends to change the volume of the stressed body; a deviatoric component called the stress deviator tensor, which tends to distort it. ij sij ( ij , ij ) p ij el y f ( eff , , T , p) Material model: Johnson–Cook Steinberg–Cochran–Guinan–Lund Zerilli–Armstrong Mechanical Threshold Stress Preston–Tonks–Wallace pl p=f (r,E,T…) Equation of state: Grüneisen Polynomial Tillotson GRAY Tabular (SESAME, EOSPRO…) From a mechanical point of view 5 DIMEC Dipartimento di Meccanica Constitutive plasticity model (Glidcop) A B 1 C ln 1 T y n pl Johnson Cook f D1 D2 exp D3 BIG2 [Bushman & Fortov] *m 0 p 1 D4 ln 1 D5 * T eff 0 SESAME Pressure (GPa) 10 10 10 4 2 EOS (Copper) 0 2 1.5 x 10 4 20 15 1 10 0.5 Temperature (K) 5 0 0 Density (g/cm3) Glidcop/Copper 6 DIMEC Dipartimento di Meccanica 850°C 150 °C Glidcop 500 True stress (MPa) 400 300 200 100 0 0 0.05 0.1 0.15 True plastic strain (-) 0.2 Experimental test J-C fit 1 Temperature coefficient 1000°C 850°C 700°C 600°C 500°C 400°C 300°C 200°C 100°C 20°C 0.8 0.6 y A B pln 1 C ln m 1 T * 0 0.4 0.2 0 373 473 573 673 773 873 973 Temperature (K) 1123 1273 Plasticity - Temperature 7 DIMEC Dipartimento di Meccanica Hopkinson Bar Strainrate Taylor test 216 m/s 1.5 Glidcop 600 500 400 300 strain-rate 10-3 s-1 200 strain-rate 10-1 s-1 strain-rate 101 s-1 100 Strain-rate coefficient True stress (MPa) 1.4 y A B pln 1 C ln Taylor test 1.2 SHPB 1.1 1 Experimental test J-C fit strain-rate 10 s 0.05 0.1 0.15 True plastic strain (-) 0.2 1.3 3 -1 0 0 m 1 T * 0 0.9 10 -3 10 -1 1 10 10 -1 Strain-rate (s ) 3 10 5 Plasticity - Strainrate 8 DIMEC Dipartimento di Meccanica Objectives: Numerical simulation of a complex mechanical structure (collimator) subjected to beam impact: energy deposition, shock waves, damage … Energy Numerical code: LSDyna General purpose transient dynamic finite element program capable of simulating complex real world problems. It is optimized for shared and distributed memory Unix Linux and Windows platforms. 2D and 3D Lagrangian, Eulerian, ALE, SPH, meshfree Preliminary model (Benchmark) A Glidcop bar (5 mm radius, 1 m long) facially irradiated with 8 bunches of 7 TeV/c protons (each bunch comprises 1.15x1011 protons) 2D axisymmetric FEM model - 2500 elements Numerical modeling 9 DIMEC Dipartimento di Meccanica The particle beam energy distribution is applied by using a 200 ns ramp (constant power) Explicit integration scheme, time step magnitude 10-8÷10-9 s About 30 second of CPU time to simulate 10 ms time step Since a LSDyna tabular EOS routine is under developing (using the user-def capabilities and the Fortran routine written for SESAME and CTH, thank you to Gerald Kerley) a polynomial EOS is used to fit tabular data. 8 x 10 SESAME Linear interpolation r 4 1 2 x 10 0.5 10 1.6 SESAME Polynomial 1.4 SESAME Polynomial 1.2 P(m)/E 0 P(m) Pressure (Pa) 6 10 0 -0.5 1 0.8 0.6 -2 0 -1 1 2 3 4 Specific energy (J/m3) 5 6 x 10 10 -1.5 -0.6 0.4 -0.4 -0.2 m 0 0.2 0.2 -0.6 -0.4 -0.2 m 0 0.2 Numerical modeling - EOS 10 DIMEC Dipartimento di Meccanica Volumetric strain Pressure (Pa) Density Temperature (K) End of deposition t~200 ns - No increase of penetration depth of protons due to density reduction (FLUKA coupling in the future?) - Temperature evaluated with the heat capacity of solid (only for J-C model) Preliminary results (I) 11 DIMEC Dipartimento di Meccanica Pressure (Pa) 2E-8 s 2E-7 s 6E-7 s 1E-6 s Volumetric strain Preliminary results (II) 12 DIMEC Dipartimento di Meccanica Von Mises (Pa) 2E-8 s 2E-7 s 6E-7 s 1E-6 s Strainrate (s-1) Preliminary results (III) 13 DIMEC Dipartimento di Meccanica Pressure 8 x 10 Elements deletion for high volumetric strain (low density) and low pressure Pressure (Pa) 6 10 SESAME Linear interpolation r 4 2 0 deletion -2 0 1 2 3 4 Specific energy (J/m3) 5 6 x 10 10 Preliminar results (IV) European Coordination for Accelerator Research and Development Thank you for your attention L. Peroni, M. Scapin Dipartimento di Meccanica, Politecnico di Torino