Tuning SQL Trace Facility Sono in grado di fornire informazioni preziose, per ogni statement SQL chiamato in causa, generando le seguenti statistiche attive: 1) a livello di sessione (alter session set sql_trace = TRUE) 2) a livello di intera istanza (parametro di configurazione del file initSID.ora sql_trace=true) • • • • Numero di parse, execute e fetch Tempo di CPU e tempo di elapsed (trascorso) Numero di letture logiche e letture fisiche Numero di record processati archiviate, in formato interno, in un file denominato trace file Formatting the Trace File with TKPROF $ tkprof tracefile.trc output.txt [options] tracefile.trc USER_DUMP_DEST output.txt Al fine di prospettare le informazione storicizzate nel file di trace sopra descritto, occorre dare in pasto lo stesso archivio ad un formattatore denominato TKPROF la cui sintassi di avvio risulta essere: TKPROF file_trace_input file_output SORT=(option1,option2,……..) PRINT=integer EXECPU , EXEELA, ………. Lists only the first integer sorted SQL statements into the output file. INSERT=file_scripts_sql_output Creates a SQL script that stores the trace file statistics in the database. This script creates a table and inserts a row of statistics for each traced SQL statement. SYS=boolean Enables and disables the listing of SQL statements issued by the user SYS. TABLE=schema.table Specifies the schema and name of the table into which TKPROF temporarily places execution plans before writing them to the output file. EXPLAIN=user/password Determines the execution plan for each SQL statement in the trace file and writes these execution plans to the output file. RECORD= file_record_output Creates a SQL script with the specified filename with all of the nonrecursive SQL in the trace file. Example This example runs TKPROF, accepts a trace file named "dlsun12_jane_fg_svrmgr_007.trc", and writes a formatted output file named "outputa.prf": TKPROF DLSUN12_JANE_FG_SVRMGR_007.TRC OUTPUTA.PRF EXPLAIN=SCOTT/TIGER TABLE=SCOTT.TEMP_PLAN_TABLE_A INSERT=STOREA.SQL SYS=NO SORT=(EXECPU,FCHCPU) Note the other parameters in this example: •The EXPLAIN value causes TKPROF to connect as the user SCOTT and use the EXPLAIN PLAN statement to generate the execution plan for each traced SQL statement. •The TABLE value causes TKPROF to use the table TEMP_PLAN_TABLE_A in the schema SCOTT as a temporary plan table. •The INSERT value causes TKPROF to generate a SQL script named STOREA.SQL that stores statistics for all traced SQL statements in the database. •The SYS parameter with the value of NO causes TKPROF to omit recursive SQL statements from the output file. In this way you can ignore internal Oracle statements such as temporary table operations. •The SORT value causes TKPROF to sort the SQL statements in order of the sum of the CPU time spent executing and the CPU time spent fetching rows before writing them to the output file. Tabular Statistics TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in rows and columns. Each row corresponds to one of three steps of SQL statement processing. PARSE This step translates the SQL statement into an execution plan. This step includes checks for proper security authorization and checks for the existence of tables, columns, and other referenced objects. EXECUTE This step is the actual execution of the statement by Oracle. For INSERT, UPDATE, and DELETE statements, this step modifies the data. For SELECT statements, the step identifies the selected rows. FETCH This step retrieves rows returned by a query. Fetches are only performed for SELECT statements. TKPROF Statistics •COUNT Number of times a statement was parsed, executed, or fetched. •CPU Total CPU time in seconds for all parse, execute, or fetch calls for the statement. •ELAPSED Total elapsed time in seconds for all parse, execute, or fetch calls for the statement. •DISK Total number of data blocks physically read from the datafiles on disk for all parse, execute, or fetch calls. •QUERY Total number of buffers retrieved in consistent mode for all parse, execute, or fetch calls. Buffers are retrieved in consistent mode for queries. •CURRENT Total number of buffers retrieved in current mode. Buffers are retrieved in current mode for statements such as INSERT, UPDATE, and DELETE. •ROWS Total number of rows processed by the SQL statement. This total does not include rows processed by subqueries of the SQL statement. Dynamic Performance Views 1) Are maintained by the Oracle server and continuously updated 2) Contain data about disk and memory structures 3) Contain data that is useful for performance tuning 4) Have public synonyms with the prefix V$ Accessing Dynamic Performance Views OPEN Data dictionary MOUNT NOMOUNT SHUTDOWN Dynamic performance views reading data from disk Dynamic performance views reading from memory Example V$ SGA Control file V$PARAMETER V$SGA V$OPTION V$PROCESS V$SESSION V$VERSION V$INSTANCE V$THREAD V$CONTROLFILE V$DATABASE V$DATAFILE V$DATAFILE_HEADER V$LOGFILE V$SESSTAT V$STATNAME V$SYSSTAT Automated Performance Tuning System La metodica che si pone alla base della strategia è architettata su quattro step distinti: 1 - Individuazione degli aspetti del Data Base che si desidera porre sotto analisi, definizione delle regole e rintraccio dei valori limite. 2 - Collecting data. Acquisizione delle informazioni legate a: • database • instance • schema • environment • workload (carico di lavoro). 3 - Viewing dei collected data. Prospetto, tramite reportistiche semplici e di immediata comprensione, dei dati precedentemente raccolti. 4 - Analyzing data / generate recommendations. Nel caso in cui i valori limite non siano soddisfatti ecco il sistema intervenire con una serie di utili consigli se non addirittura con un insieme di risoluzioni automatiche poste in essere. Sono controlli che rientrano sotto il nome di "Routine Tuning" da considerarsi come "prevenzione" essendo gli stessi un help per anticipare quelli che potrebbero divenire reali problemi prima chegli stessi si presentino con la propria complessita' risolutiva. Controllo 1-%Library Cache Misses < 1% select round(sum(reloads)/sum(pins)*100,2) Col1 from v$librarycache; > shared_pool_size Controllo 2 -%Data Dictionary Cache Misses < 10% select round(sum(getmisses)/sum(gets)*100,2) Col1 from v$rowcache; > shared_pool_size Controllo 3 -Ratio Logico/Fisico Critico > 80% select round(((1-(a.value/(b.value+c.value)))*100),2) Col1 from v$sysstat a, v$sysstat b, v$sysstat c where a.name = 'physical reads' -- accessi fisici and b.name = 'db block gets' -- accessi logici and c.name = 'consistent gets'; -- accessi logici > db_block_buffer Controllo 4 -Analisi Aree di Sort Parallelamente all'area condivisa di ram (SGA), esistono un insieme di aree dimensionalmente ridotte, non condivise ed in relazione 1:1 con i processi dedicati al supporto delle connessioni utente (PGA) la cui funzionalita' principale e' rintracciabile nel supporto alle politiche di sort e di grouping. Ogni statement che richiama operazioni quali sort e grouping, sfrutta per il raggiungimento dell'obiettivo l'area PGA. Nel caso in cui la stessa risulti non sufficiente per accomodare l'attività, quest'ultima migra sui segmenti temporanei opportunamente creati su disco, con un degrado significativo dei tempi di esecuzione. Non esiste un limite da utilizzarsi come confronto. Viene demandata alla sensibilità del DBA, la decisione su di una rianalisi dei parametri di initSID.ora: sort_area_retained_size dimensione in bytes allocata nella PGA per potenziali SORT sort_area_size dimensione in bytes allocabile nella PGA per sicuri SORT. Sono individuate due soglie (min & max) per cercare di risolvere il maggior numero di attivita' integralmente in ram. Controllo 4 -Analisi Aree di Sort select name, value from v$sysstat where name in ('sorts (memory)','sorts (disk)'); Controllo 5 -Analisi Oggetti con + 25 extents Il controllo prosegue concentrandosi sugli oggetti (segmenti) con un livello di criticità, un livello di frammentazione (numero di extents associati) elevato e potenzialmente colpevolizzabile di un peggioramento delle performances del sistema. select owner, segment_name, segment_type, tablespace_name, extents from dba_segments where extents > 25 and owner not in ('SYS') order by owner,segment_type, extents desc; Auditing Guidelines • Define your purpose of auditing – Suspicious database activity – Gather historical information • Define what you want to audit – Audit users, statements, or objects – By session not by access – Successful or unsuccessful • Manage your audit trail – Monitor the growth of the audit trail – Protect the audit trail from unauthorized access Auditing Categories • Auditing privileged operations – Always audited – Startup, shutdown, and SYSDBA connections • Database auditing – Enabled by DBA – Cannot record column values • Value-based or application auditing – Implemented through code – Can record column values – Used to track changes to tables Database Auditing Enable database auditing Execute command User Parameter file DBA Review audit information Specify audit options Server process Generate audit trail Audit options OS audit trail Database Audit trail Enabling Auditing Options • Statement auditing AUDIT user; • Privilege auditing AUDIT select any table BY summit BY ACCESS; • Schema object auditing AUDIT LOCK ON summit.employee BY ACCESS WHENEVER SUCCESSFUL; Viewing Auditing Options Data Dictionary View Description ALL_DEF_AUDIT_OPTS Default audit options DBA_STMT_AUDIT_OPTS Statement auditing options DBA_PRIV_AUDIT_OPTS Privilege auditing options DBA_OBJ_AUDIT_OPTS Schema object auditing options Viewing Auditing Results Audit Trail View Description DBA_AUDIT_TRAIL All audit trail entries DBA_AUDIT_EXISTS Records for AUDIT EXISTS/NOT EXISTS DBA_AUDIT_OBJECT Records concerning schema objects DBA_AUDIT_SESSION All connect and disconnect entries DBA_AUDIT_STATEMENT Statement auditing records Autonomous Transactions • • • • • • An independent transaction started by another transaction Independent of the main transaction; not nested transactions Do not roll back if the main transaction rolls back. Changes become visible to other transactions upon a commit. Only individual routines can be marked autonomous. You cannot mark a nested PL/SQL block as autonomous. Autonomous Transactions MT = Main Transaction AT = Autonomous Transaction PROCEDURE proc1 IS emp_id NUMBER; PROCEDURE proc2 IS BEGIN PRAGMA emp_id := 1234; AUTONOMOUS_TRANSACTION; dept_id NUMBER; COMMIT; INSERT ... SELECT ... MT begins BEGIN dept_id := 90; proc2; UPDATE ... DELETE COMMIT; END proc1; MT ends INSERT ... UPDATE ... COMMIT; END proc2; MT suspends AT begins AT ends MT resumes Autonomous Transactions Example PROCEDURE bank_trans ... log_card_usage (cardnum, loc); INSERT INTO txn VALUES (9001,1000,...); END bank_trans; PROCEDURE log_card_usage (p_cardno IN NUMBER, p_loc IN NUMBER ) IS PRAGMA AUTONOMOUS_TRANSACTION; BEGIN INSERT INTO usage VALUES (p_cardno, p_loc); COMMIT; END log_card_usage; Oracle Supplied Packages There are more than 70 packages supplied with the Oracle RDBMS that are granted to all users (PUBLIC). They fall into three categories: • Application development support • Server management support • Distributed database packages Interacting with Operating System Files • utl_file Oracle supplied package – Provides text file input/output capabilities – Is available with version 7.3 and later What Is the utl_file Package? • Extends I/O to text files within PL/SQL • Provides security for directories on the server through the init.ora file • Is similar to standard operating system I/O – – – – – Open files Get text Put text Close files Use the exceptions specific to the utl_file package File Processing Using utl_file Open the text file Get lines from the text file Put lines into the text file Yes More lines to process? No Close the text file utl_file Procedures and Functions • • • • • • • Function fopen Function is_open Procedure get_line Procedure put_line Procedure new_line Procedure fflush Procedure fclose, fclose_all procedure stampa_testata_file (xpath in varchar2, xfile in varchar2) is fileout UTL_FILE.file_type; begin fileout := UTL_FILE.fopen(xpath,xfile,'w'); UTL_FILE.put_line(fileout, '=====================================>>>> '); UTL_FILE.put_line(fileout, '==== Demone Remoto di Controllo RDBMS ===>>>> '); UTL_FILE.put_line(fileout, '==== ===>>>> '); UTL_FILE.put_line(fileout, '=====================================>>>> '); UTL_FILE.put_line(fileout, '====SysDate ====== '||to_char(sysdate , 'dd/mm/yyyy hh24:mi:ss')||' =============>>>> '); UTL_FILE.put_line(fileout, '=====================================>>>> '); UTL_FILE.fclose (fileout); end; / Calling External Routines from PL/SQL With external routines, you make “callouts” and, optionally, “callbacks” through PL/SQL. Java class method C routine PL/SQL subprogram External procedure Benefits of External Routines • Integrates the strength and capabilities of different languages to give transparent access to these routines from within the database • Extensibility: Provide functionality in the database that is specific to a particular application, company, or technological area • Reusability: Can be shared by all users on a database, as well as moved to other databases or computers, providing standard functionality with limited cost in development, maintenance, and deployment How PL/SQL Calls a C External Routine 3 2 Listener process 4 6 7 Alias PL/SQL subprogram library extproc process 5 BEGIN myproc 1 User process External routine Shared library How an External C Routine Is Called 1. The user process invokes a PL/SQL program. 2. The server process executes a PL/SQL subprogram, which looks up the alias library. 3. The PL/SQL subprogram passes the request to the listener. 4. The listener process spawns the extproc process. The extproc process remains active throughout your Oracle session until you log off. 5.The extproc process loads the shared library. 6.The extproc process executes the external procedure. 7.The data status is returned to the server. Development Steps for External C Routines 1. Create and compile the external routine in 3GL. 2. Link external routine into the shared library at the operating system level. 3. Create an alias library schema object to map to the operating system shared library. 4. Grant execute privileges on the library. 5. Publish the external C routine by creating the PL/SQL subprogram unit specification, which references the alias library. 6. Execute the PL/SQL subprogram that invokes the external routine. Creating an Alias Library • Use the CREATE LIBRARY statement to create an alias library object. CREATE OR REPLACE LIBRARY library_name IS|AS 'file_path'; • Grant EXECUTE privilege on the alias library. GRANT EXECUTE ON library_name TO user|ROLE|PUBLIC • Publish the external routine. • Call the external C routine through PL/SQL. Accessing a Shared Library Through Publishing Publish the external routine in PL/SQL • The body of the subprogram contains the external routine registration. • The external routine runs on the same machine. • Access is controlled through the alias library. Publishing an External C Routine • Identify the external body within a PL/SQL program CREATE OR REPLACE FUNCTIONCfunction_name to publish the external routine. (parameter_list) RETURN datatype regularbody|externalbody END; • The external body contains the external C routine information. IS|AS LANGUAGE C LIBRARY libname [NAME C_function_name] [CALLING STANDARD C | PASCAL] [PARAMETERS (param_1, [param_n]); Oracle Locks Oracle automatically uses different types of locks to 1) control concurrent access to data 2) prevent destructive interaction between users. Oracle locks fall into one of the following general categories: DDL locks (dictionary locks) DDL locks protect the structure of schema objects. For example the definitions of tables and views. DML locks (data locks) DML locks protect data. For example table locks lock entire tables row locks lock selected rows. Internal locks and latches Internal locks and latches protect internal database structures such as datafiles. Internal locks and latches are entirely automatic. Oracle DML Locks DML operations can acquire data locks at two different levels: 1) for specific rows 2) for entire tables. The only DML locks Oracle acquires automatically are row-level locks. There is no limit to the number of row locks held by a statement or transaction. Row locking provides the finest grain locking possible and so provides the best possible concurrency and throughput. A transaction acquires an exclusive DML lock for each individual row modified by one of the following statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause. A locked row/table remains locked until you either commit your transaction or roll it back. Lock Table Statement This lock manually overrides automatic locking and permits or denies access to a table or view by other users for the duration of your operation. NOWAIT specifies that Oracle returns control to you immediately if the specified table (or specified partition or subpartition) is already locked by another user. In this case, Oracle returns a message indicating that the table, partition, or subpartition is already locked. Lock Table Statement lockmode is one of the following: ROW SHARE allows concurrent access to the locked table, but prohibits users from locking the entire table for exclusive access. ROW SHARE is synonymous with SHARE UPDATE, which is included for compatibility with earlier versions of Oracle. ROW EXCLUSIVE is the same as ROW SHARE, but also prohibits locking in SHARE mode. Row Exclusive locks are automatically obtained when updating, inserting, or deleting. SHARE allows concurrent queries but prohibits updates to the locked table. SHARE ROW EXCLUSIVE is used to look at a whole table and to allow others to look at rows in the table but to prohibit others from locking the table in SHARE mode or updating rows. EXCLUSIVE allows queries on the locked table but prohibits any other activity on it. Summarizes the information Oracle DDL Locks A DDL lock protects the definition of a schema object (for example, a table). Oracle acquires a dictionary lock automatically on behalf of any DDL transaction requiring it. Users cannot explicitly request DDL locks. Only individual schema objects that are modified or referenced are locked during DDL operations; the whole data dictionary is never locked. Most DDL operations require exclusive DDL locks for a resource to prevent destructive interference with other DDL operations that might modify or reference the same schema object. During the acquisition of an exclusive DDL lock, if another DDL lock is already held on the schema object by another operation, the acquisition waits until the older DDL lock is released and then proceeds. Oracle DDL Locks A share DDL lock is acquired on a schema object for DDL statements that include the following commands: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE] VIEW PROCEDURE PACKAGE PACKAGE BODY FUNCTION TRIGGER CREATE SYNONYM CREATE TABLE Oracle Dead Locks Oracle automatically detects deadlock situations and resolves them by rolling back one of the statements involved in the deadlock, thereby releasing one set of the conflicting row locks. A corresponding message also is returned to the transaction that undergoes statement-level rollback. Oracle Standby Implementation • • • • • Fail over Solution Disaster Recovery Solution (if remote) Ease of implementation Minimum impact on Production System Read Only Standby Database Overview of Managed Oracle Standby DB Primary Instance ARCH Standby Instance Net 9i Redo log Recovery proc DBWR Arc log Arc log RFS Primary DB Standby DB Primary control file Standby control file 1 Recovery Mode 2 ReadOnly Mode 3 Activate NLS Features • Language support • Territory support • Character set support • Linguistic sorting • Message support • Date and time formats • Numeric formats • Monetary formats Different Types of Encoding Schemes Oracle supports different classes of character encoding schemes: • Single-byte character sets – 7-bit – 8-bit • Varying-width multibyte character set • Fixed-width multibyte character set • Unicode (UTF8, AL24UTFFSS) Character Sets and National Character Sets of a Database Database Character Sets National Character Sets Defined at creation time Cannot be changed without re-creation Store data columns of type CHAR, VARCHAR2, CLOB, LONG Can store varying-width character sets Defined at creation time Cannot be changed without re-creation Store data columns of type NCHAR, NVARCHAR2 and NCLOB Can store fixed-width and varying-width multibyte character sets NLS Guidelines • Choose a closely related database character set and national character set. • String operations might be faster with fixed-width character sets. • Variable-width character sets use space more efficiently. Specifying Language-Dependent Behavior Initialization parameter Environment variable ALTER SESSION command Specifying Language-Dependent Behavior for the Server • NLS_LANGUAGE specifies: - The language for messages - Day and month names - Symbols for A.D, B.C, A.M, P.M. - The default sorting mechanism • NLS_TERRITORY specifies: - Day and week numbering - Default date format, decimal character, group separator, and the default ISO and local currency symbols Dependent Language and Territory Default Values PARAMETER VALUES NLS_LANGUAGE AMERICAN NLS_DATE_LANGUAGE AMERICAN NLS_SORT BINARY NLS_TERRITORY AMERICA NLS_CURRENCY $ NLS_ISO_CURRENCY NLS_DATE_FORMAT NLS_NUMERIC_CHARACTERS AMERICA DD-MON-YY ,. Specifying Language-Dependent Behavior for the Session • Environment variable: NLS_LANG=<language>_<territory>.<charset> • Additional environment variables: • NLS_DATE_FORMAT • NLS_DATE_LANGUAGE • NLS_SORT • NLS_NUMERIC_CHARACTERS • NLS_CURRENCY • NLS_ISO_CURRENCY • NLS_CALENDAR Character Sets in Client-Server Architecture NLS_LANG=<language>_<territory>.<charset> NLS_NCHAR=<ncharset> CREATE DATABASE ... CHARACTER SET <charset> NATIONAL CHARACTER SET <ncharset> ... Specifying Language-Dependent Behavior for the Session ALTER SESSION SET NLS_DATE_FORMAT=‘DD.MM.YYYY’; DBMS_SESSION.SET_NLS(‘NLS_DATE_FORMAT’, ’’’DD.MM.YYYY’’’) ; Sorting • Oracle provides a linguistic sort. • NLS_SORT specifies types of sort. • The NLSSORT function reflects linguistic comparison. ALTER SESSION SET NLS_SORT=GERMAN; SELECT letter FROM letters ORDER BY letter; LETTER -----ä z Using NLS Parameters in SQL Functions SELECT TO_CHAR(hiredate,’DD.MON.YYYY’, ‘NLS_DATE_LANGUAGE=GERMAN’) FROM emp; SELECT ename, TO_CHAR(sal,’9G999D99’, ‘NLS_NUMERIC_CHARACTERS=‘‘,.’’’) FROM emp; Obtaining Information About Character Sets NLS_DATABASE_PARAMETERS: • PARAMETER NLS_CHARACTERSET, NLS_NCHAR_CHARACTERSET • VALUE Obtaining Information About NLS Settings • NLS_INSTANCE_PARAMETERS: – PARAMETER ( NLS initialization parameters that have been explicitly set) – VALUE • NLS_SESSION_PARAMETERS: – PARAMETER ( NLS session parameters) – VALUE Obtaining Information About NLS Settings • V$NLS_VALID_VALUES: – PARAMETER (LANGUAGE, SORT, TERRITORY, CHARACTERSET) – VALUE • V$NLS_PARAM ETERS: – PARAMETER (NLS session parameters, NLS_CHARACTERSET) – VALUE