Department of Cellular and Developmental Biology Chromosomal vectors for cystic fibrosis gene therapy Fiorentina Ascenzioni The ideal gene therapy vector Low invasivity Selective target Low immunogenicity High cloning capacity Long term stability Low copy number Reduced size Low intereference with the host genome The chromosomal vectors •BAC •PAC Mainly used for cloning •MAC Minichromosome de novo chromosomes expression vectors for therapeutic genes and animal transgenesis Models to analyze the structural features of human chromosomes Minichromosomes: linear DNA molecules mimicking the behaviour of a natural chromosome •Replicate and segregate independently of host chromosome •1-2 copy per cell Consist of •Structural elements: telomeres, centromeres and origins of replication •Accessory elements: selectable markers, genes, site-specific recombination elements Can be engineered •to remove sequences not relevant to chromosome functions and to transgene expression •to insert your favourite transgene Centromeres Function 1. 2. 3. 4. DNA Centromere/kinetochore assembly Spindle microtubules capture Sister chomatid resolution Movement of the sister chromatid to each spindle pole Type I,repeated chromosome specific unit consisting of several homogeneous monomers Type II, diverged chromosome units 11-mer higher order repeat * CenpB-box * Diverged monomeric repeat Centromeric chromatin CenpA, centromere specific histonH3 like protein Present in active centromere only Proposed model for the distribution of the constitutive CENPs where they localize • CenpA, nucleosomes are phased on a-I type through interaction with CenpB • CenpC, inner kinetochore lamina, takes part in formation of CenpA/B/C complex • CenpB, binds CenpB-box (17 bp in typeI alpha and mouse minor satellite DNAs what they do KO mouse • CenpA, centromere-specific H3 variant, it is Death by 6,5 days essential for centromeric chromatin • CenpC, present in active but absent in inactive Death by 3,5 days centromere • CenpB, present both in active and inactive Viable centromere, absent in chr.Y Ando et al 2002 Mol Cell Bio 22, 2229-2241 Centrochromatin Centromeric CenpA-nucleosome, interspersed with open but not active chromatin H3 lys4-diMe nucleosome CenpA H3 lys4-diMe CenpA H3 lys4-diMe Cohesins Inner Kinetochore Outer Kinetochore microtubule CenpA subdomain H3 lys4-diMe subdomain Sullivan and Karpen, Nat Strct Mol Biol, 2004, 11, 1076-1083 Telomeres necessary to replicate linear chromosomes but dispensable for de novo chromosome formation. 1.5 kb of telomeric repeats are sufficient to seed a de novo telomere Origin of replication it is assumed that most DNA fragments of proper size (15-40 kb) are replication competent How to get minichromosomes 1989, Carine et al obtained a minichromosome by irradiation of a monosomatic CHO hybrid Top down 1994, Brown et al obtained minichromosome from Chromosome Y by telomere fragmentation 1995, Farr dissected human chromosome X and produced centric minichromosome 1997, Willard HF obtained de novo chromosome formation with human alphoid DNA 1998, Ikeno et al produce de novo chromosomes from YAC clone with alpha21-I DNA 2000, Ebersole et al assembled PAC with alpha21-I DNA competent for de novo chromosome formation Bottom up Bottom up, human artificial chromosome formation is associated with de novo centromere formation from test tube to cells Unlinked DNA chromosomal elements + + Type I a-satellite 80-160 kb Telomeri 1-10 kb DNA genomico Centromeric constructs YAC type I a-satellite 100-1000 kb De novo minichromosome PAC/BAC type Ia-satellite 35-90 kb de novo minichromosome formation is tightly linked with alphoid DNA and Cenp-B alphoid MAC formation Type I alphoid repeat: consists of several monomers; it contains CenpB-box a21-I YES a17 YES Type II alphoid repeat: consists of divergent monomers; does not contain Cenp-B box a21-II NO aY very inefficient Neocentromere Non-alphoid repeats +CenpB-box NO NO De novo MACs consist of amplified input DNA Grimes et al., 2002 Mol Ther 5, 798-805 Alpha 17-I probe BAC red a17-I, green Anti-CenpA BAC/a 17I H3 nucleosome CenpA/CenpB Acetylated H3 Masumoto et al, 2004 Chomosome Res,12, 543-546 Top Down Approach Telomere Fragmentation Tel Cen Fragmentation Constructs Tel Cen Irradiation Human chromosome X was reduced up to 0.85 Mb by multiple rounds of telomere fragmenation •Transfer into intermediate host (chicken DT40 cells) • Insertion of the Cre/loxP system Spence et al., 2002 EMBO J 19, 5269-5280 Minichromosome features de novo minichromosomes •circular molecules •5-10 Mb in size •structure not simply related to the input DNA •de novo chromosome formation associated with host genome rearrangements minichromosomes from top down •linear with functional telomeres •from few hundred kb to 5-10 Mb in size •structure related to the parental chromosome Minichromosomes generated by gamma-irradiation of human chromosome 1 MC1 Carine,K. Et al.(1989)Somat.Cell Mol.Genet.5:445-60 PFGE separation of MC1 DNase treatment 5.7 Mb 4.6 Mb 3.5 Mb wells MC1 is linear with T2AG3 telomeres Human telomeric probe Long range restriction mapping of MC1 and human chromosome 1 (GM13139) NdeI BglII NdeI BglII NdeI BglII NdeI BglII * * Probes alphoid Sat2 subtel tel MC1 Structure by Fiber FISH The two telomeres Tel D1Z7 Sat2 Tel T2AG3, cy3, red Sat2, fitc, green T2AG3, cy3, red D1Z7, fitc, green T2AG3, cy3, red Sat2, fitc, green DNA,DAPI,blu T2AG3, cy3, red D1Z7, fitc, green DNA,DAPI,blu MC1 Structure by Fiber FISH The central region Pericentromeric DNA Tel Sat2 two blocks of alphoid DNA Sat2/D1Z5 D1Z5 D1Z7 Tel B D1Z7, cy3, red Sat2, fitc, green DNA, DAPI, blu D1Z5, cy3, red Sat2, fitc, green DNA, DAPI, blu D1Z7, cy3, red D1Z5, fitc, green DNA, DAPI, blu Centromere Activity and Centromeric Proteins Alphoid-D1Z5 Sat2 Alphoid-D1Z5 CREST CREST CENP-F MERGE MERGE MERGE MC1 Structure 5.5 Mb Pericentromeric DNA Tel Sat2 two blocks of alphoid DNA Sat2/D1Z5 D1Z5 D1Z7 Active centromere Tel Smaller derivatives of MC1 hygro Fragmentation construct Sat2/D1Z5 pBluHCMVSat2/D1Z5 tel E-GFP pBluDGFP-Sat2/D1Z5 Transfection into CHO-MC1 Tel Tel E-GFP Sat2 Hyg Sat2/D1Z5 D1Z5 D1Z7 Sat2/D1Z5 D1Z5 D1Z7 Tel Tel Selection PFGE analysis hygR clones Construct N. Clones Analyzed Reduced PFGE pBluHCMV-Sat2/D1Z5 39 29 none interstitial tel-tel fusion pBluDGFP-Sat2/D1Z5 39 17 3 1A 3A Probe puc 6A 7A PFGE BluDGFP-Sat2/D1Z5 Clones FISH pBLUHVMV-Sat2/D1Z5 1 2 3 4 5 pBLUDGFP-Sat2/D1Z5 6 7 14 15 16 17 n14 alphoid (D1Z5) probe Sat2 probe puc probe Cystic Fibrosis A model deseas for gene therapy •Caused by single gene mutations •Accessible target organs •No curative pharmacological treatment •The gene sequence is available since 1989 •1/2500 affected •Correction of 5-10% of CF- cells restore some function in animal models (Dorin JR et al., 1997) CFTRp structure and channel activity TMD1,2 hydrofobic transmembrane domains NBF1, 2 nucleotide Binding Fold, cytoplasmic, bind ATP R, regulatory cytoplasmid domain, controls channel opening CFTR mutations Classe V: reduced synthesis alternative splicing, exon skipping DF 508, the most common, affects 70% of the CF patients 1989 CFTR gene (Rommens et al., Science 1989) 1990 in vitro gene transfer of normal CFTR gene (Drumm et al., Cell 1990) 1992 CFTR gene transfer in vivo cotton rats (Rosenfeld et al., Cell 1992) 1993 First clinical trials (Zabner et al., Cell 1993) 2002 15 trials completed 2004 29 trials Proposed gene therapy vectors for CF Viral: • Adenovirus, non replicating, transient expression • Virus Adeno-associati (AAV), non replicating but integrating vector • Lentivirus, integrating Synthetic •Cationic lipid ( es. DOTAP, DOPE, DMPE etc.) •Cationic polymer (PEI, polylysine, dendrimers ) Barriers Extracellulars intracellulars Does MC1 represent a good vector for CF gene therapy? Pericentromeric DNA Tel Sat2 two blocks of alphoid DNA Sat2/D1Z5 D1Z5 D1Z7 Tel MC1-CFTR 5.8 Mb Pericentromeric DNA Tel Sat2 hCFTR two blocks of alphoid DNA D1Z5 D1Z7 Tel Sat2/D1Z5 IRES-Bgeo Southern blot analysis suggests integration of CFTR into Sat2 Integration of hCFTR locus into MC1 YAC-CFTR MC1 Sat2 CHO-MC1 transfected with Sat2 DNA yeast protoplast PEG fusion G418 selection 30 G418 resistant clones FISH Analysis of MC1-CFTR containing clones P16 P39 P37 P38 The probe was CFTR cDNA P39 clone contains one copy of the CFTR gene As demonstrated by competitive and limiting dilution PCR reactions pg competitor 625 4,8 P39 T84 P39 regression T84 regression 10 500 bp ratio T/S competitor 1 CFTR target 0,1 1 PCR products obtained by competitive methods on P39 clone 10 100 1000 pg standard The intersection of the P39 and human lines with y-value 1 demonstrates the presence of half CFTR target in P39 with respect to human T84 cells. CFTR activity in MC1-CFTR clones Northern analysis of the indicated RNA CFTR 2000 1000 Actin 0 T84, human epithelial cells CHO, hamster ovary cells MC1, CHO cells with MC1 L and P, CHO-MC1 cells containing CFTR T84 16 37 38 39 CFTR activity in MC1-CFTR clones SDS-PAGE of cell lysates immunoprecipitated with an antibody to the human CFTR and phosphorylated HT29, human epithelial cells CHO, hamster ovary cells MC1, CHO cells with MC1 P, CHO-MC1 cells containing CFTR CFTR immunolocalization Anti-CFTR MATG1031 MC1 P16 P38 P 37 P 39 Plasma membrane CFTR FACS analysis of the P clones labelled with the monoclonal antibody MATG 1031 directed to the human CFTRp 4 B A 200 basal 150 positive cells (% of basal) % positive cells 3 2 1 0 forskolin 100 50 0 37 38 39 37 38 39 A: cytofluorimetric analysis of viable cells B: same as in A but with untreated incubated with MATG1031 and with FITC- (basal) and clone treated (forskolin) cells conjugated secondary antibody Functional analysis of CFTR protein 36Cl- efflux from cells stimulated with CTP.cAMP P39 P38 P37 Functional analysis of CFTR protein A B P38 MC1 P39 MC1 8 exp 10 exp C P38 +glib O 8 exp D P39 +glib 10 exp Analysis of the therapeutic effects of the minichromosome require its transfer into appropriate models Epithelial CF MC1-CFTR corrected The ideal host of MC1-CFTR should •recapitulate CF defects •enable the expression of a functionale CFTR •acquire the minichromosome by….. Cytogenetic analysis and functional analysis of candidate CF cells CFBE CFT1 N chr.7 polarized epithelia CFBE 7 + CFT1 3/4 +/- CFPAC 3 + IB3 2/3 - FRT nd + Microcells fusion Cells IB3 DF508/W1282X N clones 15 Donor P37 Recipient IB3 Positive to neoPCR Positive to DF PCR Positive to corresponding WT PCR IB3/8 IB3/11 IB3/8 IB3/11+/-* IB3/8 IB3/11 * Mixed clone, in fact repetition of DF-PCR after 2-3 passages was negative To control CFTR activity we produced stable transfected clone with pCMV-CFTR cl2, cl4, cl5 PCR analysis of IB3 clones neo PCR to confirm the presence of the marker CFTR-DF508 and the corresponding wt to identify the recipient CFTR-DF508 neo 1 neg 1 2 4 5 8 11 13 14 4 5 11 IB3 P37 neg 15 IB3 P37 PCR neo sui cloni IB3/P37 CFTR-Wt Expected results of the controls: P37 IB3 Neo PCR pos neg CFTR-DF508 CFTR-Wt 8 neg pos pos pos 1 4 5 8 11 IB3 P37 Rotterdam 05 WP1: Evaluation of the therapeutic effects of CFTR-MC1 in CF cultured cells FISH analysis of the IB3 clones Probes Clones Chrom1 Pericentromeric Sat2 Chrom1 Centromeric pAL1/D1Z5 CHO Human IB3/11 pos pos Pos +/- IB3/8 pos pos Neg Pos Rotterdam 05 WP1: Evaluation of the therapeutic effects of CFTR-MC1 in CF cultured cells FISH analysis of IB3-11 points to human chromosome 1 points to MC1-CFTR IB3 centromeric probe IB3-11 IB3-8 Centromeric probe IB3 IB3-11 IB3-11 IB3-11 IB3-11 CHO probe Pericentromeric probe FISH analysis of IB3-8 Pericentromeric DNA Tel Sat2 two blocks of alphoid DNA D1Z5 D1Z7 Tel Sat2/D1Z5 IB3-8 Centromeric probe (pAL1) Pericentromeric probe (Sat2) Points to MC1-CFTR IB3-8 Rotterdam 05 WP1: Evaluation of the therapeutic effects of CFTR-MC1 in CF cultured cells FISH analysis of IB3-8 points to human chromosome 1 points to MC1-CFTR Pericentromeric sat2 probe Conclusion cl8 rescued from IB3/P37 microcell-fusion experiment is IB3/MC1-CFTR FISH probes Clone cen and pericen CHO Human identity IB3/8 Pos Neg Pos IB3/MC1-CFTRP37 IB3/11 Pos Pos +/- CHO/MC1-CFTRP37 To be analyzed the protein the functional activity Progetto FFC #11/2004 Valutazione della patogenicità di ceppi ambientali e clinici di Burkholderia cepacia complex da soli ed in presenza di Pseudomonas aeruginosa A. Bevivino, F. Ascenzioni, A. Bragonzi Durata 1 anno. Finanziamento €30.000 Distribuzione delle specie Ambiente naturale IIIB B. cepacia gnv I B. multivorans IIIC Ambiente clinico: espettorato pazienti CF B. cenocepacia B. stabilis B. vietnamiensis IIIA B. dolosa B. ambifaria IIIB IIID B. anthina B. pyrrocinia Esistono differenze nel grado di patogenicità tra ceppi ambientali e clinici del B. cepacia complex? Cosa accade in presenza di P. aeruginosa? Scopo del progetto Valutazione della patogenicità di isolati ambientali e clinici appartenenti alle diverse linee filogenetiche di B. cenocepacia, mediante (i) analisi della capacità di adesione e invasione dell’epitelio cellulare respiratorio CF e non-CF (ii) analisi della capacità di colonizzazione degli epiteli respiratori murini in un modello di infezione cronica Valutazione dell’influenza di P. aeruginosa, il principale patogeno per i pazienti CF, sulla capacità di invasione ed infezione dei ceppi presi in esame Disegno sperimentale 1. Allestimento di un pannello di ceppi ambientali e clinici di B. cenocepacia 2. Screening dei ceppi mediante saggi di infezione in vitro, utilizzando colture di cellule epiteliali CF e non CF 3. Screening dei ceppi mediante saggi di infezione in vivo, utilizzando il modello murino di infezione cronica polmonare 4. Analisi della capacità di invasione ed infezione in vitro ed in vivo dei ceppi in presenza di P. aeruginosa Università di Roma “La Sapienza” Fiorentina Ascenzioni Institute for Experimental Treatment of Cystic Fibrosis, Milano Massimo Conese Daniela Carpani Sante di Gioia Salvatore Carrabino Cristina Auriche Elisabetta Testa Lucia Rocchi Piera Fradani Laura Fico Livia Civitelli, Emanuele Fanella, Laboratorio di Genetica Molecolare, Enea di Domenico, Gaslini Olga Zegarra-Moran Nicoletta Pedemonte Emanuela Caci Dr.ssa A. Bevivino L. Pirone, dottoranda Dr. S. Tabacchioni, Dr. C. Dalmastri, Dr. L. Chiarini