U.O. di Nefrologia, Dialisi ed Ipertensione Policlinico S.Orsola-Malpighi Azienda Ospedaliero-Universitaria Bologna La fisiopatologia del coinvolgimento renale nello scompenso cardiaco refrattario Antonio Santoro Sintesi clinica donna, 75 anni scompenso cardiaco destro refrattario associato a valvulopatia mitro-aortica reumatica tricuspidalizzata insufficienza renale cronica stadio III (sCr 1.3-1.5 mg/dl, CKD EPI 40 ml/min) Anamnesi cardiologica • 1986 fibrillazione atriale permanente • 1991 intervento di sostituzione valvolare mitralica ed aortica con protesi meccanica e anuloplastica della tricuspide • 2003 impianto di protesi meccanica tricuspidale per insufficienza grave • 2008 impianto di PM monocamerale per FA bloccata con pause patologiche (BAV 3° grado); classe NYHA I-II • 2008-2009 frequenti ricoveri in Cardiologia per scompenso cardio-circolatorio acuto con buona risposta alla terapia diuretica massimale • Gennaio 2010 nuovo ricovero per scompenso cardio-circolatorio grave prevalentemente destro • Aprile 2010 ricovero per recidiva di scompenso cardiocircolatorio destro; classe NYHA III-IV; epatomegalia da stasi, ascite, splenomegalia e pancitopenia (da sequestro splenico) Dati ecocardiografici Data 2001 2003 2008 2009 2010 FE (%) 55 56 52 40-45 Volume TS VS (ml) 51 39 56 82 AD Dilatazione +++ Dilatazione ++ Dilatazione ++ Dilatazione +++ AS Dilatazione +++ Dilatazione +++ Dilatazione ++ Dilatazione +++ VD Dilatazione + VS Normale Dilatazione ++ Ipertrofico, non dilatato Dilatazione + Ipertrofia Ipocinesia diffusa Dimensioni e funzione sistolica normali Dilatazione +++ Ipocinesia diffusa Dilatazione ++ Ipocinesia diffusa Note Post-protesi aortica e mitralica; anuloplastica tricuspidalica Post-protesi tricuspidalica CNG indenne da lesioni significative Post-PM monocamerale Terapia cardiologica 1986 amiodarone -> digitale e antiaggregante 1991 idroclorotiazide + amiloride , digitale, TAO 2003 furosemide, canrenoato di potassio, digitale, TAO (no beta-bloccante per bradicardia) 2008 furosemide, losartan, digitale, TAO 01-04/2010 furosemide, spironolattone, losartan, digitale, TAO (tentativo infruttuoso introduzione beta bloccante) 05/2010 furosemide, spironolattone, metolazone,losartan digitale, TAO Durante il ricovero • Furosemide in infusione continua e.v. (250 mg/24 ore) • Diuresi 1005 ml/die • sCr 2.8-3.5 mg/dl,BUN 150 mg/dl,Na134 mEq/l,K 5.6 mEq/l Terapia cardiologica 1986 amiodarone-> digitale e antiaggregante 1991 idroclorotiazide + amiloride, digitale, TAO 2003 furosemide, canrenoato di potassio, digitale, TAO (no beta-bloccante per bradicardia) 2008 furosemide, ace-inibitore, digitale, TAO 01-04/2010 furosemide, spironolattone, sartano, digitale, TAO (tentativo infruttuoso introduzione beta bloccante) 05/2010 furosemide, metolazone, digitale, TAO; sospeso sartano per ipotensione, sospeso sprironolattone per iperpotassiemia Sintesi clinica • Nel corso del ricovero la paziente perde 2 Kg di peso corporeo e viene dimessa con terapia a base di furosemide per os ( 250 mg due volte al giorno, metolazone, antialdosteronico, sartano, TAO, atorvastatina ). • Dopo 7 giorni la paziente si reca in PS per dispnea ingravescente e stato confusionale All’ingresso in ospedale • La paziente è dispnoica , oligurica , ha un incremento del peso corporeo di 4 Kg, edemi colonnari agli arti inferiori, polmone congesto, PA 104/70 mmHg, frequenza cardiaca 58/min • Na plasmatico 129 mEq/l, sCreat 2,5 mg/dl, azotemia 169mg/dl, S02 87, pO2 75, CO2 42, HCO3 18 mEq/l. Despite the use of diuretics, a significant percentage of patients admitted for acute decompensated CHF are discharged with a little or no weight loss and persistent symptomatology1 and in 90% of patients, 20% gain weight on discharge2, 44% are readmitted within 6 months3 1 ADHERE® Registry. 3rd Quarter. 2003 National Benchmark Report. http://www.adhereregistry.com/national_BMR/index.html 2 Adams et al. Am Heart J. 2005;149:209-216 3 Costanzo MR, J ACC 2007 Kidney Function in CHF • 70% of patients experience some increase in Cr during hospitalization for CHF • Worsening of kidney function usually occurs during the first 2-3 days after admission • It is as common in diastolic as it is in systolic CHF Predictors of Mortality in Hospitalized HF Patients EFFECT Study 30-Day Mortality Serum concentration OR (95% CI) 1-Year Mortality P Value P OR (95% CI) Value Hemoglobin <10.0 g/dL 1.73 (1.25-2.36) <.001 2.07 (1.65-2.60) <.001 Sodium <136 mEq/L 1.69 (1.30-2.20) <.001 1.61 (1.34-1.94) <.001 Potassium <3.5 mEq/L 0.66 (0.38-1.08) 0.68 (0.49-0.93) Creatinine >2 mg/dL (>177 µmol/L) 2.47 (1.84-3.29) <.001 2.90 (2.33-3.63) <.001 Urea nitrogen, mg/dL (per 10-unit increase) 1.32 (1.26-1.39) <.001 1.37 (1.30-1.44) <.001 0 1 2 3 4 n=2624. Lee et al. JAMA. 2003;290:2581-2587. .12 0 1 2 3 4 .02 ADHF with Renal Dysfunction The Acute DecompensatedHeart Failure National Registry (ADHERE) 2001-2005:175.000 hospital admissions;280 participating hospitals Heywood JT et al. J Card Fail 2007 Aug;13(6):422:30 Sottogruppo (972 pz) del PRIME II LEVF NYHA How Can the Heart Negatively Affect the Kidney Basic Concepts to Understand Kidney Function in CHF 1. Effective blood volume 2. The Starling curve 3. The relationship between SVR and Stroke Volume 4. Neuro-hormones (RAAS, SNS, Vasopressin) The Basis for the Concept of Effective Blood Volume • Normally: – Volume expansion increases BP and urine Na+ excretion (2° to: ↓ SNS, ↓ AII, ↓ Aldo and ↑ ANP). – Volume contraction decreases BP and urine Na+ (2° to: ↑ SNS, ↑ AII, ↑ Aldo and ↓ ANP). • In congestive heart failure (CHF) or hepatic cirrhosis – ECF and urine Na+ excretion become uncoupled. Effective Circulating Blood Volume (ECV) • Is the volume of arterial blood (vascular extracellular fluid) that effectively perfuses vital organs • It is also defined as the circulating arterial volume perceived by baroreceptors in the arteries and kidney • ECV is a dynamic quantity and not a measurable, distinct compartment The Starling Curve The Relationship Between SVR and Stroke Volume The low-flow-state Hypothesis Reduced Cardiac Output RBF, GFR FF Net proximal absorption Distal sodium delivery Activation of JGA baroreceptors Renin & aldosterone Pathophysiology of acute decompensated heart failure Low-output cardiac failure High output cardiac failure ↓ Cardiac output Systemic arterial vasodilation Arterial underfilling ↑ Nonosmotic AVPrelease ↑ Sympathetic nervous system ↑ Renin-angiotensin -aldosterone system Diminished renal hemodynamics and renal sodium and water excretion Mechanisms of Cardio-renal involvement Neurohumoral-hormonal imbalance Hemodynamic-impaired renal perfusion Metabolic-hypoxic inflammatory nephropathy renal injury + sympathetic activity vasoconstriction sodium retention Pazienti in end stage renal failure Normotesi Ipertesi Controlli n = 38 n = 97 n = 30 MBP clinostatismo, mmHg 96±2 123±3** 87±2 FC, batt/min 73±6 79±5* 63±3 HcT, % 31±2 31±3 45±3 Sodio plasmatico, mEq/L 139±4 140±3 140±1 PRA, ng/ml/h 1.03±0.4 2.08±0.5* 0.5±0.2 NE, ng/L 198±24 285±30* 146±32 28±3 49±5* 21±7 3650±322 4060±347* 3013±293 50±2 56±1** 57±1 23.01±2.3 25.7±3.41** 24±1.57 E, ng/L Volume, plasmatico ml NaE, mEq/kg/LBM ECV, % Santoro A.Zuccalà A. et al. Nephron 1985 * = p <0.05; ** = p< 0.01 Heart failure Sympathetic nervous system Negative cardiac effects a) 1 Receptorial Down Regulation b) Alteration of the transduction signs (1/2) c) Myocytic toxicity (necrosis/fibrosis) d) Increase of the arhytmic potential e) Deterioration of the systolic function f) Deterioration of the dyastolic function Heart failure Sympathetic nervous system Negative renal effects a) Renal vasoconstriction b) Activation of renal sympathetic nerves c) Release of cathecholamines hormones d) Renal vascular resistance increase e) Increase in Na absorption f) Activation of the RAA system g) Renal vascular resistence increase h) Decreased response to the natriuretic factors Effects of sympathetic stimulation on renal autoregulation 3 Renal blood flow (ml/min/g) Normal 2 sympathetic Stimulation 1 0 0 20 40 60 80 100 120 Renal perfusion pressure (mmHg) (mean arterial pressure - renal venous pressure) Moore K. Clinical Science, 1997 THE CHANGE IN BLOOD PRESSURE AFTER RADIOFREQUENCY ABLATION OF RENAL SYMPATHETIC NERVES Changes in blood pressure (mmHg) Significant improvements in GFR in 24% of pts.undergoing the procedure Block JS et al. Circulation. 2010;121:2592-2600 Sympathetic Activation ROS production Proliferation Apoptosis Renin Release by Renal Sympathetic Neurons NA/NPY-Mediated Macrophage Activation By Citokine Release Renin-Angiotensin System SNS Activation by Failing Kidneys ROS Production via NADPH Oxidase NF-KB Mediated Inflammation Heart failure Angiotensin II Central and Vascular Peripheral Smooth Muscle Nervous System Arteriolar Constrinction Adrenal Cortex Direct Effects On Kidneys (Tubules) Facilitation of Sympatetic Activity Aldosterone Secretion (Arterioles) Filtration Fraction Na Reabsorption Brain GFR ADH Secretion Thirst H2O H2O Reabsorption Ingestion Angiotensin II effect: Reduced Filtration Surface Area Deleterious Effects of Aldosterone Renin-Angiotensin Activation Potassium Aldosterone K+ loss Na+ retention Mg++ loss PAI-1 Proinflammatory effects of COX-2 and osteopontin Norepinephrine release Endothelial dysfunction Vascular compliance Stroke Renal Failure Coronary Artery Disease Myocardial Infarction Progression of renal disease, heart failure, and endothelial dysfunction Epstein M. Nephrol Dial Transplant. 2003; 18:1984 Vasopressin stimulation of V2 and V1a receptors can contribute to events that worsen cardiac function Cardiac failure ↑ Nonosmotic vasopressin release V2 receptor stimulation Water retention V1a receptor stimulation ↑ Protein synthesis of cardiac myocytes Coronary constriction Systemic arteriolar vasoconstriction Myocardial ischemia Venoconstriction ↑ Cardiac afterload ↑Wall stress Left ventricular dilatation and hypertrophy ↑ Cardiac preload ANGIOTENSIN II HYPEROSMOLARITY ACTIVITY of ATRIAL RECEPTORS Hypovolemia RECEPTORS V1 Aortic smooth muscle cells Mesangial cells Adrenal glomerulosa cells Synaptosomal membranes from hyppocampus Liver membranes HYPOPHYSIS AVP RECEPTORS V2 Collecting duct ADENYLATE CYCLASE ACTIVATION PHOSPHOLIPASE C ACTIVATION VASOCONSTRICTION ANTIDIURETIC ACTION Prevalence of Hyponatremia in HF Patients 28% 30 25 20 15 10 Percent 21% 5 0 N=254 N=319 5% N=58,919 ACTIV [Na+] <136 mEq/L ADHF Gheorghiade 2003 [Na+] <136 mEq/L ADHF ADHERE [Na+] <130 mEq/L Stable HF ADHF=acute decompensated heart failure. Gheorghiade et al. JAMA. 2004;291:1963-1971; Gheorghiade et al. Circulation. 2003;107:2690-2696; ADHERE Registry. 3rd Quarter 2003 National Benchmark Report. Neurohormones and CV Endpoints in Post-MI Dysfunction CV mortality or severe HF or recurrent MI Renin Norepinephrine SAVE Trial P * Value RR (95% CI) <.001 2.0 (1.4-2.7) .004 1.6 (1.2-2.3) ANP <.001 1.9 (1.3-2.7) AVP <.001 1.9 (1.3-2.5) Epinephrine .077† 1.6 (1.0-2.6) Aldosterone <.001 1.9 (1.4-2.6) Dopamine NS 1.0 (0.7-1.5) 0 1 2 3 N=534. *P values were calculated on the basis of COX proportional hazard analysis. †Denotes activation of neurohormone is borderline significant (.05<P<.1). ANP=atrial natriuretic peptide; AVP=arginine vasopressin. Rouleau et al. J Am Coll Cardiol. 1994;24:583-591. ↑ Atrial Contractility - + ↑ Ventricular Compliance Right Ventricular Preload + - + - ↑ Venous Pressure Venous Compliance ↑ Heart Rate + ↑ Inflow Resistance Venous Volume • Venous Return • Total Blood Volume • Respiration • Muscle Contraction • Gravity Factors determining right ventricular preload. A “+” sign indicates that an increase in this particular variable increases right ventricular end-diastolic volume, and therefore preload, while the “-” indicates that the variable decreases preload. 147 NYHA class IV pts; congestion score to evaluate freedom from congestion at 4-6 weeks posthospitalization: - Orthopnea, - JVD, - 2 lbs ( 1 Kg) weight gain; - diuretic dose, - edema 87% 67% 41% Lucas C et al. Am Heart J 2000 CVP CI “…….common cardiovascular measures of disease severity (including systolic blood pressure, serum sodium, plasma B-type natriuretic peptide, PCWP, systolic pulmonary arterial pressure, and dosage of loop diuretics) were similar between those with versus without WRF……” SAP PCWP IMPORTANCE OF VENOUS CONGESTION FOR WORSENING RENAL FUNCTION IN ADHF (Mullens, 2009) ROC CURVES FOR CVP AND CI (ADMISSION) FOR DEVELOPMENT OF WORSENING RENAL FAILURE p< 0.0001 p 0.6 Increased Central Venous Pressure Is Associated With Impaired Renal Function and Mortality in a Broad Spectrum of Patients With Cardiovascular Disease CI>3.2 l/min/m2 CI<2.5-3.2 l/min/m2 CI<2.5 l/min/m2 Damman K et al. JACC 2009 Role of venous congestion on Kidney Function Effect on increasing central venous pressure on GFR in dogs with constant BP Raised Venous Pressure: A direct cause of renal sodium retention GFR (ml/min) 1.4 p<.05 1.1 p<.05 0.8 High CVP significantly impairs GFR 0.5 0 6.25 12 18.75 25 0 Central Venous Pressure mmHg Firth et al Lancet 5/8/7/88 SNGFR = kS x (ΔP – Δp) = KfPUF ΔP = PGC – PT = (50 – 14 mmHg) Afferent and efferent pressures at a glomerular capillary Normal Venous congestion afferent efferent afferent efferent FORCES,mmHg Favoring filtration PGC Opposing filtration PBC pGC Net filtration P 60 58 55 63 15 21 24 15 33 10 15 21 19 15 33 15 How Can the Kidney Negatively Affect the Heart Electrolytes and Acid Base Disturbances in CHF • • • • • • Hyponatremia (5-28%) Hypokalemia or hyperkalemia Hypomagnesemia (7-37%) Hypocalcemia Hypophosphatemia Metabolic alkalosis Inappropriately Elevated AVP Levels in Hyponatremia Patients With HF 19.2 14.0 Plasma AVP (pg/mL) 13.0 12.0 4.0 3.0 Normal Range 15.0 2.0 1.0 0.5 0.0 250 260 270 280 290 300 Plasma Osmolality, mOsm/kg of Water Szatalowicz et al. N Engl J Med. 1981;305:263-266. No diuretics (n=14) Taking diuretics (n=23) Importance of Hyponatremia Most common electrolyte disorder Acute severe hyponatremia results in substantial morbidity and mortality Mortality rates are higher in hyponatremic patients with many different underlying disorders Excessively rapid correction can result in neurologic deficits and death Receptor-Mediated Effects of AVP Receptor Subtype Site of Action Vascular smooth muscle cells V1a Activation Effects Vasoconstriction Platelet aggregation Platelets Lymphocytes and monocytes Glycogenolysis Liver and adrenal cortex V1b (V3) V2 Anterior pituitary Renal collecting duct principal cells Endothelial cells ACTH and -endorphin release Free-water absorption Coagulation factor release AVP Receptor Antagonists in Clinical Trials Tolvaptan Lixivaptan SR-121463 Conivaptan V2 V2 V2 V1a/V2 Route of administration Oral Oral Oral/IV IV Urine volume Urine osmolality Na+ excretion/ 24 hours low dose high dose Receptor Lee et al. Am Heart J. 2003;146:9-18. Effect of Conivaptan in Hyponatremia Conivaptan 80 mg continuous infusion* (n=26) Serum Sodium (mEq/L) Conivaptan 40 mg continuous infusion* (n=29) 136 Placebo (n=29) 134 132 130 128 126 124 122 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 Measurement Time (Hours) P<.001. 33.6% of patients were hypervolemic and 66.3% of patients were euvolemic. Verbalis. Abstract presented at AHA. November 10, 2004; New Orleans, Louisiana. From: Effects of Tolvaptan, a Vasopressin Antagonist, in Patients Hospitalized With Worsening Heart Failure: A Randomized Controlled Trial JAMA. 2004;291(16):1963-1971. doi:10.1001/jama.291.16.1963 Figure Legend: P<.001 for all comparisons of tolvaptangroups vs placebo, except for 30 mg tolvaptan vs placebo, for which P = .02 for both day 1 and discharge. Error bars indicateSEM. POSTULATED MECHANISMS UNDERLYING THE RELATIONSHIP BETWEEN HF AND RENAL DYSFUNCTION. Progressive Cardiac Dysfunction ↑ Sympathetic Nervous System Activity ↑ Renin-Angiotensin-Aldosterone System Activity ↑ Afterload ↓ Contractility ↓ Cardiac Output ↑ Volume Anemia ↑ Renal Oxidative Stress Efferent Pressure ↓ Renal Blow Flow/ ↓GFR Apoptosis, Fibrosis Progressive Renal Dysfunction