PLANCK L’IMPATTO SULLA COSMOLOGIA ALESSANDRO MELCHIORRI PLANCK@ROMA1 (Analisi Dati e Implicazioni Cosmologiche) Paolo de Bernardis (Roma1) Erminia Calabrese (Roma1) (PhD) Silvia Masi (Roma1) Alessandro Melchiorri (Roma1) Luca Pagano (Roma1) (PhD) Francesco Piacentini Francesco De Bernardis (PhD) Silvia Galli (PhD) Giulia Gubitosi (PhD) Matteo Martinelli (PhD) Stefania Pandolfi (PhD) Marcella Veneziani (ass. ric). Laureandi Magistrale: Maria Archidiacono Paolo Fermani Elena Giusarma Andrea Maselli Eloisa Menegoni Marco Ruzza …in collaborazione con PLANCK@ROMA2 Grazia De Troia Marina Migliaccio Paolo Natoli Nicola Vittorio Giancarlo de Gasperis ….e altro T T 1 1 2 T T 2 (2 1)C P 1 2 Current status of CMB observations We can measure cosmological parameters with CMB ! Temperature Angular spectrum varies with Wtot , Wb , Wc, L, t, h, ns, … How to get a bound on a cosmological parameter Fiducial cosmological model: (Ωbh2 , Ωmh2 , h , ns , τ, Σmν ) DATA PARAMETER ESTIMATES Dunkley et al., 2008 Blu: Dati attuali Rosso: Planck F. De Bernardis, E. Calabrese, P. de Bernardis, S. Masi, AM 2009 Next experiment for measuring neutrino mass: KATRIN m 0.9eV m 6.6eV Current limits from laboratory: m 6.6eV Likelihood Constraints on Newton’s constant G/G0 G / G0 1.5% S. Galli, A. Melchiorri, G. Smoot, O. Zahn, arxiv:0905.1808 CMB Temperature Lensing unlensed lensed When the luminous source is the CMB, the lensing effect essentially re-maps the temperature field according to : Analysis Method We phenomenologically uncoupled weak lensing from primary anisotropies by introducing a new parameter AL that scales the lensing potential such as : • AL=0 corresponds to a theory ignoring lensing • AL=1 corresponds to the standard weak lensing scenario. AL can also be seen like a fudge parameter controlling the amount of smoothing of the peaks. In fact in this figure we can see that the curves with increasingly smoothed peak structures correspond to analysis with increasingly values of AL (0, 1, 3, 6, 9). Future constraints Planck HFI 143 GHz Channel: • fsky =1 • θ=7’ • NoiseVar=3,4·10-4 μK2 • fiducial model with ACBAR+WMAP3 best fit parameters Letting the lensing parameter vary, the obtained constraints are: E. Calabrese, A. Slosar, A. Melchiorri, G. Smoot, O. Zahn, PRD, 2008 Calabrese, Martinelli, AM, Pagano, 2009 CMB POLARIZATION Fluctuation and GW generator Fluctuation amplifier But GW dissipator… On this map we see 100000 horizons at z=1000…. d hor ct at t 2 / 3 T T 1 2 1 T T 2 ( 2 1 ) C P 1 2 SCALAR + TENSOR = We measure the sum of the two spectra. If GW are present this lowers the amplitude of the peak. Degeneracy with other Parameters. AT r AS @ k 0.017Mpc1k CMB Polarization • Polarization is described by Stokes-Q and -U • These are coordinate dependent • The two dimensional field is described by a gradient of a scalar (E) or curl of a pseudo-scale (B). ˆ Temperature map : T(n ) Polarization map : P(nˆ ) E B Grad (or E) modes Curl (or B) modes (density fluctuations have no handness, so no contribution to B-modes). B-Modes=Gravity Waves !! Several inflationary models predict a sizable GW background (r>0.01) if n<1. Pagano, Cooray, Melchiorri And Kamionkowsky, JCAP 08.