VCSEL Vertical Cavity Surface-Emitting Laser Docente: Mauro Mosca (www.dieet.unipa.it/tfl) A.A. 2015-16 Ricevimento: alla fine della lezione o per appuntamento Università di Palermo – Scuola Politecnica - DEIM Edge-emitting e surface-emitting laser - Advantage over edge emitting LDs: micrometric size, that allows larger devices density on substrates - No additional technology steps for the realization of good reflective facets (for edge emitting LDs: chemical assisted ion beam etching, cleaving focused ion beam polishing or wet chemical polishing) - Circularly shaped, low numerical aperture beam (ideal sources for fiber coupling and free space optics), single longitudinal mode operation (due to a cavity length of the order of one λ), low power dissipation and significantly lower operating currents - Applications: local area networks, color displays, bio-sensing, printing applications (using VCSEL arrays would increase printing throughput) and optical data storage Struttura di una cavità VCSEL planare 99% epitaxially grown or dielectric l/n ltipically /2n The emission wavelength is not determined anymore by the maximum gain of the active material but rather by the geometry of the cavity. Thus, Lasing in a VCSEL critically depends on the reflectivity of both the top and VCSELs cansingle lase only if the QW emission wavelength Only a mirrors. few longitudinal modes are supported byapproximately a VCSEL cavity bottom coincides with the cavity mode Condizione di soglia (threshold) threshold material gain threshold modal gain - The lasing condition in a laser is reached when the amplitude of the optical field is maintained ’ after a round trip in the cavity - This condition is reached when the optical gain in the cavity is sufficient to compensate all the losses the field experiences in the cavity during a round trip The confinement factors (Γxy and Γz) accounts for the volume actually occupiedINTERNAL by photonsLOSSES in the cavity, that isEXTERNAL usually larger than the active LOSSES = 1 in edge-emitting laser region volume absorption scattering diffraction mirror reflectivity Gz is subject to an enhancement dependent on the position of the active region into the cavity standing wave enhancement factor Distribuzione di campo longitudinale dentro la cavità Genh = 2 EZ z 1 = 0 lact QW s 2 E0 E0 2 2 dz 2 lact dz l QW s 2 act lact Guadagno e corrente di soglia in funzione della riflettività ’ gain parameter quantum-wells number ofper quantum-wells transparency current The transparency current density is defined as the current density semiconductor material becomes “transparent”minimal (material transparency) for which becomes for any photon energy larger when the the ratematerial of absorption just transparent equals the rate of stimulated emission. than or equal photon to Eg,qwproduces exactly one photon in the output One incident The gain upon transparency is g = 0 (Jth = Jtr , for NQW = 1) Guadagno e corrente di soglia in funzione della riflettività (InGaAs QW) Guadagno e corrente di soglia in funzione della riflettività (InGaAs QW) very high R with a single QW we have the lowest Jth because it requires the smallest current density to be pumped to the transparency lower R gth is higher and it is still higher for only one QW Jth will be lower with 3 QWs than one g th 1 ln R a large number of QWs decreases gth, since lact increases Guadagno e corrente di soglia in funzione della riflettività (GaN QW) Guadagno e corrente di soglia in funzione della riflettività (GaN QW) DBR (Distributed Bragg Reflectors) normal incidence + + a mirror with a wide stop-band ensures a higher tolerance with respect to emission wavelength the two contributions variations sum in phase at the design wavelength λ0 DBR: lunghezza efficace della cavità The penetration of the optical mode into the DBR stack has to be taken into account, as it defines the effective cavity length and, subsequently, the wavelength of the lasing mode The penetration depth leff of the DBR is defined as the depth into the mirror, at which the optical field intensity is equal to 1/e of its value at the input of the mirror DBR: effetti delle perdite per assorbimento low Dn and high aDBR and l0 for long wavelength VCSEL reflectivity of an m-pair DBR absorption coefficient of the DBR high Dn helps to reduce the absorption losses of the mirrors Effetto interfacce graduali - Interfaces not abrupt! - The material composition is linearly graded over a distance of some tens of nm in orded to reduce the electrical resistance across the interface Resistenza degli specchi heating Resistenza degli specchi doping p-doped barrier for holes (high R) fabrication technology simpler Specchi graduali valence band Efficienza differenziale 3. MECHANISMS THAT REDUCE hd : 1. fattore di normalizzazione 2. mirror losses total losses Efficienza differenziale depends on cavity design depends on mirror design Wall-plug efficiency top mirror: 19 periods thermal roll-over Wall-plug efficiency Inoltre… se la riflettività diminuisce troppo, aumenta la corrente di soglia!!! W Confinamento laterale Injections schemes for GaAs-based VCSELs: - conductive DBRs with and without current confinement layers; - annular intra-cavity contacts in combination with one or two current confinement layers sacrificial layer Ossidazione laterale dell’AlAs . Ossidazione laterale dell’AlAs With GaAs (instead of AlAs): DG > 0!! W ? T Energia libera di Gibbs a 698 K < 0, vuol dire che la reazione è spontanea nella direzione indicata Ossidazione laterale dell’AlAs processo lineare… Controlled Evaporated and Mixing system dalla radice ma diventa dipendente quadrata i gas reagenti penetrano difficilmente attraverso l’ossido (per alti spessori dello stesso ossido) Ossidazione laterale dell’AlGaAs Fabbricazione di un VCSEL con ossidazione laterale Ossidazione laterale in VCSEL a nitruri Ossidazione laterale in VCSEL a nitruri Ossidazione laterale in VCSEL a nitruri