Search for Dark Matter with GLAST Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 16 - August 2004 ICHEP'04 32nd International Conference on High Energy Physics August 16 -Aldo22, 2004 Beijing, Morselli, INFN, Sezione di Roma 2China & Università di Roma Tor Vergata, [email protected] 1 What is the Universe made of ? Bright stars: 0.5% Baryons (total): 4.4% ± 0.4% Matter: 27% ± 4% Cold Dark Matter: 22.6% ± 4% Neutrinos: < 0.15% Dark Energy: 73% ± 6% h=0.71 + 0.04 - 0.03 Baryons Cold Dark Matter CDM astro-ph 0007333 WMAP+SN+HST astro-ph/0302209 Dark Energy Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 2 Neutralino WIMPs Assume c present in the galactic halo • c is its own antiparticle => can annihilate in galactic halo producing gamma-rays, antiprotons, positrons…. • Antimatter not produced in large quantities through standard processes (secondary production through p + p --> p + X) • So, any extra contribution from exotic sources (c c annihilation) is an interesting signature • ie: c c --> p + X • Produced from (e. g.) c c --> q / g / gauge boson / Higgs boson and subsequent decay and/ or hadronisation. Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 3 Propagation Equation for Cosmic Rays in the Milky Way convection velocity field that corresponds to galactic wind and it has a cylindrical symmetry, as the geometry of the galaxy. It’s z-component is the only one different from zero and increases linearly with the distance from the galactic plane diffusion coefficient in the impulse space, quasi-linear MHD: loss term: fragmentation diffusion coefficient is function of rigidity loss term: radioactive decay primary spectra injection index implemented in Galprop ( Strong & Moskalenko, available on the Web) Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 4 Propagation parameters uncertainties • • • Geometrical and dynamical parameters of the propagation Pbar and Isotopes Production Cross Section ( ~ 20 % ) Gas distribution in the galaxy • Secondary to primary CR ratios are the most sensitive quantities to parameters changing; B/C are measured with the highest statistic • Good fits of B/C experimental data constrain possible variations of the unknown parameters; + consistency wit the other prim/sec CR ratios • Standard statistical test: Heliospheric modulation z (depends on rigidity) Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, (Perko,1997) [email protected] 5 Enveloping curves of all the good fits of the experimental B/C data Dashed line: Best fit DR: diffusion + reacceleration Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 6 B/C ratio Enveloping curves of all the good fits of the experimental B/C data DC Dashed line: Best fit DC: diffusion+convection In DC model problem with the ACE data at low energy DR Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 7 Allowed values for the propagation parameters for DR propagation halo size diffusion constant prim spec injection diff index index Alfven velocity Allowed values for the propagation parameters for DC propagation halo size upper diff constant diff index Vc gradient Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, injection indexes [email protected] 8 Upper and lower bounds of positron spectra due to the uncertainties of propagation parameters in the case of DR model 30% under 1GeV 25% around 1GeV around 15% at 10GeV Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 9 Upper and lower bounds of antiproton spectra due to the uncertainties of propagation parameters in the case of DR model from 10% - 13% in all the energy range Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 10 Prim/Sec consistency check for DR model Dashed: (Sc+Ti+V)/Fe spectra that corresponds to the best fit of B/C; enveloping curves of all fits that are produced with good parameters set Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 11 Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino. Particles and photons are sensitive to different neutralinos. Gaugino-like particles are more likely to produce an observable flux of antiprotons whereas Higgsino-like annihilations are more likely to produce an observable gamma-ray signature Background from normal secondary production Signal from 964 GeV neutralino annihilations (P.Ullio, astro-ph 9904086) Caprice94 data from ApJ, 487, 415, 1997 AMS98 Mass91 data from XXVI ICRC, OG.1.1.21 , 1999 Caprice98 data from ApJ, 561, (2001), 787. astro-ph/0103513 ∆ BESS data from BESS 00 Phys.Rev.Lett, 2000, 84, 1078 AMS: Phys Rep 366 6 2002 331 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 12 MASS Matter Antimatter Space Spectrometer ( 89&91 ) Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 13 The CAPRICE 94 flight Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 14 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, MASS 89 flight [email protected] 15 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, MASS 89 flight [email protected] 16 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, MASS 89 [email protected] 17 The PAMELA Apparatus ToF TRD Anticoincidence shield Shower tail catcher scintillator Magnetic spectrometer Calorimeter Neutron Detector Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 18 PAMELA Status Detectors are ready and compling with the design performances Detectors tested at PS / SPS Test facilities as Prototypes and in FM configuration SPS, July 2000 FM SPS, September 2003 Magnet/Tracker, Calorimeter SPS, July 2002 Integration of PAMELA FM underway at INFN – Roma2 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 19 The Satellite: Resurs DK1 - Soyuz-TM Launcher from Baikonur - Launch in 2005 - Lifetime >3 years - PAMELA mounted inside a Pressurized Container, attached to Satellite - Earth-ObservationSatellite Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 20 PAMELA Capabilities PAMELA will explore: Antiproton flux 80 MeV - 190 GeV Positron flux 50 MeV – 270 GeV Electron flux up to 400 GeV Proton flux up to 700 GeV Electron/positron flux up to 2 TeV Light nuclei (up to Z=6) up to 200 GeV/n Antinuclei search (sensitivity of 10-7 in He/He) more on PAMELA: http://wizard.roma2.infn.it/ Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 21 The PAMELA Launch is on February 2005 from Baikonur Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 22 antiproton Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, PAMELA expectations for three years for antiproton spectra for DR model [email protected] 23 PAMELA expectations for three years for positron spectra for DC model Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 24 PAMELA: Cosmic-Ray Antiparticle Measurements: Antiprotons Secondary production A.M.and V.Z. with Galprop, DC, Phi=550 Mv Secondary production A.M.and V.Z. with Galprop, DR, Phi=550 Mv Primary production from cc annihilation (m(c) ~ 1 TeV) Ullio 99 Secondary production Simon et al. Aldoand Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] updated from P. Picozza A. Morselli, astro-ph/0211286 25 Signal rate from Supersymmetry gamma-ray flux from neutralino annihilation governed by supersymmetric parameters J(j): governed by halo distribution Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 26 EGRET, E > 1GeV Mayer-Hasselwander et al, 1998 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 27 Poin source location for GLAST~ 5 arcmin 1 pixel ~ 5 arcmin 0 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma0Tor Vergata, [email protected] 28 2 x 2 field IBIS/ISGRI 20–40 keV 20 x 20 field EGRET, E > 1GeV Poin source location for GLAST~ 5 arcmin 1 pixel ~ 5 arcmin 20Torx Vergata, 20 field IBIS/ISGRI 20–40 keV Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma [email protected] 29 EGRET data & Susy models EGRET data Nb=1.82 1021 Nc=8. 51 104 Typical Nc values: NFW: Nc = 104 Moore: Nc = 9 106 Isotermal: Nc = 3 101 Annihilation channel W+WMc =80.3 GeV background model(Galprop) WIMP annihilation (DarkSusy) Total Contribution ~2 degrees around the galactic center Aldo Morselli, Sezione F. di Roma 2 & Università di Roma Tor Vergata, [email protected] A.Morselli, A. Lionetto, A. INFN, Cesarini, Fucito, P. Ullio, astro-ph/0211327 30 GLAST: see Monica Pepe talk Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 31 GLAST Expectation & Susy models Nb=1.82 1021 Nc=8.51 104 Typical Nc values: NFW: Nc = 104 Moore: Nc = 9 106 Isotermal: Nc = 3 101 ~2 degrees around the galactic center, 2 years data Annihilation channel W+WMc =80 GeV (Galprop) (one example from DarkSusy) A.Cesarini, F.Fucito, A.Lionetto, P.Ullio, Astroparticle Physics, 2004 [astro-ph/0305075] astro-ph/0305075 Aldo Morselli,A.Morselli, INFN, Sezione di Roma 2 & Università di Roma21, Tor267-285, Vergata, June [email protected] 32 Estimated reaches with GLAST Minimal Supersymmetric Standard Model with: A0 = 0, > 0, mt =174 GeV region where 0.13 < CDM h <1 region where 0.09 < CDM h < 0.13 GLAST sensitivity (5 s) for a neutralino density Nc of 104 in a D=10-5 sr region around the galactic center if GLAST do not see Supersymmetry this region is excluded for a NFW halo Typical Nc values for NFW: Nc = 104 Moore: Nc = 9 106 Isotermal: Nc = 3 101 D=10-5 sr : mh0 <114.3 GeV GeV A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle 21, 267-285, June 2004 [astro-ph/0305075] 33 Aldo Morselli, INFN, Sezione di Roma 2 & Università di RomaPhysics Tor Vergata, [email protected] Estimated reaches with GLAST Minimal Supersymmetric Standard Model with: A0 = 0, > 0, mt =174 GeV region where 0.13 < CDM h <1 region where 0.09 < CDM h < 0.13 GLAST sensitivity (5 s) for a neutralino density Nc of 104 in a D=10-5 sr region around the galactic center if GLAST do not see Supersymmetry this region is excluded for a NFW halo Typical Nc values for NFW: Nc = 104 Moore: Nc = 9 106 Isotermal: Nc = 3 101 mh0 <114.3 GeV GeV D=10-5 sr : A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle 21, 267-285, June 2004 [astro-ph/0305075] 34 Aldo Morselli, INFN, Sezione di Roma 2 & Università di RomaPhysics Tor Vergata, [email protected] Supersymmetry breaking Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 35 Mixed Anomaly mediated -gauge mediated model: Tesi Alessandro Cesarini: http://people.roma2.infn.it/~glast/Glast_thesis.html Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 36 Mixed Anomaly mediated -gauge mediated model: Test with GLAST AMSB-GMSB model six free parameters region where 0.1 < CDM h < 0.3 Tachyons Acc.Bounds GLAST sensitivity for a neutralino density Nc of 104 in a D=10-5 sr region around the galactic center Typical Nc values: NFW: Nc = 104 Moore: Nc = 9 106 Isotermal: Nc = 3 101 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, No EWSB [email protected] 37 Cangaroo Whipple Hess HESS Coll. astro-ph/0408145 Cangaroo consistent with ~ 2 TeV Mc Hess > 12 TeV Mc Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 38 Conclusions • GLAST will explore a good portion of the supersymmetric parameter space … and this is only an additional item for GLAST ! Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 39 2nd Conclusions GLAST will be an important step in gamma ray astronomy ( ~10 000 sources compared to ~ 200 of EGRET) A partnership between High Energy Physics and g Astrophysics Beam test and software development well on the way Wide range of possible answers/discoveries Gold era for multiwavelenght studies Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 40 Extra slides Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 41 -2 -1 Integral flux (photons cm s ) 10 Sensitivity of g-ray detectors -7 5 sigma, 50 hours, > 10 events 10 EGRET -8 AGILE cal 10 AMS -9 Crab Nebula GLAST 10 -10 All sensitivities are at 5s. Cerenkov telescopes sensitivities (Veritas, MAGIC, Whipple, Hess, Celeste, Stacee, Hegra) are for 50 hours of observations. Large field of view detectors sensitivities (AGILE, GLAST, Milagro, ARGO, AMS are for 1 year of observation. CELESTE, STACEE MILAGRO MAGIC 10 10 -11 ARGO Whipple -12 VERITAS 10 10 Large field of View experiments Cerenkov detectors in operation Past experiments Future experiments -13 -14 10 -1 10 0 Aldo Morselli 15/2/02 10 1 10 HEGRA 2 10 MAGIC sensitivity based on the availability of high efficiency PMT’s HESS 3 10 4 Photon Energy (GeV) Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 42 Energy versus time for X and Gamma ray detectors Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 43 GLAST Performance Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 44 EGRET Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, AMS Cal [email protected] AMS Trk 45 Electron-Proton Separation (Calorimeter) SPS Test Beam Data: p & e200 GeV/c Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 46 Differential yield for each annihilation channel total yields yields not due to p0decay WIMP mass=200GeV Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 47 Differential yield for b bar neutralino mass Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 48 effective area Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, distribution of observing time with inclination angle for the declination of the Galactic center. This is for a sky survey with +/-35 deg rocking and with the inclusion of the loss of exposure due to SAA (South Atlantic Anomaly) passages. The target direction was considered to be viewable if its zenith angle was no more than 105 deg. The fractions are for one precession period of the orbit (54.9 days). The main numbers are : Fraction of time in SAA: 0.142 Fraction of non-SAA time that source is not occulted: 0.592 Net fraction of time that source can be observed: 0.508 The figure divides this fraction into inclination angle ranges, the sum of all values is 1 [email protected] 49 Distribution of Matter in Galaxy Usual assumptions: DM= 0.3 G eV/cm3, =10-3 , Truncated Maxwellian velocit y distribution, vrms =270 km/s From rotation curves c (r ) (r ) (r / a) g (1 (r / a) ) ( g ) / a =core radius of halo vS un =220 km /s Isothermal profile ? 2 2 0 Navarro-Frenk-White 1 3 1 g =0 no cusp Moore et al… 1.5 3 1.5 Kravtsov et al.(a) Kravtsov et al.(b) 2 2 0.2 0.4 Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 3 3 [email protected] g 50 J(j): Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, [email protected] 51