Università de L’AQUILA CORSO DI MICROZONAZIONE SISMICA Simulazioni numeriche per valutare l’ amplificazione locale Descrizione del fenomeno e impostazione del problema del calcolo dell’amplificazione locale. Influenza dei parametri più significativi Propagazione 1D Metodo SHAKE, definizione di moto di riferimento, effetto dei parametri. Metodo PHAKE, analisi dinamica probabilistica Tito Sanò Le analisi numeriche per la valutazione della RSL 1 Rottura della crosta terrestre e generazione delle onde sismiche Tito Sanò Le analisi numeriche per la valutazione della RSL 2 Tipiche registrazioni per un evento registrato a grande distanza Nelle analisi onde di un solo tipo Tito Sanò Le analisi numeriche per la valutazione della RSL 3 In situazioni reali il moto prima di arrivare in superficie si modifica per effetto delle discontinuità di materiale e per la geometria. Tito Sanò Le analisi numeriche per la valutazione della RSL 4 Caso di Cesi durante il terremoto dell’Umbria-Marche Terremoto dell’Umbria-Marche, sett-ott. 1997 V SOFT SOIL Recent sand-clay deposits 0 - 10 m: VS = 80 ÷ 100 m/s 10 m – valley floor: VS = 200 ÷ 400 m/s G CESI VILLA I VII MCS Minor damages Accelerometric station CESI BASSA I IX MCS Severe damages Collapses Accelerometric station ~ 60 m Bedrock VS = 1000 ÷ 2000 m/s ~ 35 m ~ 350 m Tito Sanò Le analisi numeriche per la valutazione della RSL 5 Registrazioni SSN 7.10.97 1.50 MONTE - NS NS accelerazione (g/10) 1.00 VALLE - NS 0.50 0.00 -0.50 -1.00 Registrazioni SSN 7.10.97 -1.50 0.0 1.0 2.0 3.0 4.0 5.0 6.0 1.50 te m po (s ) MONTE - EW VALLE - EW EW Le registrazioni della rete mobile del SSN della scossa del 7.10.97 Cesi Valle: linea rossa Cesi Monte : linea blu accelerazione (g/10) 1.00 0.50 0.00 -0.50 -1.00 -1.50 0.0 Tito Sanò 1.0 Le analisi numeriche per la valutazione della RSL 2.0 3.0 tempo (s) 4.0 5.0 6.0 6 Caso di Cesi durante il terremoto dell’Umbria-Marche Terremoto dell’Umbria-Marche, sett-ott. 1997 CESI - 7.10.97 SSN - Spettri di risposta d=0.05 6.0 QUADRO RIEPILOGATIVO Monte EW Valle EW Monte NS Valle NS V/M 2.75 1.98 3.82 PGA (g/10) PGV (cm/s) EW NS UP 1.17 1.87 0.68 3.80 4.82 2.25 3.25 2.58 3.32 EW IH 0.1-0.5NS (cm) UP 0.96 1.41 0.45 4.13 4.76 1.39 4.29 3.38 3.12 2.0 EW IH 0.1-2.5NS (cm) UP 2.80 3.27 1.18 8.99 10.25 3.65 3.21 3.14 3.09 1.0 Arias (cm/s) EW NS UP 5.02 8.03 2.50 72.82 81.07 27.78 14.50 10.10 11.12 4.0 PSA (g/10) MONTE VALLE 0.51 1.41 0.70 1.39 0.29 1.11 EW NS UP 5.0 3.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Periodo (s) Tito Sanò Le analisi numeriche per la valutazione della RSL 7 Misure dello scuotimento – gli spettri di risposta elastici Misure dello scuotimento – gli spettri di risposta elastici Dalle ordinate spettrali si riesce ad avere immediatamente un’idea delle caratteristiche delle strutture maggiormente sollecitate dall’evento Da Seed & Idriss, 1982 TERREMOTO DI KOBE 17 gennaIo 1995 (5:46 ora locale) Magnitudo: Ms=7.2 (stima giapponese) Ms=6.8- 7.0 (USA) Località epicentrale: isola di Awaji-Shima Profondità focale: circa 12 Km Faglia responsabile: Nojima Rokko Fault Lunghezza rottura faglia: circa 50 Km Tipo di rottura: intraplacca. Max PGA: 0.8g (Osaga Gas)/0.82g(Ceorka) Max PGV: 55 cm/s(KobeUniv.) Max PGD: circa 24 cm Area interessata ai danni: circa 20.000 Km2 Numero di abitanti interessati: circa 20.000.000 Morti: circa 5500 Feriti: più di 24.000 Senzatetto:300.000( al21/01/95) 250.000 (al 7/02/95) Abitazioni danneggiate: circa 400.000 Danni stimati: 113 miliardi di dollari Terremoto di Kobe (1997) M=7.2 5000 morti Tito Sanò Le analisi numeriche per la valutazione della RSL 12 Mappa dei danni nella città di Kobe Tito Sanò Le analisi numeriche per la valutazione della RSL 13 Tito Sanò Le analisi numeriche per la valutazione della RSL 14 Terremoto di Kobe (1997) Sezione perpendicolare alla costa Tito Sanò Le analisi numeriche per la valutazione della RSL 15 Accelerogrammi registrati a Kobe Su roccia in prossimità della faglia. Su terreno soffice a pochi km dal mare e dalla prima stazione accelerometrica. Su terreno soffice, ma più profondo, vicino al porto. Tito Sanò Le analisi numeriche per la valutazione della RSL 16 Isola del porto H=0 H=16 H=32 H=81. Tito Sanò Le analisi numeriche per la valutazione della RSL 17 Posizione degli accelerometri Tito Sanò Le analisi numeriche per la valutazione della RSL 18 q=16 q32 q81 Spettri diFoglio1 risposta 1400 1200 Z=16 m Z=32 m 1000 800 Z=81m 600 400 Z=0 m 200 0 0.01 0.1 1 10 periodo (s) Tito Sanò Le analisi numeriche per la valutazione della RSL 19 Terremoto del Messico 19-sett.-1995 M=8.1 Tito Sanò Le analisi numeriche per la valutazione della RSL 20 Città del Messico Spettri medi nelle tre zone VERO- FALSO Si •I danni recati dal terremoto diminuiscono sempre con la distanza epicentrale •Un terreno soffice amplifica sempre il moto •Il moto amplificato ha una durata maggiore •Al diminuire dello spessore dello strato cresce il contenuto delle alte frequenze •La presenza di un rilievo porta sempre un’ amplificazione •Il moto su terreno soffice presenta un contenuto energetico maggiore nei periodi più lunghi •Il moto verticale risente molto di meno della non linearità Tito Sanò Le analisi numeriche per la valutazione della RSL No x x x x x x x 23 Impostazione del problema del calcolo dell’amplificazione locale Tito Sanò Le analisi numeriche per la valutazione della RSL 24 Impostazione del problema del calcolo dell’amplificazione locale Tito Sanò Le analisi numeriche per la valutazione della RSL 25 Schemi 1D • Schema SHAKE • Caso di un’onda di frequenza w su uno strato • Effetto della non linearità e degli altri parametri • Metodo MASH, NERA, SUMDES, DESRA,…. • PSHAKE Tito Sanò Le analisi numeriche per la valutazione della RSL 26 Schema 1D (SHAKE) X2 X1,x Tito Sanò Le analisi numeriche per la valutazione della RSL 27 Trasformata di Fourier Per le funzioni periodiche di periodo T0 si può scrivere: F (t ) An cos(nw 0 t ) Bn sen(nw 0 t ) 0 (b) dove F (t ) C e n ωo = 2πf = 2π/T0 o in maniera equivalente (a) Essendo e iz cos(z ) i sen( z ) T0 / 2 C e Cn un numero complesso. (1 / T ) F ( t ) e n T / 2 inw 0 t dt 0 1 iw t dw f (t ) f (w ) e 2 Tito Sanò inw o t f (w ) Le analisi numeriche per la valutazione della RSL f (t ) e iw t dt 28 Descrizione del comportamento di un corpo deformabile mediante analisi Viene descritto, per un solido ad una sola fase, mediante 1. Le equazioni di equilibrio di un elemento di volume 2. La congruenza, cioè la condizione che gli elementi di volume non si compenetrino, né si separino. 3. Equazioni di elasticità 4. Le condizioni al contorno. 1. i 1 i 2 i 3 d 2Ui Fi x1 x 2 x 3 dt 2 i=1,2,3 è un sistema di equazioni differenziali nello spazio e nel tempo. Se si fa il calcolo della trasformata di Fourier di tutte le variabili esistenti nell’equazione la variabile tempo scompare e il secondo membro diventa: d 2U i ( t ) 2 dt 2 w U i (w ) e l’equazione diventa algebrica per quanto riguarda la variabile tempo. Caso 1D-> 2D Tito Sanò Le analisi numeriche per la valutazione della RSL 29 Caso di un solo strato ed un’onda di frequenza w Tito Sanò Le analisi numeriche per la valutazione della RSL 30 i 1 i 2 i 3 d 2Ui Fi x1 x 2 x 3 dt 2 i=2 21 0 0 x1 Tutte le grandezze dipendono solo da x1 e solo 21 Ignorando le forze di volume Fi l’equazione precedente si scrive: d 21 d d 2U 2 dx1 dx dt G E tenendo conto della relazione tra sforzi e deformazioni: dU G dx Si ottiene l’equazione finale dG (x) (x, t ) d 2 U(x, t ) ( x ) dx dt 2 dG (x) (x, w) (x) w 2 U(x, w) dx Tito Sanò Le analisi numeriche per la valutazione della RSL 31 U x iw (t ) V Ae Incidente V x iw (t ) V Be riflessa G U A e x i w x V e iwt B e In superficie: A=B i w x V e iwt =0 2 w 2 f T Raddoppio dello spostamento x iw t U 2 A cos(w ) e V Tito Sanò Le analisi numeriche per la valutazione della RSL 32 U 2 A cos(w x ) eiw t V In un terreno omogeneo e senza smorzamento si ha •Per tutte le onde il valore massimo si ottiene in superficie indipendentemente dalla frequenza e dagli altri parametri. •Gli altri massimi si ottengono a profondità differenti a seconda di ω e Vs. •Esistono delle profondità x per le quali lo spostamento è sempre nullo (nodi dell’oscillazione). Ciò dipende da ω e Vs e avviene quando ωx/Vs=(2n-1) π/2. La prima profondità, n=1, è h=Vs/(4f). Come si vede tale profondità aumenta al crescere della rigidezza del terreno, cioè di Vs, e tende all’infinito per rigidezze molto grandi. •Solo per Vs tendente all’infinito lo spostamento è costante con la profondità. •Lo spostamento totale, inteso come somma delle singole onde, ha in genere il suo valore massimo in superficie. •A qualsiasi profondità h lo spostamento totale ha sempre una onda mancante, quella con frequenza f=Vs/(4h) e quindi non può essere uguale al moto in superficie. •Per onde S (P) incidenti perpendicolarmente alla superficie in un semispazio indefinito omogeneo, l’ampiezza delle onde in superficie è il doppio di quelle incidenti. Tito Sanò Le analisi numeriche per la valutazione della RSL 33 Nel caso dello strato singolo è noto A1=A Incognite: A2, B2, B1 Esistono tre condizioni: •Sulla superficie libera 0, cioè: A2=B2 All’interfaccia: • continuità del taglio • continuità dello spostamento U Questo permette di calcolare A2=B2 e B1. Si ottiene pertanto: 2 A2 A2 2 A A1 1 w 2 2 w cos ( H ) q sen ( H ) V2 V2 f (w ) = funzione di 2 amplificazione 2 V 2 q 1 V 1 Tito Sanò Le analisi numeriche per la valutazione della RSL 34 2 A2 A2 2 A A1 Il valore massimo del rapporto si ha quando: w sin( H ) 1 V2 cioè 4 H T1 V2 w w cos ( H ) q 2 sen 2 ( H ) V2 V2 f (w ) 2 V2 w (2n 1)2 4 H V2 f1 4 H A2 max A2 max = A/q nel caso di smorzamento Tito Sanò 1 A2max 1 V1 A 2 V2 1 A ( 2n 1) . q 2 Le analisi numeriche per la valutazione della RSL 35 Funzione di Amplificazione A2 max Caso di: V2=100, V1=1000, H=10 Tito Sanò Le analisi numeriche per la valutazione della RSL 1 2 1 V1 A 2 V2 V2 f1 4 H 36 VERO- FALSO Si •In una roccia omogenea infinita esiste una profondità in cui il moto sismico è uguale a quello in superficie • Il moto su roccia alla base di un terreno soffice è uguale a quello sulla stessa roccia in superficie •L’ampiezza del moto orizzontale incidente sulla superficie è uguale alla metà di quello ivi registrato •L’amplificazione dipende dal rapporto delle Vs tra terreno rigido di base e quello soffice. •La massima amplificazione non dipende dal periodo naturale degli strati di terreno. •Il periodo naturale di uno strato di terreno cresce al crescere dello spessore •Il valore massimo della funzione di amplificazione non dipende dalla frequenza Tito Sanò Le analisi numeriche per la valutazione della RSL No x x ? x x x ? 37 Effetto della non linearità Variazione del modulo di taglio con la deformazione Tito Sanò Le analisi numeriche per la valutazione della RSL 38 Variazione dello smorzamento con la deformazione Tito Sanò Le analisi numeriche per la valutazione della RSL 39 Procedura di calcolo Tito Sanò Le analisi numeriche per la valutazione della RSL 40 SCHEMA DI CALCOLO DI SHAKE 1. 2. 3. TRASFORMATA DI FOURIER DELL'ACCELEROGRAMMA DI INPUT =Ac(ω) CALCOLO DELLA FUNZIONE DI AMPLIFICAZIONE = f( ω) RISPOSTA IN SUPERFICIE E NEI VARI STRATI R(ω)=f(ω)*Ac(ω) 2 A2 A2 2 A A1 3. 4. 5. 1 cos 2 ( w w f (w ) H ) q 2 sen 2 ( H ) V2 V2 CALCOLA DELL'ANTITRASFORMATA DI R(ω)->R(t) CALCOLO DELLE DEFORMATE E DEI NUOVI PARAMETRI. EVENTUALE ITERAZIONE RITORNANDO AL PUNTO 2 Tito Sanò Le analisi numeriche per la valutazione della RSL 41 Validità delle analisi lineari equivalenti Tito Sanò Le analisi numeriche per la valutazione della RSL 42 Considerazioni x iw t U 2 A cos(w ) e V L’ampiezza e massima in superficie, cioè per x=0 w 2 V 4H Per e x=H Si ha che U=0 (nel caso di smorzamento =0.) Questo è anche vero nello strato soffice, cioè. Per le frequenze proprie dello strato dove si hanno i massimi della funzione di amplificazione Il valore dello spostamento alla base dello strato è uguale a zero (per smorzamento nullo) Tito Sanò Le analisi numeriche per la valutazione della RSL 43 Moto alla base spettri di risposta per uno strato singolo Tito Sanò Le analisi numeriche per la valutazione della RSL 44 Effetto della nonlinearità Tito Sanò Le analisi numeriche per la valutazione della RSL 45 Processi stocastici stazionari ed ergodici R x ( ) lim s Tito Sanò 1 s/2 x r ( t ) x r ( t ) dt s s / 2 Le analisi numeriche per la valutazione della RSL 46 PSD(w ) dw Valore efficace (valore quadratico medio) a max K p Valore massimo Kp 2 ln 2 n (1 exp( e log 2n )) Tito Sanò Fattore di picco Le analisi numeriche per la valutazione della RSL 47 PSHAKE IPOTESI: Accelerogramma è parte di un processo stocastico stazionario. Valgono le ipotesi della dinamica aleatoria. • INPUT: – Densità di potenza PSD(w) sulla roccia affiorante oppure – Spettro di risposta, probabilità di essere superato e durata. In tal caso il programma ricava una PSD(w) congruente. • OUTPUT (alla superficie del terreno soffice o in qualsiasi punto del terreno – PSD(w) che è uguale alla PSD(w) di input moltiplicata per il quadrato della funzione di amplificazione (calcolata come SHAKE) PSD(w ) out PSD(w ) inp f (w ) 2 e – Spettri di risposta a vari livelli di probabilità di essere superati Tito Sanò Le analisi numeriche per la valutazione della RSL 48 Procedimento di calcolo di PSHAKE 1. CALCOLO DELLO SPETTRO DI DENSITA’ DI POTENZA PSD(ω) A PARTIRE DALLO SPETTRO DI RISPOSTA DEL MOTO DI INPUT 2. CALCOLO DELLA FUNZIONE DI AMPLIFICAZIONE = f( ω) 3. SPETTRO DI DENSITA’ DI POTENZA IN SUPERFICIE E NEI VARI STRATI PSDO(ω)=f(ω)2*PSD(ω) 4. CALCOLO DELLE DEFORMATE E DEI NUOVI PARAMETRI. 5. EVENTUALE ITERAZIONE RITORNANDO AL PUNTO 2 6. CALCOLO DEGLI SPETTRI DI OUTPUT Tito Sanò Le analisi numeriche per la valutazione della RSL 49 Schema MASH o SUMDES etc: analisi non lineari step by step Le equazioni di equilibrio sono riscritte ad ogni incremento di tempo Tito Sanò Le analisi numeriche per la valutazione della RSL 50 •Il modello fisico utilizzato è quello a masse concentrate in cui la stratigrafia è ricondotta ad una serie di masse mi concentrate in corrispondenza della superficie di separazione di ciascuno strato di spessore hi e collegate tra loro da molle con rigidezza ki e smorzatori viscosi con coefficienti di smorzamento viscoso ci, in modo da costituire un sistema ad n gradi di libertà. I parametri del sistema discretizzato sono ricavati dalla densità, dal modulo di taglio e dal coefficiente di viscosità dell’elemento di volume. •Vengono scritte le equazioni di equilibrio di ciascuno strato e risolte simultaneamente ad istanti (passi) successivi. • L’ipotesi di non linearità dei parametri meccanici prevede il continuo aggiornamento passo dopo passo delle caratteristiche meccaniche e pertanto la procedura di calcolo opera nel dominio del tempo. •I programmi possono lavorare con le tensioni totali oppure con i valori efficaci. In questo caso l’aggiornamento dei parametri di rigidezza e smorzamento avviene in relazione all’accumulo di sovrappressione neutra Du. Variazione della rigidezza e dello smorzamento con la deformazione Vengono assunti per le relazioni del modulo di taglio e dello smorzamento in funzione della deformazione tangenziale legami associati; cioè viene utilizzata un’unica legge t(g) che descrive i rami di carico e scarico del ciclo di isteresi, legando lo smorzamento alla non linearità. Tito Sanò Le analisi numeriche per la valutazione della RSL 52 Parametri necessari per l’analisi di amplificazione locale 1-D • Moto di input su roccia piana affiorante • Geometria spessori degli strati • Materiali velocità onde di taglio Vs = rigidezza » Densità » smorzamento per piccole deformazioni » Curve di degrado = G/Go e smorzamento in funzione della deformazione a taglio Tito Sanò Le analisi numeriche per la valutazione della RSL 53