Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Turbulence characterization in the outer region of fusion plasmas: Flow measurements in the edge region of the RFX-mod experiment Gianluca De Masi 19/12/2015 1 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Outline: Experimental Equipment Interpretation Models Flow measurement results Dynamic Variations 19/12/2015 2 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Experimental setup Plasma radius= 0.459 m Gundestrup (=217° 30’) Major radius = 2 m Plasma current= 2 MA z U-probe (=247° 30’) r (mm) 0 19/12/2015 a = 459 3 Gundestrup probe The 8 external electrodes radius is about 2 mm (comparable with ion Larmor radius) with 4.8 mm2 area r 3 4 2 5 1 6 7 8 δ B≈Bθ Gundestrup probe can collect two types of data: φ Electrode n° 1 Ion Saturation2 Current 3 4 5 Floating Potential 6 7 8 19/12/2015 δ angle w.r.t. equatorial plane 22,5° The probe has to 67,5° be connected to a 112,5° resistor 157,5° 202,5° The probe has to be 247,5° connected to a voltage divider 292,5° 337,5° 4 U-probe •Measurements of n, Te, Vp at 6 radial positions (Δr=6mm) •17 measurements of floating potential Vf at several radial positions (Δr=6 mm) e toroidal positions (Δφ=24 mm and 72 mm) •10 triaxial magnetic probes (Δrmin=6 mm, Δφ=95 mm ) 19/12/2015 5 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Interpretation Models (1) Magnetized models Ion Saturation Current Unmagnetized models Gundestrup probe can collect two types of data: Floating Potential 19/12/2015 Model proposed by Jachmich 6 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Interpretation Models (2) Magnetized Model: Hutchinson (1987) The presheath is described with two fluids equations taking into account particle diffusivity and viscosity. The ion saturation current densities collected in the upstream and downstream directions are given by the expressions αncS e βncS The coefficients α e β are functions of the Mach number: M=vpar/cs which in turn can be inferred from the ratio of the two currents upstream and downstream MacLatchy et al (1992) In presence of a perpendicular drift, the ion saturation current collected by a probe oriented at an angle δ w.r.t. the magnetic field is: 19/12/2015 7 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Interpretation Models (3) Unmagnetized Model: Hudis and Lidsky (1970) Collinsionless plasma; the Mach number can be written in the form: M=K ln(Isu/Isd) where K is only function of Te and Ti The ion saturation current collected by probe (accounting for the arbitrary angles between streaming velocity and the probe surface) is: 19/12/2015 8 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Interpretation Models (4) Jachmich Model (2000) The voltage difference arising between the probe tip and a reference probe is defined as the floating potential Vfl. This potential is related to the plasma potential Vp and the electron and ion saturation current: By means up/downstream saturation current, the difference ΔVfl of floating potential between 2 opposite electrodes, can be related to the parallel flow Mach number: 19/12/2015 9 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Main plasma parameters in several experimental campaigns considered (insertion probe range [409,479] mm) Plasma current < 400 kA Electron density (1.5-2.8) x 1019 m-3 Electron temperature (that we assume equal to Ti) 30 eV (at the deepest radial insertion, r = 409 mm) Ion Larmor radius 4 mm (at r = 409 mm) Ion thermal velocity 5.4 x 104 m/s (at r = 409 mm) Ion sound velocity 7.6 x 104 m/s (at r = 409 mm) 19/12/2015 10 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (1) Ion saturation current configuration Angular behaviour of i(δ) in 3 different shots corresponding to different radial positions Shots=[22368, 22369, 22373];F= -0.05 Time behaviour of a typical ion saturation current signal, collected by a probe electrode during one of considered discharges [Shot = 22920; Probe= 5 (δ = 202,5°); r = 449 mm] 19/12/2015 11 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (2) Radial Profiles Ion saturation current configuration The parallel drift drift velocity inside thethe plasma reaches values of 0.5 cS (corresponding In both cases profiles arecScomparable The perpendicular velocity is of the order of 0.1 (corresponding to 3 x 103 m/s) in 4 to (3-4) x 10c m/s) 4 the tile shadow, and it reaches values of –0.2 S (corrisponding to 1.5 x 10 m/s) inside the plasma 19/12/2015 12 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (3) Floating Potential configuration 3 4 Angular behaviour of V(δ) in 3 different shots corresponding to different radial positions Shots=[22413, 22345, 22411]; F= -0.2 5 2 1 6 B 7 Time behaviour of a 8 floating potential signal, collected by a probe Electron flux effect electrode during one of considered discharges [Shot = 22326; Probe= 3 (δ =112,5°); r = 439 mm] 19/12/2015 13 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (4) Radial profiles Floating Potential configuration Floating Potential Ion configuration saturation current configuration 4 m/s) inside the Parallelprofiles drift velocity reaches of 0.4 cS (corresponding to 3are x (0.8-0.9) 10 Velocity on potential comparable with Perpendicular driftbased velocity is floating ofvalues the order of 0.3 cmeasurements (corresponding to x 104 m/s) S plasmato current 4 m/s) inside the plasma the ones ion saturation in tile shadow, up tobased -0.2 cSon (corresponding (1-2) x 10measurements 19/12/2015 14 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (5) Gundestrup and U-probe 19/12/2015 15 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (6) Several plasma parameters have been investigated during different experimental campaigns at different radial positions, in order to create a database and study the edge plasma flow variations w.r.t. global discharges parameters Reversal parameter F = Btor (a)/<Btor> Greenwald density nG= IP / πa2 19/12/2015 16 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (7) Flow profiles comparison w.r.t. several plasma parameters 19/12/2015 17 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Flow measurements results (8) Velocity radial profiles In the region of strong gradient, fluctuations coupling between flow contributions <vradM┴> and <vradM││> could be transfer momentum to the perpendicular drift 19/12/2015 18 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Work in progress Plasma dynamics fluctuations F-Crashes: Correlation between fast variations of reversal parameter F and drift velocity fluctuations? 19/12/2015 19 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Work in progress Plasma dynamics fluctuations (2) Coherence and phase of parallel and perpendicular drift velocity fluctuations 19/12/2015 20 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Work in progress Pellet injection Some tokamak results link the L-H mode transition to an edge flow gradient. O.D.Gurcan et al.,’Intrinsic rotation and electric field shear’,Physics of Plasmas,14 (2007) Parallel drift velocity transient due to pressure gradient? 19/12/2015 21 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering Summary -For the ion saturation current measurements we found that the two applied interpretation models give comparable estimates of the parallel and perpendicular drifts -We have verified the reliability of floating potential measurements in order to evaluate the Mach number. A good agreement exists between the plasma flow and the ExB drift flow -The perpendicular velocity comparison between Gundestrup and U-probe reveals a double shear (across the r=a surface and deeper into the plasma) -Very important informations about mechanisms that regulate the transport in the RFP edge could be obtained by studying plasma dynamic fluctuations and further research is now in progress 19/12/2015 22 Centro Ricerche Fusione Consorzio RFX Università degli studi di Padova International Doctorate in Fusion Science and Engineering References -G. Serianni, ‘Struttura della regione esterna di un plasma confinato in una configurazione Reversed Field Pinch’, Tesi di dottorato in Fisica, Università degli studi di Padova, Anno Accademico 1994/1995; -V. Antoni, et al., Nuclear Fusion, 36 (1996) 435; -P.C. Stangeby, G.M. McCracken, Nucl. Fusion, 30 (1990) 1225 -S. Jachmich, et al.,’Influence of plasma flow on the floating potential and an ensuing novel technique for measuring parallel flows’, (27th EPS Conference on Contr. Fusion and Plasma Phys. Budapest), ECA vol. 24B (2000) 832 -I.H. Hutchinson, ‘A fluid theory of ion collection by probes in strong magnetic fields with plasma flow’, Phys. Fluids 30 (1987) 3777 -C.S. MacLatchy, et al., ‘Gundestrup: a Langmuir/Mach probe for measuring flows in the scrape off layer of TdeV’, Rev. Sci. Instrum. 63 (1992), 3923 -M. Hudis, L.M. Lidsky, ‘Directional Langmuir probe’, J. Appl. Phys. 41 (1970) 5011 -M. Zuin, et al., ‘Fast dynamics of relaxation events in RFX-mod’, (2006) -O.D.Gurcan et al.,’Intrinsic rotation and electric field shear’,Physics of Plasmas,14 (2007) 19/12/2015 23