Tano Cavattoni, Fabio Fantini, Simona Monesi, Stefano Piazzini Dall’Universo al Pianeta azzurro T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 Capitolo 4 I moti del pianeta Terra «La Signoria Vostra è invitata a veder girare la Terra domani, dalle tre alle cinque, nella Sala del Meridiano dell’Osservatorio di Parigi». Dall’invito scritto da Jean Bernard Léon Foucault nel 1851, in occasione della prima esperienza pubblica col pendolo da lui realizzato. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 2 Capitolo 4 I moti del pianeta Terra Il moto di rotazione La rotazione e le sue conseguenze Prove della rotazione della Terra Lezione 9 § 4.1 § 4.2 Lezione 10 § 4.3 § 4.4 § 4.5 Il moto di rivoluzione Moto di rivoluzione e stagioni astronomiche Stagioni meteorologiche I crepuscoli T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 3 Capitolo 4 I moti del pianeta Terra Prove del moto di rivoluzione L’aberrazione annua Parallasse annua e misura delle distanze Lezione 11 § 4.6 § 4.7 Lezione 12 § 4.8 § 4.9 I moti millenari della Terra Moti millenari Moti millenari secondari T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 4 § 4.1 La rotazione e le sue conseguenze Il moto di rotazione della Terra intorno al proprio asse ha alcune conseguenze evidenti, altre meno. L’alternarsi del dì e della notte è certamente il fenomeno più evidente. Il circolo di illuminazione separa il dì dalla notte. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 5 § 4.1 La rotazione e le sue conseguenze Conseguenze della rotazione terrestre che percepiamo meno sono: • il rigonfiamento equatoriale della terra e il moto diurno degli astri. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 6 § 4.1 La rotazione e le sue conseguenze Conseguenze della rotazione terrestre che percepiamo meno sono: • le correnti marine e atmosferiche, legate all’effetto Coriolis. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 7 § 4.2 Prove della rotazione della Terra La prova di Guglielmini Gianbattista Guglielmini (1740-1817) volle mostrare che i corpi hanno diverse velocità, a diverse distanze dall’asse. Se la Terra ruota intorno al proprio asse, i corpi più distanti dall’asse di rotazione devono avere una maggiore velocità lineare. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 8 § 4.2 Prove della rotazione della Terra La prova di Guglielmini Se la Terra ruota intorno all’asse, un corpo lasciato cadere dall’alto deve toccare terra spostato verso est per la maggior velocità che ha rispetto alla base. Nel 1701, Guglielmini misurò tale spostamento per un corpo lasciato cadere dall’alto della Torre degli Asinelli a Bologna. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 9 § 4.2 Prove della rotazione della Terra La prova di Foucault La prova definitiva della rotazione della Terra intorno al proprio asse fu fornita nel 1851 da Jean Bernard Léon Foucault, al Pantheon di Parigi . I presenti videro un pendolo lungo circa 67 metri oscillare avanti e indietro, modificando lentamente la direzione dell’oscillazione. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 10 § 4.2 Prove della rotazione della Terra La prova di Foucault Non è il piano di oscillazione a ruotare, è la Terra che ruota mentre il pendolo oscilla liberamente. Per un osservatore solidale con la Terra alla latitudine di Parigi, il piano di oscillazione del pendolo ruota in senso orario, spazzando circa 11,5° in un’ora. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 11 § 4.2 Prove della rotazione della Terra La prova di Foucault • Ai poli il piano di oscillazione ruota di 360° in 24 ore. • All’equatore non ruota. • Alla latitudine φ il periodo per compiere un giro completo è: T = 24h/sin(φ) T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 12 § 4.3 Moto di rivoluzione e stagioni astronomiche L’alternarsi delle stagioni è dovuto al moto di rivoluzione della Terra intorno al Sole e all’inclinazione dell’asse terrestre rispetto al piano dell’eclittica. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 13 § 4.3 Moto di rivoluzione e stagioni astronomiche Obliquità dell’eclittica e stagioni astronomiche T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 14 § 4.3 Moto di rivoluzione e stagioni astronomiche Equinozi e circolo di illuminazione Agli equinozi dì e notte hanno la stessa durata in ogni punto della Terra. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 15 § 4.3 Moto di rivoluzione e stagioni astronomiche Solstizi e circolo di illuminazione Ai solstizi dì e notte hanno la stessa durata solo all’equatore. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 16 § 4.4 Stagioni meteorologiche La variazione dell’altezza massima del Sole nel corso dell’anno comporta un diverso angolo di incidenza dei raggi solari che investono la superficie della Terra. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 17 § 4.4 Stagioni meteorologiche La variazione del flusso di energia che investe la superficie terrestre provoca l’alternarsi delle stagioni meteorologiche, non centrate su equinozi e solstizi per l’inerzia termica del pianeta. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 18 § 4.5 I crepuscoli Il crepuscolo è il periodo durante il quale il Sole si trova sotto l’orizzonte, nella fascia crepuscolare, e il cielo non è completamente buio. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 19 § 4.5 I crepuscoli La durata del crepuscolo in occasione del solstizio è maggiore di quello all’equinozio. Il Sole percorre il cerchio dell’equinozio (1) e del solstizio (2) in 24h. In occasione del solstizio rimane per una percentuale maggiore del tempo nella fascia crepuscolare. La differenza fra equinozio e solstizio è esagerata per maggior chiarezza. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 20 § 4.5 I crepuscoli La durata del crepuscolo aumenta all’aumentare della latitudine. Il tragitto apparente del Sole nel caso della latitudine maggiore (2) è inclinato rispetto al caso dell’equatore (1). Viene quindi percorso un tratto maggiore nella fascia crepuscolare. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 21 § 4.6 L’aberrazione annua La prima prova del moto di rivoluzione della Terra risale al 1726, quando James Bradley scoprì l’aberrazione annua: apparente variazione della direzione di provenienza della luce di una stella. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 22 § 4.6 L’aberrazione annua L’angolo fra la reale direzione di propagazione della luce e l’apparente direzione di vista si dice angolo di aberrazione. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 23 § 4.6 L’aberrazione annua Il fenomeno dell’aberrazione ha la massima intensità se la direzione di vista è ortogonale al piano orbitale: stella A. Il fenomeno è assente per la stella B che si trova sul piano orbitale. Il valore massimo dell’angolo di aberrazione, si dice costante di aberrazione e vale 20,5 secondi d’arco. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 24 § 4.7 Parallasse annua e misura delle distanze Il fenomeno della parallasse fu osservato la prima volta da Wilhelm Bessel nel 1838. La stella che per prima mostrò un piccolo spostamento angolare rispetto allo sfondo della volta celeste fu 61 Cygni. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 25 § 4.7 Parallasse annua e misura delle distanze L’angolo sotto cui è visto il semiasse maggiore dell’orbita terrestre, osservato dalla stella, si dice parallasse annua della stella. • 61 Cygni ha una parallasse annua di 0,3''. • La parallasse annua massima è pari a 0,8''. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 26 § 4.7 Parallasse annua e misura delle distanze Il Parsec Il parsec (pc) è la distanza dalla quale si vede il semiasse maggiore dell’orbita terrestre sotto un angolo di 1'' d’arco. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 27 § 4.7 Parallasse annua e misura delle distanze Il parsec si affianca alle altre unità di misura utilizzate in astronomia: • l’unità astronomica (UA): misura della distanza media fra Sole e Terra; • l’anno luce (a.l.): distanza percorsa dalla luce in un anno. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 28 § 4.7 Parallasse annua e misura delle distanze Un metodo semplice per la misura delle distanze angolari: stendere il braccio e... misurare. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 29 § 4.8 Moti millenari La precessione degli equinozi: moto linea degli apsidi + precessione luni-solare. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 30 § 4.8 Moti millenari La precessione degli equinozi è il moto dei punti equinoziali, i nodi γ e Ω, lungo l’eclittica. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 31 § 4.9 Moti millenari secondari Tra i moti millenari secondari ricordiamo: • la variazione di eccentricità dell’orbita; • la variazione di inclinazione dell’asse terrestre. T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 32 T. Cavattoni, F. Fantini, S. Monesi, S. Piazzini - dall’Universo al Pianeta azzurro - © Italo Bovolenta editore 2010 33