RIFLESSIONI TEORICHE E DIDATTICHE SUI
NUMERI NATURALI, DECIMALI E SULLE
RELATIVE OPERAZIONI
Durante gli incontri verranno sinteticamente illustrati gli aspetti teorici più importanti
legati agli argomenti trattati. Verranno affrontati, inoltre, testi di problemi in quanto
si ritiene che siano significativi soprattutto sul piano didattico.
3° incontro
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
1
LE PROPRIETA' DELLE OPERAZIONI
Strumento indispensabile per capire le
procedure del calcolo scritto
Mezzo importante per facilitare il calcolo mentale
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
2
Addizione
L'incolonnamento , nell'addizione, delle unità dello stesso ordine è giustificato dall'applicazione delle proprietà
commutativa e associativa.
Facciamolo notare o scoprire agli allievi con esercizi del tipo:
132 + 57 =
=1h + 3 da+2u + 5da +7u =
=1h + 3da + 5 da + 2u +7u=
=1h + (3da + 5 da)+ (2u +7u)= ...
quest'ultima scrittura suggerisce l'incolonnamento delle unità dello stesso tipo.
Le stesse proprietà facilitano il calcolo mentale:
17 + 8 = 17 + (3 + 5) = (17 + 3) + 5 pr. assoc.
= 20 + 5 = 25
Ricordiamo che quando sostituiamo all'addendo 8 la somma 3+5 non applichiamo la proprietà
dissociativa dell' addizione (che non esiste) ma semplicemente scomponiamo il numero 8 in
due addendi in modo da facilitare l'operazione mentale.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
3
Sottrazione
PROPRIETÀ INVARIANTIVA
facilita notevolmente, in alcuni casi particolari, il calcolo mentale.
 Ad esempio, nel caso che il minuendo sia 9 - 99... oppure 11 – 101… abituiamo l'allievo a procedere come
negli esempi che seguono:
• 26-9 = (26+1)-(9+1)=27-10
• 173 - 99 = 174 – 100
• 57-11= 56-10
• 328-101= 327-100 ecc.
• Di solito, invece, soprattutto con il 9 si consiglia l'allievo a procedere nel modo che segue:
• 26 - 9 = 26 - (10 -1) =(26 - 10) +1
• con il risultato, verificato anche nelle classi successive alle elementari, che l'alunno dopo aver sottratto il 10
è incerto se deve togliere o aggiungere l'1 (evidentemente è un procedimento algebrico).
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
4
Moltiplicazione
• Tutte le tecniche che ci permettono di calcolare il prodotto di due numeri con più cifre, usano la
proprietà distributiva della moltiplicazione rispetto all’ addizione
1) Facciamo notare agli allievi che, nella moltiplicazione scritta, l'incolonnamento del
moltiplicando e del moltiplicatore non è necessario. A nostro parere sarebbe opportuno
scrivere i due termini dell'operazione in riga (come fanno i paesi anglosassoni):
521 x 74
________
2084
36470 ecc.
•
Si vuole, con queste piccole attenzioni, abituare gli allievi a distinguere fra le disposizioni
spaziali necessarie per facilitare il calcolo da quelle che non riguardano il calcolo ma “un
fatto estetico” e, per gli insegnanti, un'abitudine appresa nei primi anni di scuola senza
una giustificazione.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
5
Divisione
Nella divisione, oltre ad applicare la proprietà invariantiva , quando è opportuno o necessario,
applichiamo spesso la regola che "per dividere una somma per un numero possiamo dividere per
quel numero i singoli addendi ed addizionare poi i quozienti ottenuti"
È una specie di proprietà distributiva che agisce solo da destra a sinistra, infatti:
486 : 2 = (4 h + 8 da + 6 u) :2 = (4 h:2) + (8 da :2) + (6 u:2) = 2h+4da+3u=243
• il divisore 2 che si trova a destra del segno di divisione agisce sull'addizione (nascosta) che si
trova alla sua sinistra.
• Sappiamo tutti che la proprietà non vale se il 2 si trovasse alla sinistra del segno di divisione,
2 : 486.
• Per questa ragione non si parla di proprietà distributiva della divisione rispetto all'addizione.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
6
Osservazioni
2)
Proprietà invariantiva della divisione:
Si devono abituare gli allievi a usare questa proprietà nel modo più conveniente:
es. 27 : 1,5 = 54 : 3 = 18
è senz'altro più semplice di 270 : 15
81 : 0,5 =162 : 1 = 162
è senz'altro più semplice di 810 : 5
Non abituiamo il ragazzo a pensare che, per eliminare la virgola al divisore si debba necessariamente
moltiplicare i due termini della divisione per 10, 100, 1000, ... a seconda del numero delle cifre
decimali del divisore stesso; insistiamo invece sul fatto che, per eliminare la virgola del divisore, si
devono moltiplicare i due termini della divisione
•
opportunamente per uno stesso numero, diverso da zero,
•
cioè si deve applicare alla divisione la proprietà invariantiva.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
7
Altre operazioni binarie in N
• L’elevamento a potenza: in N è interna, definita su ogni coppia di numeri naturali ad eccezione
della coppia (0,0)
(è commutativa? 32 = 23?);
Riflettiamo:
• n0 ? Con n0
n0 =1 per convenzione lo si verifica con le proprietà delle potenze nella divisione
• 0n?
0n=0  n
• Le operazioni di Massimo Comune Divisore e di minimo comune
multiplo: in N sono interne e ovunque definite;
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
8
Giustificazione di n0=0 con n0
Il problema viene risolto abbastanza agevolmente, ricorrendo alle proprietà delle potenze, ed in particolare al
quoziente di potenze di ugual base e di ugual esponente. Esemplificando:
53: 53= 53-3= 50 ma 53 = 125 53: 53 = 125 : 125 =1 quindi 50 =1
per cui, per convenzione, n0 =1, con n diverso da zero.
Il caso 0n, con n  0, viene accettato senza problemi dai ragazzi perché riescono a conferire un senso preciso a
situazioni del tipo:
05 = 0 x 0 x 0 x 0 x 0 = 0
Ma come considerare il caso in cui sia la base che l'esponente sono entrambi uguali a zero? In sintesi, qual è il
risultato di 0^0?
A questo punto, lascio formulare ai ragazzi le loro ipotesi perché non trovo didatticamente significativo affermare
semplicisticamente che 0^0 è una forma
indeterminata,
così 2015
come
riportato
Mathesis
Varese ottobre- dicembre
Clara
Colombo nel manuale scolastico, e dire loro
9
Dova-Marinella
Del Torchio
che ne comprenderanno il significato più Bozzolo-Patrizia
avanti, procedendo
negli
studi.
Ma come considerare il caso in cui sia la base che l'esponente sono entrambi uguali a zero?
In sintesi, qual è il risultato di 00?
A questo punto, lascio formulare ai ragazzi le loro ipotesi perché non trovo didatticamente significativo affermare
semplicisticamente che 00 è una forma indeterminata, così come riportato nel manuale scolastico, e dire loro che
ne comprenderanno il significato più avanti, procedendo negli studi.
Le ipotesi che scaturiscono dai ragazzi sono, in genere, le seguenti:
- non lo so;
- 00 non ha significato perché non ha senso moltiplicare zero volte lo zero;
GIUSTIFICAZIONE
Consideriamo, ad esempio, il quoziente
03 : 03 = 03-3 = 00
ma 03 = 0
quindi 03 : 03 = 0 : 0 = ad un numero naturale qualsiasi perché qualsiasi numero
moltiplicato per zero dà sempre zero come risultato, quindi il risultato non si può determinare.
Mathesis Varese ottobre- dicembre 2015 Clara Colombo
Bozzolo-Patrizia Dova-Marinella Del Torchio
10
Riflessioni didattiche relative alle operazioni
Rischio
• che l’aritmetica venga identificata con l’utilizzo automatico degli algoritmi di
calcolo, senza alcun controllo semantico delle azioni e dei passaggi.
• Riteniamo, invece, che il possesso degli algoritmi sia il punto di arrivo di un
progressivo processo di schematizzazione e di sintesi, che prende le mosse dal
significato delle operazioni stesse e mette in gioco le loro proprietà e le
convenzioni di scrittura dei numeri.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
11
Reinventiamo le operazioni con:
PROPOSTE DI LAVORO
MIRATE E DIVERSIFICATE
TEMPO
PAZIENZA
Utilizzo di
strumenti
Bastoncini di
Nepero
abbaco
Tecniche di calcolo utilizzate nel
passato
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
12
L’ADDIZIONE
Da «Nel mondo dei numeri e delle operazioni» vol. 2 a cura di Clara Colombo Bozzolo e Angela Costa
Il significato dell’addizione fa sì che essa sia definita su tutte le coppie di numeri naturali (operazione ovunque
definita in NN) e giustifica proprietà notevoli dell’operazione (associativa, commutativa, esistenza dell’elemento
neutro).
A loro volta, queste proprietà, considerate con le scelte convenzionali per la scrittura simbolica dei numeri,
giustificano le tecniche di calcolo.
L’addizione permette, poi, di definire la sottrazione (come operazione inversa dell’addizione).
ITINERARIO DIDATTICO
L’addizione in diverse situazioni problematiche
1. Risoluzione di problemi additivi mediante il conteggio degli oggetti manipolati o disegnati
2. Introduzione della denominazione e della scrittura formale dell’addizione
3. Messa in evidenza della coppia ordinata dei numeri associati ai dati e del numero che quantifica la
situazione finale
4. Denominazione e scrittura formale dell’addizione
5. Calcolo di una somma con l’utilizzo di materiale predisposto
6. Intuizione delle proprietà dell’addizione in situazioni problematiche
7. Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
8. Calcolo di una addizione mediante l’algoritmo
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
13
I GATTINI DISPETTOSI
Da «Nel mondo dei numeri e delle operazioni» vol. 2 pag. 50 a cura di Clara Colombo Bozzolo e Angela Costa
Nerina e Palladineve sono due gattini simpaticissimi e giocherelloni.
Nerina, nera come il carbone, ama giocare con i gomitoli che nonna Cesira conserva in una grossa cesta.
Palladineve, candido e morbido, ha scelto la cesta come suo rifugio preferito.
Colora Nerina
di nero.
Oggi Palladineve, per avere più spazio,
ha lasciato cadere fuori dalla cesta
alcuni gomitoli.
• Quanti sono tutti i gomitoli della nonna?
• Completa la tabella con il disegno ed il numero dei gomitoli.
Gomitoli nella
cesta
Gomitoli fuori
dalla cesta
Gomitoli in
tutto
(…,….)
….
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
14
GELSOMINO, IL DRAGO BLU
Da «Nel mondo dei numeri e delle operazioni» vol. 2 pag. 58 a cura di Clara Colombo Bozzolo e Angela Costa
Per divertire i suoi invitati, Gelsomino ha organizzato alcuni giochi. Fiammetta e Spegnitutto decidono di preparare
dei dolcetti da dare in premio ai vincitori.
Fiammetta prepara 5 ciambelline con cioccolato e foglie di ortica, mentre Spegnitutto prepara 4 ciambelline con
crema di fiori di sambuco.
Quante ciambelline hanno preparato i due piccoli draghi?
Disegna le ciambelline preparate da
Fiammetta
•
•
•
•
•
Disegna le ciambelline preparate da
Spegnitutto
Le ciambelline preparate da Fiammetta sono ......
Le ciambelline preparate da Spegnitutto sono ......
Tutte le ciambelline preparate sono ......
……. +…….=……..
I due piccoli draghi hanno preparato ………ciambelline
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
15
IL BERSAGLIO
Da «Nel mondo dei numeri e delle operazioni» vol. 2 pag. 62 a cura di Clara Colombo Bozzolo e Angela Costa
Luigi ha fatto due lanci validi con le sue freccette.
Quanti punti ha totalizzato in tutto?
Scrivilo con una operazione
………. + ………. =
Mario, con 2 lanci, ha totalizzato 6 punti.
Dove possono aver colpito le sue freccette?
Trova almeno 3 possibilità.
6 = ….. + …….
……….
Confronta le tue risposte con quelle dei tuoi
compagni.
6 = …… + ……
6= …… + ……
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
16
Calcolo di una somma con l’utilizzo di materiale predisposto
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 66 a pag.71 a cura di Clara Colombo Bozzolo e Angela Costa
•
•
•
•
•
Utilizzo dei numeri in colore
Utilizzo della linea dei numeri
Utilizzo della bilancia aritmetica
Macchine ad una o due entrate
Utilizzo dell’abaco
Nelle diverse situazioni problematiche proposte precedentemente l’addizione è stata introdotta come
addizione quantitativa di oggetti materiali e risolta mediante il conteggio diretto di tali oggetti.
Ora, si affronta l’addizione come operazione nell’insieme dei numeri naturali in sé, non come “numeri
di”; in particolare, si pone la questione relativa alla attivazione nei bambini dei meccanismi di calcolo
del risultato dell’operazione.
A tale scopo si forniscono indicazioni sull’utilizzo di materiale appositamente predisposto.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
17
I REGOLI
Si consiglia di utilizzare i regoli per la determinazione il risultato di un’addizione soprattutto a livello manipolatorio;
non è necessario far rappresentare ogni volta la situazione.
Si ricorda che nessun regolo vale zero, quindi, per esempio, il regolo arancione rappresenta il 10 e non può
rappresentare l’operazione 10 + 0 oppure 0 + 10
Esempio
Si debba calcolare il risultato di 2 + 6: si interpreta l’addizione tra numeri come la giustapposizione in riga dei due
regoli aventi, rispettivamente, valore due e valore sei, rispetto al regolo unitario bianco
rosso
verdone
Si cerca il regolo che ha la lunghezza pari a quella dei due regoli adiacenti: il suo valore rispetto al regolo unitario
è il risultato dell’addizione
rosso
verdone
marrone
2+6=8
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
18
LA LINEA DEI NUMERI
È consigliabile iniziare ad usare la linea dei numeri come supporto per il calcolo di una somma a livello motorio, cioè
facendo eseguire ai bambini gli spostamenti su una linea tracciata sul pavimento.
Solo in un secondo momento ci si limiterà alla forma grafica.
Utilizzando la linea dei numeri, gli addendi possono essere interpretati come spostamenti successivi e concordi con il
verso crescente della linea, a partire da 0: ciascun addendo dà il numero di passi unitari da effettuare, quindi
l’addizione è vista come operazione binaria il cui risultato è il numero di passi unitari che sono stati fatti
complessivamente a partire da 0.
Se, invece, il primo addendo viene interpretato come posizione iniziale sulla linea e il secondo come spostamento da
essa, il risultato è il numero che individua la posizione finale e l’addizione è vista come operatore che modifica uno
stato iniziale.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
19
Esempio
Sia da calcolare la somma 3 + 5.
Un bambino si posiziona in corrispondenza di 0,
poi esegue 3 passi seguiti da altri 5 passi unitari.
Oppure, un bambino si posiziona sulla linea
dei numeri in corrispondenza del 3 e da qui
esegue 5 passi unitari
Lo svolgimento di una addizione secondo una o l’altra modalità di utilizzo della linea dei numeri è indifferente, se
non c’è il riferimento ad una specifica situazione problematica che conferisce un significato preciso
all’operazione stessa.
Inoltre, l’andamento della linea dei numeri (rettilineo, curvilineo, …) non pregiudica il significato dell’attività,
purché la linea non sia intrecciata, la distanza tra un numero e l’altro sia sempre uguale e il numero che
contrassegna l’origine sia 0.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
20
Bilancia aritmetica
La bilancia aritmetica è già stata presentata (Nel mondo dei numeri e delle operazioni vol. 1 – I numeri
fino a 100, pp. 97-98) come efficace supporto per effettuare il confronto tra due numeri. Proprio le
attività suggerite a tale proposito sono prerequisiti necessari all’uso della bilancia come sussidio per la
determinazione del risultato di una addizione; infatti, per i bambini deve essere consolidato il fatto che
l’equilibrio dei bracci della bilancia equivale all’uguaglianza dei numeri rappresentati e la mancanza di
equilibrio dei bracci equivale alla non uguaglianza tra i numeri rappresentati.
Utilizzando la bilancia aritmetica, gli addendi sono interpretati come posizioni di uno stesso braccio in
ognuna delle quali collocare una placca. Eseguire l’addizione significa cercare, sull’altro braccio della
bilancia, la posizione nella quale mettere una placca, in modo che la bilancia assuma una posizione di
equilibrio. Il numero che contrassegna tale posizione è il risultato dell’addizione.
Come già indicato per i numeri in colore, è opportuno che la bilancia aritmetica sia utilizzata solo in fase
manipolatoria, evitandone la rappresentazione grafica.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
21
Bilancia aritmetica
Esempio
Se si deve eseguire 5 + 2 si fanno appendere,
sullo stesso braccio della bilancia, una placca al
sostegno contrassegnato dal numero 5 e una
placca al sostegno contrassegnato dal numero
2; in tal modo i due bracci della bilancia non
sono in equilibrio.
Per tentativi, i bambini cercano la posizione
nella quale collocare, sull’altro braccio della
bilancia, una terza placca, in modo che la
bilancia torni in equilibrio.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
22
Le macchine a una o a due entrate
L’addizione, in quanto trasformazione di dati numerici per ottenere un altro numero, può essere vista
concretamente come una macchina.
In particolare, la macchina dell’addizione può essere “concretizzata” con due scatole distinte: l’una per
l’addizione come operatore, l’altra per l’addizione come operazione binaria. Nella scatola corrispondente
all’addizione come operatore devono essere praticate, meglio se su facce opposte, due aperture: una funge
da entrata nella macchina, l’altra da uscita. Nella macchina si fa entrare un gruppo di oggetti che ha la
cardinalità del primo addendo dell’addizione; il bambino che opera nella scatola aggiunge a tale gruppo
tanti oggetti, dello stesso tipo di quelli in ingresso, quanti è indicato dal contrassegno della macchina, ossia
dal secondo addendo, poi restituisce il nuovo gruppo di oggetti. La cardinalità di tale insieme è il risultato
dell’addizione.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
23
Le macchine a una o a due entrate
Nella seconda scatola associata all’addizione devono essere praticate tre aperture: due sono le entrate, da
distinguere come prima e seconda, e una è l’uscita. Così predisposta la macchina permette di interpretare
l’addizione come operazione binaria: dalle apposite fessure si fanno entrare due gruppi omogenei di
oggetti, ognuno con tanti elementi quanto indicato dagli addendi; il bambino che opera nella scatola forma
con i due gruppi un unico insieme che restituisce dall’apertura-uscita. La cardinalità del nuovo gruppo è il
risultato dell’addizione.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
24
L’abaco
Per eseguire un’addizione con il sussidio dell’abaco si deve rappresentare su di esso il primo addendo e,
successivamente, il secondo addendo, disponendo le palline in base alla corrispondenza posizionale tra cifre e
asticciole. La somma è il numero che risulta rappresentato sull’abaco utilizzando tutte le palline corrispondenti agli
addendi. L’utilizzo dell’abaco è significativo soprattutto quando le addizioni richiedono il cambio.
Esempio
Si debba eseguire 37 + 15.
Se vogliamo collocare sull’abaco le palline corrispondenti al numero delle unità del primo e del secondo addendo,
si osserverà che è necessario sostituire le dieci palline che rappresentano le unità con una pallina che assumerà il
valore di decina e andrà posizionata sull'asta delle decine. Dopo questa sostituzione le 2 palline rimaste troveranno
posto sull'asticciola delle unità e le decine addizionate diventeranno 5.
37 + 15 = 52
Oltre ai materiali sin qui suggeriti, si segnala l'utilizzo spontaneo delle dita, quale "prima calcolatrice"
universalmente posseduta.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
25
Gioco dell’oca: riflessioni
REGOLE:
I giocatori allineano i segnaposto all'inizio del gioco
(fuori dalla prima casella, indicata con il numero 1):
scopo del gioco è percorrere l'intero tabellone e
raggiungere la casella 63 prima degli avversari.
A turno, si lanciano i dadi e si avanza del numero di
caselle indicate dal totale ottenuto con i dadi.
Suggerimento: al primo approccio i bambini possono
contare una casella per volta fino ad arrivare al
numero indicato sul dado, poi si possono obbligare a
calcolare a mente l’addizione la cui somma
corrisponderà al numero della casella che dovranno
occupare.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
26
Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 81 a pag.83 a cura di Clara Colombo Bozzolo e Angela Costa
La costruzione e l’uso della tabella a doppia entrata di un’operazione presuppone la capacità di organizzare il piano in
modo che esso sia suddiviso in zone (caselle) individuabili mediante coordinate, ossia mediante una coppia ordinata
di numeri.
La tabella a doppia entrata dell’addizione viene in genere costruita con i numeri da 0 a 10 disposti nello stesso ordine
(crescente) nella riga e nella colonna di intestazione della tabella stessa. Questa disposizione permette di cogliere
alcune proprietà dell’operazione anche visivamente, ossia osservando le regolarità nella disposizione spaziale dei
risultati.
Si propone l’accorgimento di chiudere la tabella a destra e in basso con una linea tratteggiata anziché continua, in
quanto essa rappresenta solo alcune coppie ordinate di numeri naturali, quindi non dà una descrizione esaustiva
dell’operazione.
Per tale ragione, la tabella dell’addizione non consente di dimostrare le proprietà dell’addizione: se ne verifica la
validità su 11 coppie ordinate di numeri, ma questo non garantisce la loro validità su tutte le coppie di numeri.
La tabella a doppia entrata dell’addizione può essere letta come una macchina a due entrate: nella prima casella in
alto a sinistra si legge il comando della macchina (l’addizione), la colonna di intestazione rappresenta la prima entrata
e la riga di intestazione la seconda entrata. L’uscita della macchina è la casella individuata dalla coppia ordinata dei
numeri in entrata.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
27
Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 81 a pag.83 a cura di Clara Colombo Bozzolo e Angela Costa
+
0
1
2
3
4
5
6
7
8
9
10
0
0
1
2
3
4
5
6
7
8
9
10
1
1
2
3
4
5
6
7
8
9
10
11
2
2
3
4
5
6
7
8
9
10
11
12
3
3
4
5
6
7
8
9
10
11
12
13
4
4
5
6
7
8
9
10
11
12
13
14
5
5
6
7
8
9
10
11
12
13
14
15
6
6
7
8
9
10
11
12
13
14
15
16
7
7
8
9
10
11
12
13
14
15
16
17
8
8
9
10
11
12
13
14
15
16
17
18
9
9
10
11
12
13
14
15
16
17
18
19
10
10
11
12
13
14
15
16
17
18
19
20
Esempi di domande opportune:
• qual è il numero nella casella (3, 7)? E
quello nella casella (7, 3)? …
• se si traccia la diagonale uscente dal vertice
in alto a sinistra, come sono i risultati
contenuti nelle caselle in posizione
simmetrica rispetto alla diagonale?
Mathesis Varese ottobre- dicembre 2015 Clara Colombo
Bozzolo-Patrizia Dova-Marinella Del Torchio
28
Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 81 a pag.86 a cura di Clara Colombo Bozzolo e Angela Costa
+
0
1
2
3
4
5
6
7
8
9
10
0
0
1
2
3
4
5
6
7
8
9
10
1
1
2
3
4
5
6
7
8
9
10
11
2
2
3
4
5
6
7
8
9
10
11
12
3
3
4
5
6
7
8
9
10
11
12
13
4
4
5
6
7
8
9
10
11
12
13
14
5
5
6
7
8
9
10
11
12
13
14
15
6
6
7
8
9
10
11
12
13
14
15
16
7
7
8
9
10
11
12
13
14
15
16
17
8
8
9
10
11
12
13
14
15
16
17
18
9
9
10
11
12
13
14
15
16
17
18
19
10
10
11
12
13
14
15
16
17
18
19
20
• Da cosa dipende il fatto che i due simmetrici risultati sono
uguali?
La conclusione sarà che il risultato dell’addizione non cambia se
si cambiano di posto i due addendi: questa proprietà
dell’addizione è detta commutativa e consente di omettere la
freccia che orienta la lettura della tabella; si consiglia, però, di
indicarla sempre, dato che non tutte le operazioni tra numeri
naturali sono commutative
• Come si comporta lo 0?
La colonna e la riga individuate da 0 sono uguali a quelle di
intestazione; questo significa che 0 è l’elemento neutro
dell’addizione, ossia la somma di un generico numero naturale n
con 0 è il numero n stesso e viceversa.
La constatazione che nella tabella non ci sono caselle rimaste
senza risultato porta ad affermare che l’addizione può essere
eseguita tra due numeri naturali qualunque; questa
osservazione acquisirà maggiore rilevanza quando si vedrà che,
invece, la sottrazione non può essere eseguita su ogni coppia
ordinata di numeri naturali;
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
29
Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 81 a pag.83 a cura di Clara Colombo Bozzolo e Angela Costa
• Con il supporto della tavola dell’addizione è possibile cercare
in modo sistematico le coppie additive di un numero.
Esempio
Se si chiede di colorare di rosso tutte le caselle della tabella che
contengono il numero 5, si evidenziano tutte le coppie ordinate
di numeri che addizionati danno 5.
+
0
1
2
3
4
5
6
7
8
9
10
0
0
1
2
3
4
5
6
7
8
9
10
1
1
2
3
4
5
6
7
8
9
10
11
2
2
3
4
5
6
7
8
9
10
11
12
3
3
4
5
6
7
8
9
10
11
12
13
4
4
5
6
7
8
9
10
11
12
13
14
5
5
6
7
8
9
10
11
12
13
14
15
5=5+0
5=4+1
5=3+2
6
6
7
8
9
10
11
12
13
14
15
16
5=2+3
5=1+4
5=0+5
7
7
8
9
10
11
12
13
14
15
16
17
8
8
9
10
11
12
13
14
15
16
17
18
9
9
10
11
12
13
14
15
16
17
18
19
10
10
11
12
13
14
15
16
17
18
19
20
Le coppie additive del 5 sono 6; in generale, si rileva che le
coppie additive di un numero sono pari al numero successivo
di quello considerato.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
30
Costruzione della tabella dell’addizione e rilievo delle proprietà dell’operazione
Da «Nel mondo dei numeri e delle operazioni» vol. 2 da pag. 81 a pag.83 a cura di Clara Colombo Bozzolo e Angela Costa
Esempio
Se si chiede di colorare di verde tutte le caselle della tabella che contengono il numero 8, si evidenziano tutte le
coppie ordinate di numeri che addizionati danno 8.
8=8+0
8=7+1
8=6+2
8=5+3
8=2+6
8=4+4
8=1+7
8=3+5
8=0+8
La rilevazione delle coppie additive dei numeri da 0 a 10 mette in evidenza che alcuni numeri (0, 2, 4, 6, 8, 10) hanno
coppie con i due numeri uguali (numeri amici gemelli), quindi si ottengono come somma di due addendi uguali:
0=0+0
2=1+1
4=2+2
…………
Tali numeri sono detti numeri pari; gli altri (1, 3, 5, 7, 9) che non sono pari sono detti dispari.
La distinzione tra pari e dispari può essere poi estesa ai numeri oltre il 10 con lo stesso criterio oppure a partire
dall’osservazione che nella successione dei numeri da 0 a 10 i pari e i dispari si alternano.
Questa classificazione verrà poi ripresa e formalizzata quando si affronterà la moltiplicazione.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
31
Calcolo di una somma mediante l’algoritmo
Si ritiene opportuno che gli alunni eseguano le addizioni il riga il più a lungo possibile, facendo ricorso alla
memorizzazione di alcuni casi notevoli, come le coppie additive di un numero (in particolare del 10), alla
applicazione delle proprietà delle operazioni e al significato posizionale delle cifre degli addendi.
Il passaggio all’esecuzione dell’operazione in colonna deve essere motivato da una effettiva necessità di
semplificazione dei calcoli in riga; inoltre, l’algoritmo deve essere la traduzione formale di operazioni concrete su
materiale opportuno e argomentazioni giustificative da parte dei bambini e può essere verbalizzato inizialmente
con le notazioni proposte dagli alunni stessi, sino a giungere alla struttura classica.
La risoluzione di un problema può mettere in condizione i bambini di trovare diverse strategie di calcolo, che
verranno successivamente confrontate per scegliere la più conveniente.
Calcolo di una somma mediante l’algoritmo
Addizioni senza cambio
Addizioni con il cambio
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
32
Esecuzione di addizioni senza cambio
Esempio
LA PESCA CHE PASSIONE!
Andrea, con papà Roberto, è andato a pescare al laghetto del passo Maniva. Al termine della giornata,
nel cestello di Andrea c’erano 14 trote e in quello del papà ce n’erano 25. Quante trote portano a casa
Andrea e Roberto?
Ogni alunno può eseguire il calcolo del risultato di 14 + 25 seguendo strategie diverse che l’insegnante
farà esplicitare verbalmente e con il ricorso a materiale opportuno. In particolare, gli alunni potranno
procedere con ragionamenti formalizzabili nei modi seguenti:
 (14 + 20) + 5 oppure (14 + 5) + 20
 10 + (4 + 25) oppure (10 + 25) + 4
 (10 + 20) + (4 + 5) oppure (4 + 5) + (10 + 20)
Se il materiale utilizzato è già strutturato in decine e unità, è facile far rilevare agli alunni che la terza
strategia, in un ordine o nell’altro, è la più veloce.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
33
Esecuzione di addizioni senza cambio
Essa potrebbe essere :
• con il materiale
• con i numeri
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
34
Esecuzione di addizioni senza cambio
La descrizione della situazione
con i numeri assume la forma
da
1
2
3
u
4
5
9
+
Questa può essere gradualmente semplificata, nei modi seguenti:
da
u
1
2
3
4
5
9
+
1
2
3
4 +
5
9
Questa progressiva simbolizzazione viene ulteriormente rafforzata con
l’utilizzo dell’abaco per eseguire le addizioni.
Nelle addizioni che non comportano il cambio, è indifferente
addizionare prima le decine o le unità.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
35
Esecuzione di addizioni con il cambio
Esempio - A PESCA DI SALMERINI
Dopo una settimana, Andrea e Roberto vanno a pescare
in un altro laghetto. Andrea pesca 19 salmerini e Roberto
nel pesca 17. Quanti sono i salmerini pescati in tutto da
Andrea e dal papà?
L’insegnante propone di eseguire l’addizione 19 + 17
con il materiale.
Cosa succede alle unità addizionate?
9 + 7 = 16
È evidente che è possibile raggruppare parte delle unità
ottenute con la somma per formare una nuova decina, che
va ad aggiungersi alle altre due.
Mathesis Varese ottobre- dicembre 2015
Clara Colombo Bozzolo-Patrizia Dova-Marinella Del Torchio
36
Esecuzione di addizioni con il cambio
La descrizione della situazione con i numeri può assumere via via le
seguenti forme:
da u
1 9 +
1 7
2 16
3 6
da
1
1
1
3
u
9 +
7
1 9+
1 7
6
3 6
È evidente che quando l’addizione richiede un
cambio è necessario addizionare prima le unità
e poi le decine.
Si suggerisce di consentire agli alunni di scrivere
il numero delle decine ottenute con il cambio
nella colonna relativa sino a che essi lo
ritengono utile.
Il consolidamento delle conoscenze costruite ed
acquisite richiede l’esecuzione di un numero
opportuno di esercizi.
Mathesis Varese ottobre- dicembre 2015 Clara Colombo
Bozzolo-Patrizia Dova-Marinella Del Torchio
37
Scarica

RIFLESSIONI TEORICHE E DIDATTICHE SUI NUMERI NATURALI