Introduction to FMT Modulation and Multiuser Multitone Wireless Uplink Systems Andrea M. Tonello Università di Udine DIEGM - Department of Electrical, Mechanical, and Management Engineering Italy E-mail: [email protected] - Phone: +39 0432 558 288 Web: www.diegm.uniud.it/tlc/tonello March 31, 2005 Outline Filtered Multitone (FMT) Modulation Principles Detection and Performance Limits Synchronization Asynchronous Multiuser Multitone Systems Multiuser DMT/OFDM Multiuser FMT Synchronization in Multiuser FMT © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 2 FMT Modulation © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 3 Multicarrier Architecture − f0 f0 a ( 0) (lT0 ) Channel x g(nT) RF x z (0 ) ( mT0 ) g(-nT) z ( k ) (mT0 ) g(nT) x + DAC x ADC fk a Equalizer RF a ( k ) (lT0 ) ( M −1) aˆ ( 0) (lT0 ) g(-nT) aˆ ( k ) (lT0 ) Equalizer − fk aˆ ( M −1) (lT0 ) z ( M −1) (mT0 ) (lT0 ) g(nT) x fM −1 g(-nT) x x (nT ) r (nT ) Equalizer − f M −1 Transmit a high data rate signal through a number of low rate sub-channels. 9 DMT (Discrete Multitone): well known OFDM scheme. It deploys a prototype filter with rectangular impulse response. 9 FMT (Filtered Multitone): deploys a sub–channel prototype pulse with time-frequency concentrated response. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 4 Filtered Multitone Architecture TX bandwidth: W = 1 / T. Sub-carriers: fk = k/(MT) , k=0,…,M-1. Sub-channel period: T0=NT DMT – OFDM : Rectangular impulse response prototype pulse g(nT). FMT : Frequency concentrated prototype pulse, e.g., root-raised-cosine. DMT - OFDM Sub-Ch. Data Period: T = MT 0 Tone Spacing: ∆f = 1 / MT CS-FMT Sub-Ch. Data Period: T = MT 0 Tone Spacing: ∆f = 1 / MT NCS-FMT Sub-Ch. Data Period: T = NT 0 Tone Spacing: ∆f=1 / MT N/M =K>1 © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 5 Non-Critically Sampled FMT Efficient Implementation Channel a (lT0 ) g1 (lT0 ;mT1 ) IFFT a ( M −1) (lT0 ) aˆ (0) (lT0 ) z (0) (lT0 ) ( 0) P/S RF RF DAC ADC g1- (mT1;lT0) S/P Eq. FFT aˆ ( M −1) (lT0 ) z ( M −1) (lT0 ) gM (lT0;mT1) T0 = NT T1 = MT gM -(mT1;lT0) x ( nT ) Eq. r ( nT ) A possible efficient implementation is based on FFT and low-rate filtering as proposed by Cherubini, Eleftheriou, Olcer, Cioffi, Comm. Mag. 2000. In NCS-FMT the sub-channel pulse is cyclically time-variant. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 6 Critically Sampled FMT Efficient Implementation Channel a (lT0 ) g1(lT0) IFFT a ( M −1) (lT0 ) aˆ (0) (lT0 ) z (0) (lT0 ) ( 0) P/S RF RF DAC ADC g1-(lT 0) S/P Eq. FFT aˆ ( M −1) (lT0 ) z ( M −1) (lT0 ) gM(lT 0) gM-(lT0) x (nT ) Eq. r (nT ) CS-FMT fk = k −1 T0 T0 = MT k = 1,..., M g k (mT0 ) = g ((k − 1)T + mT0 ) m∈Z Prototype pulse © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 7 Sub-channel Matched Filter Output RX front-end output sampled at symbol rate: (k ) z ( k ) ( lT0 ) = a ( k ) ( lT0 ) g EQ (0) + ∑a m≠0 k (k ) ( lT0 − mT0 ) g EQ ( mT0 ) + ICI ( k ) + η ( k ) ( lT0 ) ∆t=0, ∆f=0: No ICI with band limited pulses but some ISI because of the channel frequency selectivity or non-ideal Nyquist pulses. ∆t≠0, ∆f=0: Increased ISI because of wrong sampling phase. ∆t=0, ∆f≠0: ISI and some ICI when ∆f exceeds the frequency guards. When frequency concentrated pulses are deployed we get small ICI, however we need to run sub-channel equalization. We need time/frequency synchronization to minimize the amount of ISI and ICI. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 8 Detection in FMT FMT requires some form of equalization. The optimal detector is a multi-channel MLSE/MAP equalizer. Independent sub-channel equalization via linear or DFE equalization 9 As we increase the number of tones we obtain narrower sub-channels. 9 The sub-channel equalizer has low complexity since the sub-channel impulse response is short (sub-channel is narrow band). © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 9 Optimal FMT Detector MF k=... y (t ) • T0 MF k=2 MF k=1 ICI T0 Joint MAP Detector ISI T0 The MAP detector computes the a posteriori probabilities of all data symbols by observing the input signal y( t ) over a time window. Ref: Tonello, BLTJ 2003, Proc. VTC 2002 Fall. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 10 Spectral Efficiency © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 11 Example of Sub-Channel Frequency Response DMT 0 CS-FMT -10 0 -10 -30 -20 -40 |H(f)| (dB) |H(f)| (dB) -20 -50 -60 -70 -80 0.5 -30 -40 -50 -60 0.505 0.51 0.515 fT 0.52 0.525 0.53 -70 -80 0.5 0.505 0.51 0.515 fT 0.52 0.525 0.53 NCS-FMT 0 M = 128 B = 25 MHz -10 CS-FMT: rectangular windowed pulses + 4 virtual carriers NCS-FMT: root raised cosine pulses N/M = 1.125 + 4 virtual carriers CP-DMT: |H(f)| (dB) -20 -30 -40 -50 -60 -70 -80 0.5 0.505 0.51 0.515 fT 0.52 0.525 0.53 CP length = 30 chips + 16 virtual carriers © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 12 Complementary Distribution of the Achievable Bit Rate Probability [ Achievable Bit Rate > K ] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 40 45 ------ DMT ------ CS-FMT ------ NCS-FMT 50 55 60 65 M bit/s 70 75 80 85 c Rayleigh exponential with τrms=100 ns ¦ Rayleigh exponential with τrms=40 ns * Ricean exponential with R=5 dB, τrms=40ns • DFE sub-channel equalization in FMT. • FMT has higher spectral efficiency than DMT/OFDM. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 90 13 Performance Limits for FMT Modulation © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 14 Performance Limits Let us consider FMT modulation in time variant frequency selective fading. We can evaluate the matched filter bound performance in closed form: - BER performance with an ideal equalizer The analysis yields very interesting insights: - FMT modulation is a diversity transform and offers ¾ time-frequency diversity gains and coding gains that are a function of the prototype pulse, and number of tones. Ref: Tonello, IEEE Trans. on Wireless Comm. in press ; Tonello, Proc. WPMC 2003. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 15 Frequency Selective Time-Invariant Channel ITU PB channel with quasi static fading Bandwidth W=3.84 MHz. BPSK modulation. BER 10 RECT PB M→ M=32 -4 10 -2 10 ∞ M=128 -6 10 -6 10 128 16 -4 10 BER RECT+CP (OFDM) PB -2 M=1 -8 -8 10 10 BER 10 M→ -4 10 SINC PB M→ ∞ 16 16 M=1 M=1 -8 10 0 6 12 18 24 Es/No (dB) ∞ 128 128 -6 10 -2 10 30 36 0 6 12 18 24 Es/No (dB) -4 10 BER GAUSS B=0.33 PB -2 -6 10 -8 30 36 10 MF Bound performance for FMT with rectangular, Gaussian, and sinc prototype pulse © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 16 Time-Variant Channel Flat fading with Jakes' Doppler spectrum Bandwidth W=24.3 kHz. BPSK modulation. BER RECT FLAT 64 M=16 -4 10 Sta tic Sta tic RECT+CP (OFDM) FLAT fd=100 Hz -6 10 10 BER -6 10 No Fading M=128 -8 0 6 12 SINC FLAT -4 10 -6 16 No Fading 64 30 -2 fd=100 Hz 10 Sta tic 16 18 24 Es/No (dB) -8 10 Sta tic -4 10 10 M=128 GAUSS B=0.1 FLAT fd=100 Hz -2 36 0 6 12 -6 10 64 No Fading 10 -4 10 16 No Fading -8 -2 fd=100 Hz 10 M=128 BER -2 10 BER 128 10 64 -8 18 24 Es/No (dB) 30 36 10 MF Bound performance for FMT with rectangular, Gaussian, and sinc prototype pulse © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 17 Remarks In Frequency Selective Fading 9 FMT is a good choice complexity wise 9 Single Carrier modulation is a good choice performance wise. In Time Selective Fading 9 FMT is a good choice performance wise 9 Single carrier modulation is a good choice complexity wise. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 18 Synchronization © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 19 Time-Domain Synchronization aˆ (0 ) (lT0 ) z (0) (lT0 ) g1-(mT 1;lT 0) r ( nT ) Estimate/ compensate time offset Estimate/ compensate frequency offset S/P MMSE Eq. FFT gM-(mT1;lT 0) ∆t aˆ ( M −1) (lT0 ) z ( M −1) (lT0 ) MMSE Eq. ∆f Estimation and compensation of time/frequency offsets can be done in the time domain. • Blind Synchronization. The drawback is that channel estimation cannot rely on known training symbols. • Cyclic Training Approach. We generate training sequences that exhibit a periodic behavior at the tx-rx side, similarly in spirit to Schmidl and Cox method in OFDM. • PN Training Approach. We generate PN training sequences. Ref: Assalini, Tonello, Proc. WPMC 2003 ; Tonello, Rossi, Proc. WPMC 2004. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 20 Bit-Error-Rate Performance with Time-Domain Sync. Timing Error Rayleigh Fading Channel with τrms=50 ns 10 0 10 -1 10 -2 1 coeff 5 coeff Rayleigh Fading Channel with τrms=100 ns 10 0 10 -1 10 -2 1 coeff 5 coeff Uncompensated BER BER Uncompensated Compensated SNR= 20 dB 10 SNR= 20 dB -3 0 0.2 Compensated 0.4 0.6 ∆t / T0 0.8 1 10 -3 0 0.2 0.4 0.6 ∆t / T0 0.8 1 4-PSK modulation, M=32 Sub-channels,Root-Cosine Pulses, Bandwidth 20 MHz. Performance drastically decreases without time/frequency compensation. Synchronization with random sequences and 1-5 Tap RLS equalizer. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 21 Bit-Error-Rate Performance Time-Domain Sync. Frequency Error Rayleigh Fading Channel with τrms=50 ns 10 0 10 -1 1 coeff 5 coeff Rayleigh Fading Channel with τrms=100 ns 10 0 10 -1 1 coeff 5 coeff Uncompensated 10 Compensated BER BER Uncompensated Compensated -2 10 -2 SNR=20 dB 10 SNR=20 dB -3 0 0.002 0.004 0.006 0.008 ∆f x MT 0.01 10 -3 0 0.002 0.004 0.006 0.008 ∆f x MT 0.01 The practical scheme with random training sequences performs well. A single tap equalizer is a good choice for delay spreads of ~100 ns. The performance of the synchronizer can be improved with a fine sync. method in the frequency domain. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 22 Remarks OFDM is an elegant simple solution to cope with the channel frequency selectivity. FMT can yield higher spectral efficiency than DMT/OFDM. The sub-channel spectral containment of FMT makes it more robust to time and carrier frequency offsets than OFDM. Time-Frequency acquisition is still of great importance. FMT can be more complex than DMT since it requires filtering and equalization: - we save complexity by using a smaller number of tones than in OFDM. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 23 Multiuser Multitone Architectures © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 24 Asynchronous Multiple Access Channel user 1 user 4 receiver user 2 user 3 user NU Consider the Uplink Users are asynchronous Time offsets between users (propagation delays) Carrier frequency offsets between users (oscillators, Doppler). Frequency Division Multiplexing is an Interesting Solution. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 25 Multitone Multiple Access user 1 frequency user 2 user 3 M total tones Groups of tones are assigned to users Each user deploys multicarrier modulation over its set of tones Several tone allocation methods are possible: 9 Orthogonal or non-orthogonal, Static or dynamic… © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 26 Solutions Two efficient implementation solutions 9 Multiuser DMT : MU-DMT (OFDMA) 9 Multiuser FMT : MU-FMT Ref: Tonello, Pupolin, Proc. WPMC 2001 ; Tonello, Bell Labs Tech. Journ. 2003. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 27 Received Composite Signal NU M −1 ∞ y (t ) = ∑ ∑ (u ,k ) (u ,k ) a ( lT ) g (t − ∆tu ,k − lT0 ; t )e ∑ R 0 j (2π∆fu ,k t +φu ,k ) + η (t ) u =1 k = 0 l =−∞ Time-variant channel response for user u and sub-channel k Time offset of user u and sub-channel k due to the propagation delay Carrier Frequency offset due to Doppler and oscillators precision Propagation delay: ∆t=6.6 us/km = 6.6 chips/km [B=1 MHz] Doppler: ∆ f=0.93 Hz [v=1 km/h -- fc=1 GHz] Oscillator: ∆ f=1000 Hz [fc=1 GHz -- 1 p.p.m] The values depend upon the hardware and the mobility/coverage requirements © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 28 MAI-ICI-ISI Components The interference depends upon - sub-carrier spacing - prototype filter - tone allocation Tone Allocation Block user 0 user 1 user 2 user 3 Interleaved user 0 user 1 user 2 user 3 • Block allocation yields lower MAI than the interleaved. • Tone interleaving is a better option to exploit the frequency diversity. • Frequency guards can be inserted only with the block allocation in OFDM. • The NCS-FMT architecture can comprise frequency guards. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 29 MU-OFDM Uplink Analysis © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 30 Interference in MU-OFDM (M+µ)T The system is orthogonal in an ideal synchronous channel. – Users’ time/frequency offsets generate MAI. A cyclic prefix can null the interference due to time misalignments. Interference from the carrier frequency offsets cannot be totally compensated. Ref: Tonello, Laurenti, Pupolin, Proc. ICT 2000, Proc. VTC 2000 Fall. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 31 MU-OFDM: SIR on Adjacent Sub-Carrier Block Multiplexing K=64 M=1024 Interleaved Multiplexing M=1024 © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 32 SIR with Block Allocation in MU-OFDM Block The SIR rapidly decreases as the frequency offset and the time offset increase. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 33 SIR with Interleaved Allocation in MU-OFDM Interleaved © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 34 SIR with Block Allocation and 1 Guard in MU-OFDM Block with 1 Frequency Guard © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 35 MU-OFDM: Average Symbol Error Rate Interleaved Block Block with One Frequency Guard 4-PSK, 16 users, 12 tones/user, µ=64, W=4.096 MHz. Excess time offsets and frequency offsets are independent and uniformly distributed between [-∆ l , + ∆ l ] and [-∆ f , +∆ f ] respectively. The channel has an exponential power delay profile with d.s.=10 µs. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 36 Remarks MU-OFDMA is severely affected by users’ time/frequency offsets in the uplink. Time/Frequency guards reduce the spectral efficiency. Acquisition of timing and carrier frequency is difficult. Due to the spectral containment characteristics, FMT is a better option than OFDM for the uplink. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 37 Optimal Multiuser Multitone Detection © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 38 Optimal MLSE/MAP Detection MF User 1, K=... Time/Frequency Sync User 1 MF User 1, K=2 MF User 1, K=1 y(t ) MF User NU, K=... Time/Frequency Sync User NU ICI Joint 3D MAP Detector ISI MAI MF User NU, K=2 MF User NU, K=1 • Optimal MAP Detection has a complexity that grows exponentially with the number of users, tones, and sub-channel memory. • With frequency concentrated pulses and orthogonal tone assignment it simplifies to a bank of single channel MAP detectors. Ref: Tonello, VTC 2002 Fall, Bell Labs Tech. Jour. 2003 © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 39 Turbo Per-Symbol Detection MF User 1, K=... Time/Frequency Sync User 1 MF User 1, K=2 MF User 1, K=1 y ( nT ) MF User NU, K=... Time/Frequency Sync User NU MF User NU, K=2 MF User NU , K=1 Symbol Detection Symbol Detection Symbol Detection Symbol Detection Symbol Detection Symbol Detection Simple approach • Symbol-by-symbol detection with iterative interference cancellation © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 40 Turbo Per-Symbol Decoding MF User 1, K=... Time/Frequency Sync User 1 MF User 1, K=1 Symbol Demapping + Soft/Hard IC P/S Deinterleaving Symbol Demapping + Soft/Hard IC Decoding User 1 Interleaving y ( nT ) Interleaving MF User N U, K=... Time/Frequency Sync User NU MF User N U, K=1 Symbol Demapping + Soft/Hard IC Symbol Demapping + Soft/Hard IC P/S Deinterleaving Decoding User NU • Feedback from the decoders if we assume to use bit-interleaved codes © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 41 Example of Multiuser Multitone System user 1 User 3 user 1 receiver receiver user 2 block user 2 1 1 2 2 User 4 3 4 interleaved 1 1 2 2 3 4 • 16 Total carriers • QPSK – ½ Convolutional Code • ∆t uniformly distributed in [- ∆tm/2, ∆tm/2] • ∆f uniformly distributed in [- ∆fm/2, ∆fm/2] © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 42 Sub-Channel Pulses DMT: Rectangular Pulse FMT: Gaussian Pulse MT MT 1/(MT) • Minimal sub-carrier spacing (no cyclic prefix) © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 43 BER Uncoded - Interleaved 2 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 4 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 -1 -1 10 10 #1 #1 #1 #1 -2 -2 10 Bit Error Rate Bit Error Rate 10 -3 -3 10 10 -4 10 -4 2 6 10 SNR (dB) 14 18 2 6 10 SNR (dB) 14 18 10 Uncoded ------ RECT pulses ------ GAUSS pulses © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 44 BER Uncoded - Interleaved 2 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 4 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 -1 -1 10 10 #1 #1 #1 #6 -3 10 -2 10 #2 Bit Error Rate 10 Bit Error Rate #1 #2 -2 #6 -3 10 #2 #2 #6 #6 -4 10 -4 2 6 10 SNR (dB) 14 18 2 6 10 SNR (dB) 14 18 10 Uncoded ------ RECT pulses ------ GAUSS pulses © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 45 BER Coded - Interleaved 2 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 4 Users - Interleaved - AWGN ∆tmax=T0/2 ∆f max=F0/8 -1 -1 10 10 #1 #1 #1 -2 10 #2 Bit Error Rate Bit Error Rate 10 #1 #1 #2 -2 #1 #6 #6 #1 -3 10 -3 10 #2 #1 #2 #2 #6 #6 #2 -4 10 -4 2 6 10 SNR (dB) 14 18 2 6 10 SNR (dB) 14 18 10 Coded ------ RECT pulses ------ GAUSS pulses © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 46 Remarks FMT is a better solution than DMT for uplink asynchronous communications: 9 Single user detection with sub-channel equalization works fine if we use appropriate frequency confined sub-channel pulses! Optimal performance can be achieved with multitone multiuser detection. Simple iterative per-symbol detection/decoding shows fast convergence to the matched filter bound. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 47 Synchronization in MU-FMT © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 48 MU-FMT Synchronization Algorithm We assume a single user receiver with training sequences and a 1-3 taps RLS equalizer per-sub-channel. Ref: Tonello, Pecile, Proc. VTC 2005 Spring. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 49 Multiuser FMT - Synchronization Performance 0 32 Users - Delay Spread=100 ns 0 10 32 Users - Delay Spread=400 ns 10 -1 -1 10 10 Uncomp. 1 Tap Uncomp. 3 Tap Comp. 1 Tap Comp. 3 Tap BER BER Uncomp. 1 Tap Comp. 1 Tap SNR=20 dB SNR=20 dB -2 -2 10 10 0 0.02 0.04 0.06 0.08 ∆ f,max x MT 0.1 0 0.02 0.04 0.06 0.08 ∆ f,max x MT 0.1 4-PSK Modulation, M=32 Sub-channels, Root-Cosine Pulses, Bandwidth 10 MHz , Frequency guards of 12.5 kHz. Training of length 15 symbols. Delay spread 100 ns and 400 ns. Users are time-asynchronous with a random phase, the frequency offsets are uniformly distributed in [-∆ fmax, ∆ fmax]. They have a single sub-channel each. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 50 Remarks The practical scheme with training sequences performs well. The MU-FMT architecture is very robust to the multiple access interference. Single user detection is simply required. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 51 Final Conclusion FMT is a promising technology that has great potentiality for the broadband uplink scenario ! © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 52 Some References Multicarrier Systems Performance Analysis • • • • • A. Tonello, "Performance limits for filtered multitone modulation in fading channels", IEEE Trans. on Wireless Comm., in press, subm. April 2003. A. Assalini, S. Pupolin, A. Tonello, “Analysis of the effects of phase noise in filtered multitone (FMT) modulated systems”, Proc. of IEEE Globecom 2004, Dallas, November 2004. A. Tonello, "Exact matched filter performance bound for filtered multitone modulation in fading channels", Proceedings of Wireless Personal Multimedia Communications Symposium 2003, Yokosuka, October 2003. A. Tonello, R. Bernardini, "On the exploitation of the time-frequency diversity in coded OFDM", Proceedings of Wireless Personal Multimedia Communications Symposium 2003, Yokosuka, October 2003. A. Tonello, "Performance limits of multicarrier based systems over fading channels with optimal detection", Proceedings of IEEE WPMC 02, Honolulu, October 2002. Multicarrier Multiuser Systems • • • • • • • • • A. Tonello, "Asynchronous multicarrier multiple access: optimal and sub-optimal detection and decoding", Bell Labs Technical Journal Fall 2002, vol. 7 issue 3, February 2003. A. Tonello, A. Assalini, "An asynchronous multitone multiuser air interface for high speed uplink communications", Proceedings of IEEE Vehicular Technology Conference 2003 Fall, Orlando, October 2003. A. Tonello, "Multiuser detection/decoding in asynchronous multitone multiple access systems", Proceedings of IEEE WPMC 02, Honolulu, October 2002. A. Tonello, "Multiuser detection and turbo multiuser decoding for asynchronous multitone multiple access systems", Proceedings of IEEE VTC 02-Fall, Vancouver, September 2002. A. Tonello, S. Pupolin, "Performance of single user detectors in multitone multiple access asynchronous communications", Proceedings of IEEE VTC 2002 Spring, Birmingham, Alabama, May 2002. A. Tonello, S. Pupolin, "Discrete multi-tone and filtered multi-tone architectures for broadband asynchronous multi-user communications", Proceedings of WPMC 2001,Aalborg, September 9-12, 2001. A. Tonello, N. Laurenti, S. Pupolin, "Analysis of the uplink of an asynchronous multi-user DMT OFDMA system impaired by time offsets, frequency offsets, and multi-path fading" , Proceedings of IEEE VTC 2000 - Fall, Boston, September 24-28, 2000. A. Tonello, N. Laurenti, S. Pupolin, "Capacity considerations on the uplink of a DMT OFDMA system impaired by time misalignments, and frequency offsets", in “Software Defined Radio”, Springer-Verlag, Del Re ed. 2000. A. Tonello, N. Laurenti, S. Pupolin, "On the effect of time and frequency offsets in the uplink of an asynchronous multi-user DMT OFDMA system", Proceedings of ICT 2000, Acapulco, May 22-25, 2000. Synchronization in Multicarrier Systems • • • A. Tonello, F. Pecile, “Synchronization Algorithms for Multiuser Filtered Multitone (FMT) Systems”, to appear in Proceedings of IEEE VTC 2005 Spring, Stockholm, Sweden. A. Tonello, F. Rossi, “Synchronization and Channel Estimation for Filtered Multitone Modulation”, Proceedings of Wireless Personal Multimedia Communications Symposium 2004, Abano Terme, September 2004. A. Assalini, A. Tonello, "Time-Frequency synchronization in filtered multitone modulation based systems", Proceedings of Wireless Personal Multimedia Communications Symposium 2003, Yokosuka, October 2003. Multicarrier Multiple Antenna Systems • • A. Tonello, "Orthogonal space-time discrete multitone and space-time filtered multitone coded architectures", Proceedings of IEEE Vehicular Technology Conference 2004 Spring, Milano, May 2004. A. Tonello, “A concatenated multitone multiple antenna scheme for multiuser uplink communications”, Proceedings of IEEE ITG Workshop on Smart Antennas, Munich, March 2004. © AMT - DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE 53