Dipartimento di Ingegneria Civile Corso di Laurea Specialistica in Ingegneria Civile N.O. Giuseppe Aronica Corso di Idrologia Tecnica PARTE I I processi idrologici Lezione III: Il ragguaglio spaziale delle precipitazioni 1 Dipartimento di Ingegneria Civile la variabilità spaziale delle piogge I processi idrologici altezze pioggia (mm) 1100 900 800 700 600 560 Giuseppe Aronica – Corso di Idrologia Tecnica 2 Dipartimento di Ingegneria Civile I processi idrologici Il ragguaglio spaziale delle precipitazioni DEFINIZIONE Si definisce SOLIDO DI PIOGGIA quel prismoide che ha come base inferiore la proiezione orizzontale dell’area in esame e come base superiore una superficie che si trova in ogni punto a una distanza dalla base inferiore pari all’altezza di pioggia caduta in quel punto Giuseppe Aronica – Corso di Idrologia Tecnica 3 Dipartimento di Ingegneria Civile I processi idrologici IL RAGGUAGLIO SPAZIALE DELLE PRECIPITAZIONI per calcolare l’afflusso meteorico su un bacino imbrifero, occorre passare dalle misure puntuali, eseguite in corrispondenza delle stazioni pluviometriche ricadenti all’interno del bacino e supposte coincidenti con il centro di scroscio dell’evento, a quelle ragguagliate all’intero bacino Giuseppe Aronica – Corso di Idrologia Tecnica 4 Dipartimento di Ingegneria Civile Giuseppe Aronica – Corso di Idrologia Tecnica I processi idrologici 5 Dipartimento di Ingegneria Civile I processi idrologici Il ragguaglio spaziale delle precipitazioni Informazione puntuale (altezze di pioggia contemporanee) Informazione variabile spazialmente hd, A = N N ∑ w i hd,i i =1 ∑ wi = 1 wi > 0 • Media aritmetica • Metodo dei topoieti (Thyessen) • Metodo delle isoiete (metodi geostatistici: linear Interpolation, IDW, Kriging) i =1 Giuseppe Aronica – Corso di Idrologia Tecnica 6 Dipartimento di Ingegneria Civile I processi idrologici Il ragguaglio spaziale delle precipitazioni Media aritmetica hd, A = Stazione hd,i (mm) 1 10.0 2 20.0 3 30.0 4 40.0 5 50.0 wi 0.2 hd,A 35.0 Nh d,i ∑ i =1 N 1 wi = N ☺ Semplicità applicativa ☺ Ridotti sforzi computazionali Nessun legame con la fisica del fenomeno Mancanza di una reale spazializzazione Giuseppe Aronica – Corso di Idrologia Tecnica 7 I processi idrologici Dipartimento di Ingegneria Civile Il ragguaglio spaziale delle precipitazioni Topoieti (poligoni di Thyessen) hd, A = a1 a2 N h ⋅a d,i i ∑ i =1 ai wi = A A Stazione hd,i (mm) ai wi w hd,i 1 10.0 10.2 0.11 1.10 2 20.0 28.2 0.30 6.0 3 30.0 11.5 0.12 3.6 4 40.0 20.0 0.22 8.8 5 50.0 23.5 0.25 12.5 93.4 1.00 Σ hd,A 32.0 ☺ Semplicità applicativa ☺ Ridotti sforzi computazionali Nessun legame con la fisica del fenomeno Mancanza di una reale spazializzazione Giuseppe Aronica – Corso di Idrologia Tecnica 8 I processi idrologici Dipartimento di Ingegneria Civile Isoiete Il ragguaglio spaziale delle precipitazioni Isoieta (mm) hd,m (mm) a wi wi hd,m <10 5.0 8.8 0.1 0.5 10-20 15.0 15.9 0.17 2.55 20-30 25.0 22.9 0.24 6.0 30-40 35.0 31.1 0.33 11.55 40-50 45.0 12.7 0.14 6.3 >50 53.0 2.0 0.02 1.06 93.4 1.00 Σ hd,A hd, A = Nh d,m ⋅ ai ∑ i =1 A a wi = i A ai = superficie compresa tra due isoiete hd,m = altezza media tra due isoiete 27.96 ☺ Fisicamente basato ☺ Reale spazializzazione del fenomeno Difficoltà applicative Elevati sforzi computazionali Giuseppe Aronica – Corso di Idrologia Tecnica 9 Dipartimento di Ingegneria Civile I processi idrologici Il ragguaglio spaziale delle precipitazioni Il tracciamento delle isoiete ISOIETE: linee continue che uniscono punti ad ugual altezza di pioggia Il tracciamento delle isoiete viene condotto mediante tecniche basate sulle strutture di correlazione spaziale: Metodi topografici: Interpolazione lineare, DQI (Distanza Quadratica Inversa) Metodi geostatistici: Kriging Giuseppe Aronica – Corso di Idrologia Tecnica 10 I processi idrologici Metodi topografici Dipartimento di Ingegneria Civile Giuseppe Aronica – Corso di Idrologia Tecnica 11 Dipartimento di Ingegneria Civile Giuseppe Aronica – Corso di Idrologia Tecnica I processi idrologici 12 Dipartimento di Ingegneria Civile I processi idrologici Il ragguaglio spaziale delle precipitazioni In alcuni casi (piccoli bacini, poche stazioni di misura, ecc..) il problema può essere risolto in forma empirica attraverso l’introduzione di opportuni fattori di riduzione dell’altezza di pioggia ARF = Areal Reduction Factor ARF = h(d, A) h(A) ARF = altezza totale di pioggia nel centro di scroscio altezza totale di pioggia mediata su un' area A int orno centro di scroscio Il fattore ARF: • è minore di 1 • dipende dalla superficie (decresce al crescere della superficie) • dipende dalla durata d (cresce al crescere della durata) • dipende dal tempo di ritorno T (leggermente!) Giuseppe Aronica – Corso di Idrologia Tecnica 13 I processi idrologici Dipartimento di Ingegneria Civile Il ragguaglio spaziale delle precipitazioni 1 1h 3h 6h 12 h 24 h ARF 0.9 0.8 0.7 USWB 0.6 1 ( ) ( 10 A (km 2 ) ARF = 1 − exp − 1 . 1 ⋅ d 0 .25 + exp − 1 . 1 ⋅ d 0 . 25 − 0 . 0386 ⋅ A Giuseppe Aronica – Corso di Idrologia Tecnica 100 ) U.S. Weather Bureau 14 I processi idrologici Dipartimento di Ingegneria Civile Il ragguaglio spaziale delle precipitazioni 1 1h 3h 6h 12 h 24 h ARF 0.95 0.9 0.85 FORNARI 0.8 1 ( ARF = 1 + 0 . 0012 ⋅ A ⋅ d − 0 . 2 )− 1 10 A (km 2 ) 100 Fornari Giuseppe Aronica – Corso di Idrologia Tecnica 15