The CanadianM ineralogist Vol.33,pp.7-11(1995) OF FICHTELITE, THECRYSTALSTRUCTURE HYDROCARBON A NATURALLYOCCURRING IIEATHERA. MACEar.ro RONALD C. PETERSON Departmentof GeolagicalSciences,Queen'sUnil)ersity,Kingstoa Ontario K7L 3N6 ABsrRAsr Fichtelire. C,JI-. is a satrratedhydrocarbonmineral that is monoclinic, spacegroup Y2y with a 10,706(4),b 7,458(2)' cIO.824(7)ipiOiSS1ll.,y831.4(ti) A3,Z=Z.Irsstrucurewasdeterminedbydirectmethodsusingll05observedreflecrefinement,producing an R index-of 4.6Vo.T\e fichtelite moleculecontains tions [F > :o* *iO a nrl-mafix least-squaras ttgeenonlineirly fusedsix-memberedcarbonrings with an angularmethyl, a methyl and an isopropyl group coordinatedto the rings in the structure. Keywords: fichtelite, hydrocarbon,crystalstructure,phenanthrene. Somr{ens nqasslinique, groupe spatialP2r, aveca 10.706(4)'b 7.458(2), La fichtelite. C,oHea,est un hydrocarbureou1u1g1 c 10.824(7)A, p fO':;.d'i<i1",y 8i1.4(8) A3,Z = 2. Sa structurea 6t6 d€termineeen utilisant 1105r6flexionsobservees fichtelite contient trois tF > 3oFj, jusqu'l un r6,siduR de 4,6% obtenupar m6thodede moindrescarrds.la mol&ule de la anneaur de six atomesde cmbonechacun,rattach6sde fagon non lindaire, avec des groupesm6thyl, m6thyl angulaire et isopropylecoordonn6sarD(anneaux. Mots-cll s: fichtelite, hydrocarbure,stucture cristalline,phenantbrdne. INIRoDUcfloN Fichtelite (CrsHs) was originally discoveredin fossilized pine trunks taken from peat beds in the Fichlelgebirge,locatedin southemGermany@romeis 1841); it was subsequentlydescribedby Strunz (1962).Acquisition of well-crystallizedfichlelite from Sobeslav,CzechRepublic,providedthe opportunityto solveits crystalstructure. Simonelliteand phylloretin (or retene;Simonsen& Barton 1952) are hydrocarboncompoundsrelated to fichtelite. Simonellite is found in liguite bedsin Italy (CpH2a,Foresti & Riva di Sanseverino1969), and fichtelite, along with phylloretin (C15H13iStrunz 1970),occursin peat beds in the wood of dead conifers. Fichtelite is present as white or yellowish crystals on compactpiecesof wood, betweonannual rings, in cracksand crevices,or along oleoresinducts (Sterling & Bogert 1939);the material also may be disseminatedin tle wood, and extractioncan yield fichtelite asthe major component(tloering 1967). The apparentorigin of fichtelite from the resin acids (i.e., abietic acid) of living pine trees is supported by its occurrencewith retene (a product of dehydrogenationof the resin acids; Burgstahler & Marx 1964). Rosin, the nonvolatile componentof oleoresinois a mixture of C2sofused-ring monocarboxylic acids in various stagesof isomerization;it and is domihas the generalformula CleH2eCOOH, nated by levopimaric and abietic acids, but also contains other related diterpeneacids: neoabietic, d-pimaric,7-it6-6-pimaric and dehydroabieticacids (Fieser & Fieser 1'949).Abietic acid is a main constituentin rosin (although a minor constituentin oleoresin),as well as being one of the importantresin acids in living conifers. It is susceptibleto numerous chemicaltansformations,andis sensitiveto heat acid isomerizationand autoxidation(Fieser& Fieser1949). Volatile oils evaporatewith progressing age of a deceasedplant, and the acidic componentsare left behind to harden and changethrough isomerization and processesof oxidation. The processof forming a fossil resin occursover a timescaleof monthsto thousandsof years,to producedifferent fossil productsof theresins(Weaver1978). In the diagenesisof fossil wood, varying chemical environmentsresult in different fossil-resin products from resin-acidprecursors.A highly reducingenvironmentleadsto saturationand decarboxylationof abietic acid to produce fichtelite; sulfur and a dehydrogenating environment alter fichtelite to phylloretin. With increasing age, the extent of decarboxylation TIIE CANADIAN MINERALOGIST increases,leadingto higher concentrationsof fossil resinsin decayingwood. The associationof fichtelite with phylloretin, and its occurrencealong oleoresin ductsin the wood, supportits origin from abietic-type resin acids. Structural similarity of fichtelite to the terpeneswould further supportthis origin. Fichtelite has been preparedthrough a number of syntheticprocesses:the cyctzation of trienols, reduction of abietic acids, decarboxylationof dihydroacids or catalytic dehydrogenationof dienemixtures(Jensen & Johnson1967,Johnsonet al. 1968.Taber& Saleh 1980,Burgstahler& Marx 1969). are clear and colorless,with a tabularhabit on {001} and showing elongationalong [010]. Using powdered crystalsin a capillary tube, a rangein melting point of 44.2 - 45.0C was obtained,which compareswell with a previously recordedvalue of 44.8 - 45.1"C (Jobnsonet al. L968). Data collection The powderpattemwasrecordedusing a 114.6-mm Debye-Scherrer camera with iron-filtered CoKcr X-radiation (L = 1.7902A). No shrinkageor absorption correctiotrswere made. as no back reflections E)csRnmt.lTAL were observed,and c[,1and oq could not be resolved. The refined nnit-cell values(Iable 1) differ from those Sample of Snunz (1962).The currentunit-cell is relatedto the earliercell by the transformation(TOOlOtOftOt). The sample,obtained from Forrest Cureton, conA single crystal (0.4 x 0.35 x 0.1 mm) was srudied sists of a piece of compacted,dried-out pine wood on an Enraf-Nonius CAD4 four-circle diffractometer with crystalscoveringan areaapproximately5 x I cm. using graphite-monochromated MoKcr X-radiation. The soft crystals,ranging from 0.5 to 3.0 mm across, The unit-cell dimensionswere determinedbv a leastTABIA 2 OOORDINATtsS OF C AND g ATOIAI tN FICf,1ELITE TABIT 1. POWDERPATTERNFOR FICI{TEUTE tno d(obs) (calc) l0 I 90 10J33 8.635 6585 6.lm 7.0 lm 5ffi 5% <1 90 1 <l 4.947 42y2 4.MA 3.710 3513 I 5 3.48 3245 <l 11?r 10.451 8.*t. 6.% 6.fir 6.048 5,618 5,f]r2 5.16 4.y)n 429o 4211 3307 3514 3507 3.4r7 3240 323,9 3.156 r0 3.gD 3,rx 3.030 2.944 3.AU 297 a 2588 2,W 25E8 3 2.4& 3 2.4r9 ) <l <I 2A L 2 2 2238 Lr94 2.150 <r t.966 258/ 2.465 2.46 2.4t8 2.417 2288 228/J 228 2.t90 2.16 2.t8 001 i01 101 011 I10 lrr br 2m 111 ir2 nr 2rz 021 7n lzr L2r l13 013 3lo 2r3 tu 212 303 123 400 ot4 mr i30 3t4 at3 ao Ia I05 b2 anrcnsiryvatuesweredeerminedvisullv. Rsfi!€d ceu dimensim ae 10.70(4), iTqSSe), o r0,8?AA A srA S tm.eS(3f c1 c2 c3 c4 c5 c6 cl CE c9 c10 clt ca c13 c14 ct5 cl6 cl7 ct8 cl9 E1 t9, I* g4 I'5 n IIE Er0 Hll Ht2 I{13 u14 815 III6 sj7 I{18 II19 M s2l tu, HZt tilA HZ5 W w TU w Il30 I{3I w2 0,r8{8) o2ut16) 03596(8) o3942tl' on8{q 0.4093(0 0.4189O 01959{6) 0rJ95(6) ailu(q or44G) 0.16J4{8) 0.!90qo o3rza o4a 02t2{r) 0.019(o 03213(8) o.1g2a 0r5{o 0.881(t o:tc\t) 0.135(t o574<' 0.653(t 0J06(t 0.446(4) 0.486(0 o662(t 0J0l(8) 0sn<g 0.m{4', 034(t 0.969(0 0.1244' o2gn o.w4{4:, 0J92(4) 0341ct) 8n0, 064(5' 0,09{t o,1w) -0.0u(8)' o {4). 0x3(5t oznc, M!4(q 033(t 0.lm(t 0.048(0 0.13r(0 10.ry27 '03419' os76l2) 0J73O oj:ne) 0frq2) 0.953(2) 0919|a) u71X2' 0il5Q' o.@1c2) 0,7q2, 096X2) -{.ffo) 0.0t8@ ot52p) 0.016(2) o.6r7c2) o.7j2r.2.) 0.4q1) -o.Go(a -o.a(l) 0416(8) -0165(8) 4213<9) Lg/2tn 0.6lso o,cr2{9) o43E(9) 03{o 0l3o) o.48qo 0.613(8) on$, o.ffi(o 0.6r(1) o2Ara ojcrD 0.1r(r) oJXl) oJ@{E) 032qo O09(r) 0.04(D 030(t 0336(9) o.@{t) oar(r) o.6a(0 0689(9 0.7(1) 0.8{r) 0.6233(E) 0.75@(8) 08411(8) 0A651(7) 0.?3J4(O ([?514(7) [r'56fn 0J177(6) oj&qo 0.634qO 03 (8) 01688(7) 02:78q6) w9ry/t 0.l55lc/) 0.r72(r) AMt2' 09575(8) 0.6699(9) 0J82(O 0.439(4) 0r6E(t o.?84(t 020(t 0,074<a 0.106(4) 068(4) 0S(6) 0r05(o 0.4q7) 03Zt(8) 0.46q4) 0.4?qt 0J96(O 0375(4) 0r34(o 0.s4t4) oxu<4') 0"s6c/) 0352A 0a514) 0.6(t 0.967g71 0.045(0 0.10(4) A {5, 0s2{t) 0r84(o 0.02(t 0J41(5) 0.6r7(t 0.695C0 0.0?1(4) 0,015(4) ost6<4) 0.61(3) oorgcl) 0,07q4) 0.ffi(3) 0.016(l) 0.61e) 0.066(3) o.sr{o 0rrq3) (169(' 0.06r(3) otnp, 0.1@(t 0.094(t 0.479(0 0.m(4) 0.q3) 0.(x(a o.08o) ottc2) 0.06(2) 0.€(2) o,w, 0,04(r) o,st8') oo(r) 0.l{4) 0.16(4) o02(o ost(4 0.u(3) 0.01(r) o.142' 0.02(1) 0.04(l) 0.12(3) o13(3) 0.0(2) o0l(a 0,14(J) 0.r2(J) 0sx2) ().(E(2) o16(J) 0.@(2) 0o4c2) om€., 0.G(2) orq3) TI{E STRUCTUREOF FICTITELITE TAEI.B 3. CARBON ATOM ANBOITTOUC DISPIACB'BJT u! cl c2 c3 cA c5 c6 ct cE c9 cro cll ct2 c13 c14 cr5 c16 cl? c18 cr9 84{6) ?qo e3(o 56(5) 5J(4) 6e(o 5xt 53(4) 53(4) 55(4) 103(7) 84(O 5(4) 5qt 5(5) ljq9) l1?(9) 9C') 46(t ua 54') 5J(o 6{0 6qt 6qt 61(6) a<, 54{t 44<4') 4q4) 3(5) 6(6) 62(t 65(0 r00(a 74{g 64{E) 85Cr) 85CD U:: -lr(t E{o ?3(o 6qt fl(' 70(O 7qt 6l(t 55{4) 66(4) 7?.6' 56(t 64(0 61(5) 57(, nQt 93O 58(O ?E(t uu us 7r(6) -7(J) 15(t 1g) 7(4) - t -lx4) -4<4' -5(3) -36) 4lS) -r(t 4(4) -8(4) 3{t -41t7) r3CO 10(6) 4(t o lte ft@ ol fre dtlpla@€d frdd ls 6pl-2ltu(r1)rfa" PARAMETRS r4(5) lqt n6, 9(3) ri(J) (O u(4) 18(9 roc) 7(3) l(t 214> t7(41 17(4) l{4) 10(q 21(O 2qt 24<4t (r Id) ud -4<4) 6(4) 14(t 44' -{4) -q4) -<4, -6(4) -5(J) W -4(4) -2{41 -3(O q4) 1!{t 2qO 15(6) (t qt + squaresfit of 25 automaticallycenteredreflections in the 2e scan range 6.72-20.28": a 10.706(4), The cell conb 7.458Q),c 10.824Q)A, p 105.85(3)o. with a cell volume(y) of 831.4(7)A3 tentis 2[C,eH3+l and a calculateddensity of 0.631 g/cm3.Intensitiesof three reflectionswere monitoredat one-houtintervals and showeda variation of less than 2Vo.A total of 2351 rcflectronswas collected (2o < 20 < 44') with i n d e x r a n g e- Isl < h < 1 1 , 0 < k 3 7 , a n r d - l l < l < 1 1 . The datawere then correctedfor Lorentz, polarization and background effects, and reduced to structure factors:of the 1118 uniquereflectionsmeasured,I 105 were classedasobserved[F > 3o"]. TABI:B4. BoNDLE{cTss (A) FoR TsB FI(gTBfiE Mq.BcIIa rJ2(r) 1J1(1) r5?12' rJ5{1) rJq2) rJ3(2) 1J4(8) 1J2(1) $a{e) r54<2) lJ3(r) rJ(1) 1.49q9) lJ1(r) t52\2) r.54<2) 1J41(9) 1J50) r5x2', 1.48(l) cl-El c2-I$ e-84 c3-IT' c3 - 116 cA -91 c5-s8 c6-B c6 - Iilo g/-su ct -st2 c8 - gt3 c9 - El4 clt - E15 cll - 816 ct2 -g't1 cu - rr18 c13- 819 cr4 -rr20 ct4-ml cts-'u ct6-p6 ct6-w, co-Pg q7 -m4 c17-Ut c18 - tuE cl8-p9 cl8-E[ c19- S31 ct9 - Et2 c19-q33 Crystallographiccalculationswere done using the Xtal 3.0 software (Hail & Stewart 1990)' Full-manix least-squaresrefinement convergedto an R index of 4.6Vofor 19 atomsof carbonand 33 of hydrogenwith isotropic displacementfactors for the hydrogenatoms and anisotropicfactors for the carbon atoms.Atomic coordinatesand isofiopic atomic displacementfactors are listed in Table 2, anisofropicatomic displacement factors in Table 3, and bond lengthsin Table 4. Bond angles and structure-factortables are available from the Depository of UnpublishedData" CISTI, National ResearchCouncil of Canada,Ottawa,Ontario KIA 0s2. DrscussloN Il p,4eb'2 + I)6;1Ft'2 + 2.1! 6,arhb'b' + 2l!o,11tla'c' + Xl ea M c1l, cl -c2 c2-c3 c3-ct c4-c5 c4 - clE c 3- 6 6-C10 c6-c? (l, -ct c8-c9 c8 - cr4 c9 - c10 c9 - clt clo - c19 cll - cl2 cl2 - cl3 c13- C14 c13- Cr:t cr5 - cr6 cl5 - c17 Structuredeterminationand refi.nement The fundamentalmoleculein fichtelite (Fig. 1) has stucture: there are threenona perhydrophenanthrene linearly fused, six-membered,saturatedcarbon rings in chair conformation,$dth an axial methyl group, an angularmethyl group and an isopropyl group attached to the carbonrings. Figure 2 showsthe structuralsimilarity of fichtelite to abietic acid, in that both possessa similar phenantlrenesfructure,along with the attached angular methyl and isopropyl groups.The difference lies in the absenceof the carboxylicgroupin fichtette. Phylloretin also resemblesthe basic skeleton of fichtelite, although it lacks the angularmethyl group' andits rings arc unsaturated.The fichtelite moleculeis also structurally s'imilarto that of simonellite @oresti & Riva di Sanseverino1969).Simonellitehas tlree nonlinearlyfused rings with attachedisopropyl and two methyl groups;unlike fichtelite, it doesnot have an angularmethyl group, and is partially aromaticin nature. 0.E5{u) 1.oqr) 125(O 0.e8(o 1.r7(r) 1.6(t r.u(t 0r5(t 1.r3(7) r.r(r) 096(1) 034(4) 13l(t r35(/) 0J(t r3l(r) 089(4) 1.m€) 094(r) 13qr) Ln(q 0.t(2) o.rqq o67(t 1.19(S) uq9) rc(E) 1.f(8) 0.7r(t Lm(o O :5, 091(E) FIc. 1. A general view of the flchtelite molecule showing three fused six-membered carbon rings with attached metlyl, angularmethyl and isopropyl groups.The large circles representcarbon atoms, and the small circles representhydrogenatoms. t0 TTIE CANADIAN MINERALOGIST Ftc. 2. The stuctural similarity among (a) fichtelite, (b) simonellite (Foresti & Riva di Sanseverino1969),(c) phyllorerin,and (d) abieticacid (Hoering 1967). The location of the hydrogen attachedto C16 (Frg. 1) in the isopropyl group was not determined. The low steric hindrance(i.e., a low barrier to rotation) of the isopropyl group resultsin a higher magnitude of thermal motion and increaseddifficultv in locating the correct positive electrondensity correspondingto the hydrogenatom. This is apparentin Table 4: C16 has a larger displacement-factor than the othercarbonatoms. A chair conformation is observed in the rines. which is normal for rings of sp3-hybridizedcarbon,"in order to minimize angle strain; the chair conformation is associatedwith an expected109.5. angle (Banks 1976). All bond anglesin tle rings agreewith the expectedvalue; the anglesalso are consistentwith thosein the structureof simonellite@oresti& Riva di Sanseverino1969).Minor deviationsfrom idealifv are athibutableto steric constraintsof the structure,*ncn necessitatelargegbond-angles.For example,the angle formedby C10{9{11 (whereC9 is the apex)is the largestat 114.8'. There is a large degreeof crowding at this intersection, and the structure must distort to minimize steric ihterference.As there are no double bonds in the structure,the expectedlength of C-C bondsis 1.53A, and C-H bondsare expectedto be 1.09 A (Ege 1989). Observedbond-distancesagree with thesevalues,any deviationsbeing attributableto the conformation of the rings. Shorter C-H bondlengthsare observedfor C16 and C17 atoms,which are part of the isopropyl group. The C atomsshow larger displacement-factors(related to larger thermal motion), which" in turn, would contribute to shorter bond-lengths.Displacementfactors are higher for those atoms not associatedwith the phenanthrene skeleton.Although they are not part of the isopropyl group, Cl1 and C19 also show short C-H bondlengths, whereasthe C9-C10 bond is long. In this case,short C-H and long C-C bonds alleviate the overcrowdingaroundboth setsof carbonatoms.This is consistentwith characteristicsof the related strustures of simonellite(Foresti & Riva di Sanseverino 1969)andphenantbrene (Trotter1963). AcI(r.{owI-EDGuvB.ITs We thank Forrest Curetonfor supplying the specimen, and Dr. R.D. Heyding for assistancewith the powder pattern.This researchwas supportedby an NSERC grant to R.C.P.We also ttrank an anon1imous refereefor commentson the original manuscript. OF FICHTELNE TTIB STRUCTI,JRE Rnrmmqcss Barrs, J.E. (1976): Narning Organic Compoun'ds(second ed.). SaundersCollege Publishing, Philadelphia, Pennsylvania. BRoMBrs,C. (1841): Uber den Fichtelite.Just. Lieb. Ann. Chem37,30+306. A.W. & MARX,J.N. (1964): The synthesis BL,rRGsrArtrrR, and stereochemistryof fichtelite. Tetahedron ktL 45, 3333-3338. 11 N.P., Hooz, J. & Lsopolo, E.I. JortrlsoN,W.S., JENSEN, (1968):Allylic cation promotedolefinic cyclizations.The stereospecific formation of a tricyclic system and the total synthesis of /l-fichtelite. J. Am. Chem. Soc. 90, 5872-5881. J.L. & Bentor, D.H.R. (1952): The Terpenes SuvroNssN, (seconded., vol. III). CambridgeUniversity Press' Cambridge,U.K. E.C. & Bocnnr, M.T. (1939): The synthesisof STERLtr{c. l2-methylperhydroretene(abietane)and its non-identity with flchtelite. ./. org. Chem.4, 20-28. (1969): Sfnthesis of fichtelite and & related derivativesof abietare.J, Org. Chern.Y, 1562' 1566. SrnuNz, H. (1962): Fichtefit. Dimethyl-isopropyl-perhydroohenanthren.Narnnuissen49, 9-10. Ecr, S. (1989): Organic Chemistry(seconded.). D.C. Heath and Company,Toronto,Ontario. (1970): Mineralogishe Tabellen. Akademische VerlagsgesellschaftGeest & Portig K.-G.' Leipzig, Germany. Fnsm, L.F. & Flssm, M. (1949):Natural ProductsRelated to Pherwnthrene.ReinholdPubl. Corp.,New Yorl N.Y. FoREsrr,E. & RrvA pr SeNssvRINo,L. (1969): The X-ray crystal and molecular structure of an organic mineral: simonellite, CeH2a.Axi Accad-Naz Lincei, Cl. Sci. Fis. Mat. Nat, Rend-4fl,4l-54. Her,r.,S.R. & Srswant, J.M., eds. (1990): Xtal 3.0. Universities of WesternAustralia and Maryland lamb, Perth,AustraliaHomrNc, T.C. (1967): Fichtelite hydrocarbonsin fossil wood. CarnzgieInst, Waslu,YearBooktl,203-205. TABER.D.F. & Sar-su,S.A. (1980): Intramoleculardielsalder route to angularly substituted perhydrophenantlrenes. Synthesis of (t)-fichtelite. J. Am. Chem. Soc. 102.5085-5088. Thorrsn, J. (1963): The crystal and molecular structure of phenanthrene. Acta Crystallosr. 16' 605-608. WBAVER,J.C. (1978): Resins, Natural. /n Kirk-Othmer Encyclopediaof ChemicalTechnology(third ed.,vol. 20; C.I. Eashan, C. Golojuch, A. Klingsberg, G. Waldman & M. Wainwdgbt, eds.).JohnWiley & Sons,New York' N.Y. (197-206). Jm{sE}l,N.P. & JomwoN,W.S. (L967):A three-stepsynthesis Received.June 17, 1993,revised.rnanuscriptaccepted of fichtelite from abietic acrd.J. Org. Chem,32,2M1 May 26, 1994. 2M6.