The CanadianM ineralogist
Vol.33,pp.7-11(1995)
OF FICHTELITE,
THECRYSTALSTRUCTURE
HYDROCARBON
A NATURALLYOCCURRING
IIEATHERA.
MACEar.ro RONALD C. PETERSON
Departmentof GeolagicalSciences,Queen'sUnil)ersity,Kingstoa Ontario K7L 3N6
ABsrRAsr
Fichtelire. C,JI-. is a satrratedhydrocarbonmineral that is monoclinic, spacegroup Y2y with a 10,706(4),b 7,458(2)'
cIO.824(7)ipiOiSS1ll.,y831.4(ti) A3,Z=Z.Irsstrucurewasdeterminedbydirectmethodsusingll05observedreflecrefinement,producing an R index-of 4.6Vo.T\e fichtelite moleculecontains
tions [F > :o* *iO a nrl-mafix least-squaras
ttgeenonlineirly fusedsix-memberedcarbonrings with an angularmethyl, a methyl and an isopropyl group coordinatedto the
rings in the structure.
Keywords: fichtelite, hydrocarbon,crystalstructure,phenanthrene.
Somr{ens
nqasslinique, groupe spatialP2r, aveca 10.706(4)'b 7.458(2),
La fichtelite. C,oHea,est un hydrocarbureou1u1g1
c 10.824(7)A, p fO':;.d'i<i1",y 8i1.4(8) A3,Z = 2. Sa structurea 6t6 d€termineeen utilisant 1105r6flexionsobservees
fichtelite contient trois
tF > 3oFj, jusqu'l un r6,siduR de 4,6% obtenupar m6thodede moindrescarrds.la mol&ule de la
anneaur de six atomesde cmbonechacun,rattach6sde fagon non lindaire, avec des groupesm6thyl, m6thyl angulaire et
isopropylecoordonn6sarD(anneaux.
Mots-cll s: fichtelite, hydrocarbure,stucture cristalline,phenantbrdne.
INIRoDUcfloN
Fichtelite (CrsHs) was originally discoveredin
fossilized pine trunks taken from peat beds in the
Fichlelgebirge,locatedin southemGermany@romeis
1841); it was subsequentlydescribedby Strunz
(1962).Acquisition of well-crystallizedfichlelite from
Sobeslav,CzechRepublic,providedthe opportunityto
solveits crystalstructure.
Simonelliteand phylloretin (or retene;Simonsen&
Barton 1952) are hydrocarboncompoundsrelated to
fichtelite. Simonellite is found in liguite bedsin Italy
(CpH2a,Foresti & Riva di Sanseverino1969), and
fichtelite, along with phylloretin (C15H13iStrunz
1970),occursin peat beds in the wood of dead
conifers. Fichtelite is present as white or yellowish
crystals on compactpiecesof wood, betweonannual
rings, in cracksand crevices,or along oleoresinducts
(Sterling & Bogert 1939);the material also may be
disseminatedin tle wood, and extractioncan yield
fichtelite asthe major component(tloering 1967).
The apparentorigin of fichtelite from the resin
acids (i.e., abietic acid) of living pine trees is supported by its occurrencewith retene (a product of
dehydrogenationof the resin acids; Burgstahler &
Marx 1964). Rosin, the nonvolatile componentof
oleoresinois a mixture of C2sofused-ring monocarboxylic acids in various stagesof isomerization;it
and is domihas the generalformula CleH2eCOOH,
nated by levopimaric and abietic acids, but also
contains other related diterpeneacids: neoabietic,
d-pimaric,7-it6-6-pimaric and dehydroabieticacids
(Fieser & Fieser 1'949).Abietic acid is a main
constituentin rosin (although a minor constituentin
oleoresin),as well as being one of the importantresin
acids in living conifers. It is susceptibleto numerous
chemicaltansformations,andis sensitiveto heat acid
isomerizationand autoxidation(Fieser& Fieser1949).
Volatile oils evaporatewith progressing age of a
deceasedplant, and the acidic componentsare left
behind to harden and changethrough isomerization
and processesof oxidation. The processof forming a
fossil resin occursover a timescaleof monthsto thousandsof years,to producedifferent fossil productsof
theresins(Weaver1978).
In the diagenesisof fossil wood, varying chemical
environmentsresult in different fossil-resin products
from resin-acidprecursors.A highly reducingenvironmentleadsto saturationand decarboxylationof abietic
acid to produce fichtelite; sulfur and a dehydrogenating environment alter fichtelite to phylloretin.
With increasing age, the extent of decarboxylation
TIIE CANADIAN MINERALOGIST
increases,leadingto higher concentrationsof fossil
resinsin decayingwood. The associationof fichtelite
with phylloretin, and its occurrencealong oleoresin
ductsin the wood, supportits origin from abietic-type
resin acids. Structural similarity of fichtelite to the
terpeneswould further supportthis origin.
Fichtelite has been preparedthrough a number of
syntheticprocesses:the cyctzation of trienols, reduction of abietic acids, decarboxylationof dihydroacids
or catalytic dehydrogenationof dienemixtures(Jensen
& Johnson1967,Johnsonet al. 1968.Taber& Saleh
1980,Burgstahler& Marx 1969).
are clear and colorless,with a tabularhabit on {001}
and showing elongationalong [010]. Using powdered
crystalsin a capillary tube, a rangein melting point of
44.2 - 45.0C was obtained,which compareswell
with a previously recordedvalue of 44.8 - 45.1"C
(Jobnsonet al. L968).
Data collection
The powderpattemwasrecordedusing a 114.6-mm
Debye-Scherrer camera with iron-filtered CoKcr
X-radiation (L = 1.7902A). No shrinkageor absorption correctiotrswere made. as no back reflections
E)csRnmt.lTAL
were observed,and c[,1and oq could not be resolved.
The refined nnit-cell values(Iable 1) differ from those
Sample
of Snunz (1962).The currentunit-cell is relatedto the
earliercell by the transformation(TOOlOtOftOt).
The sample,obtained from Forrest Cureton, conA single crystal (0.4 x 0.35 x 0.1 mm) was srudied
sists of a piece of compacted,dried-out pine wood on an Enraf-Nonius CAD4 four-circle diffractometer
with crystalscoveringan areaapproximately5 x I cm. using graphite-monochromated
MoKcr X-radiation.
The soft crystals,ranging from 0.5 to 3.0 mm across, The unit-cell dimensionswere determinedbv a leastTABIA 2 OOORDINATtsS OF C AND g ATOIAI tN FICf,1ELITE
TABIT 1. POWDERPATTERNFOR FICI{TEUTE
tno
d(obs)
(calc)
l0
I
90
10J33
8.635
6585
6.lm
7.0
lm
5ffi
5%
<1
90
1
<l
4.947
42y2
4.MA
3.710
3513
I
5
3.48
3245
<l
11?r
10.451
8.*t.
6.%
6.fir
6.048
5,618
5,f]r2
5.16
4.y)n
429o
4211
3307
3514
3507
3.4r7
3240
323,9
3.156
r0
3.gD
3,rx
3.030
2.944
3.AU
297
a
2588
2,W
25E8
3
2.4&
3
2.4r9
)
<l
<I
2A
L
2
2
2238
Lr94
2.150
<r
t.966
258/
2.465
2.46
2.4t8
2.417
2288
228/J
228
2.t90
2.16
2.t8
001
i01
101
011
I10
lrr
br
2m
111
ir2
nr
2rz
021
7n
lzr
L2r
l13
013
3lo
2r3
tu
212
303
123
400
ot4
mr
i30
3t4
at3
ao
Ia
I05
b2
anrcnsiryvatuesweredeerminedvisullv.
Rsfi!€d ceu dimensim ae 10.70(4), iTqSSe),
o r0,8?AA A srA S tm.eS(3f
c1
c2
c3
c4
c5
c6
cl
CE
c9
c10
clt
ca
c13
c14
ct5
cl6
cl7
ct8
cl9
E1
t9,
I*
g4
I'5
n
IIE
Er0
Hll
Ht2
I{13
u14
815
III6
sj7
I{18
II19
M
s2l
tu,
HZt
tilA
HZ5
W
w
TU
w
Il30
I{3I
w2
0,r8{8)
o2ut16)
03596(8)
o3942tl'
on8{q
0.4093(0
0.4189O
01959{6)
0rJ95(6)
ailu(q
or44G)
0.16J4{8)
0.!90qo
o3rza
o4a
02t2{r)
0.019(o
03213(8)
o.1g2a
0r5{o
0.881(t
o:tc\t)
0.135(t
o574<'
0.653(t
0J06(t
0.446(4)
0.486(0
o662(t
0J0l(8)
0sn<g
0.m{4',
034(t
0.969(0
0.1244'
o2gn
o.w4{4:,
0J92(4)
0341ct)
8n0,
064(5'
0,09{t
o,1w)
-0.0u(8)'
o {4).
0x3(5t
oznc,
M!4(q
033(t
0.lm(t
0.048(0
0.13r(0
10.ry27
'03419'
os76l2)
0J73O
oj:ne)
0frq2)
0.953(2)
0919|a)
u71X2'
0il5Q'
o.@1c2)
0,7q2,
096X2)
-{.ffo)
0.0t8@
ot52p)
0.016(2)
o.6r7c2)
o.7j2r.2.)
0.4q1)
-o.Go(a
-o.a(l)
0416(8)
-0165(8)
4213<9)
Lg/2tn
0.6lso
o,cr2{9)
o43E(9)
03{o
0l3o)
o.48qo
0.613(8)
on$,
o.ffi(o
0.6r(1)
o2Ara
ojcrD
0.1r(r)
oJXl)
oJ@{E)
032qo
O09(r)
0.04(D
030(t
0336(9)
o.@{t)
oar(r)
o.6a(0
0689(9
0.7(1)
0.8{r)
0.6233(E)
0.75@(8)
08411(8)
0A651(7)
0.?3J4(O
([?514(7)
[r'56fn
0J177(6)
oj&qo
0.634qO
03 (8)
01688(7)
02:78q6)
w9ry/t
0.l55lc/)
0.r72(r)
AMt2'
09575(8)
0.6699(9)
0J82(O
0.439(4)
0r6E(t
o.?84(t
020(t
0,074<a
0.106(4)
068(4)
0S(6)
0r05(o
0.4q7)
03Zt(8)
0.46q4)
0.4?qt
0J96(O
0375(4)
0r34(o
0.s4t4)
oxu<4')
0"s6c/)
0352A
0a514)
0.6(t
0.967g71
0.045(0
0.10(4)
A {5,
0s2{t)
0r84(o
0.02(t
0J41(5)
0.6r7(t
0.695C0
0.0?1(4)
0,015(4)
ost6<4)
0.61(3)
oorgcl)
0,07q4)
0.ffi(3)
0.016(l)
0.61e)
0.066(3)
o.sr{o
0rrq3)
(169('
0.06r(3)
otnp,
0.1@(t
0.094(t
0.479(0
0.m(4)
0.q3)
0.(x(a
o.08o)
ottc2)
0.06(2)
0.€(2)
o,w,
0,04(r)
o,st8')
oo(r)
0.l{4)
0.16(4)
o02(o
ost(4
0.u(3)
0.01(r)
o.142'
0.02(1)
0.04(l)
0.12(3)
o13(3)
0.0(2)
o0l(a
0,14(J)
0.r2(J)
0sx2)
().(E(2)
o16(J)
0.@(2)
0o4c2)
om€.,
0.G(2)
orq3)
TI{E STRUCTUREOF FICTITELITE
TAEI.B 3. CARBON ATOM ANBOITTOUC DISPIACB'BJT
u!
cl
c2
c3
cA
c5
c6
ct
cE
c9
cro
cll
ct2
c13
c14
cr5
c16
cl?
c18
cr9
84{6)
?qo
e3(o
56(5)
5J(4)
6e(o
5xt
53(4)
53(4)
55(4)
103(7)
84(O
5(4)
5qt
5(5)
ljq9)
l1?(9)
9C')
46(t
ua
54')
5J(o
6{0
6qt
6qt
61(6)
a<,
54{t
44<4')
4q4)
3(5)
6(6)
62(t
65(0
r00(a
74{g
64{E)
85Cr)
85CD
U::
-lr(t
E{o
?3(o
6qt
fl('
70(O
7qt
6l(t
55{4)
66(4)
7?.6'
56(t
64(0
61(5)
57(,
nQt
93O
58(O
?E(t
uu
us
7r(6)
-7(J)
15(t
1g)
7(4)
- t
-lx4)
-4<4'
-5(3)
-36)
4lS)
-r(t
4(4)
-8(4)
3{t
-41t7)
r3CO
10(6)
4(t
o lte ft@ ol fre dtlpla@€d frdd ls 6pl-2ltu(r1)rfa"
PARAMETRS
r4(5)
lqt
n6,
9(3)
ri(J)
(O
u(4)
18(9
roc)
7(3)
l(t
214>
t7(41
17(4)
l{4)
10(q
21(O
2qt
24<4t
(r Id)
ud
-4<4)
6(4)
14(t
44'
-{4)
-q4)
-<4,
-6(4)
-5(J)
W
-4(4)
-2{41
-3(O
q4)
1!{t
2qO
15(6)
(t
qt
+
squaresfit of 25 automaticallycenteredreflections in
the 2e scan range 6.72-20.28": a 10.706(4),
The cell conb 7.458Q),c 10.824Q)A, p 105.85(3)o.
with a cell volume(y) of 831.4(7)A3
tentis 2[C,eH3+l
and a calculateddensity of 0.631 g/cm3.Intensitiesof
three reflectionswere monitoredat one-houtintervals
and showeda variation of less than 2Vo.A total of
2351 rcflectronswas collected (2o < 20 < 44') with
i n d e x r a n g e- Isl < h < 1 1 , 0 < k 3 7 , a n r d - l l < l < 1 1 .
The datawere then correctedfor Lorentz, polarization
and background effects, and reduced to structure
factors:of the 1118 uniquereflectionsmeasured,I 105
were classedasobserved[F > 3o"].
TABI:B4. BoNDLE{cTss (A) FoR TsB FI(gTBfiE Mq.BcIIa
rJ2(r)
1J1(1)
r5?12'
rJ5{1)
rJq2)
rJ3(2)
1J4(8)
1J2(1)
$a{e)
r54<2)
lJ3(r)
rJ(1)
1.49q9)
lJ1(r)
t52\2)
r.54<2)
1J41(9)
1J50)
r5x2',
1.48(l)
cl-El
c2-I$
e-84
c3-IT'
c3 - 116
cA -91
c5-s8
c6-B
c6 - Iilo
g/-su
ct -st2
c8 - gt3
c9 - El4
clt - E15
cll - 816
ct2 -g't1
cu - rr18
c13- 819
cr4 -rr20
ct4-ml
cts-'u
ct6-p6
ct6-w,
co-Pg
q7 -m4
c17-Ut
c18 - tuE
cl8-p9
cl8-E[
c19- S31
ct9 - Et2
c19-q33
Crystallographiccalculationswere done using the
Xtal 3.0 software (Hail & Stewart 1990)' Full-manix
least-squaresrefinement convergedto an R index of
4.6Vofor 19 atomsof carbonand 33 of hydrogenwith
isotropic displacementfactors for the hydrogenatoms
and anisotropicfactors for the carbon atoms.Atomic
coordinatesand isofiopic atomic displacementfactors
are listed in Table 2, anisofropicatomic displacement
factors in Table 3, and bond lengthsin Table 4. Bond
angles and structure-factortables are available from
the Depository of UnpublishedData" CISTI, National
ResearchCouncil of Canada,Ottawa,Ontario KIA
0s2.
DrscussloN
Il p,4eb'2 + I)6;1Ft'2 + 2.1!
6,arhb'b' + 2l!o,11tla'c' + Xl ea M c1l,
cl -c2
c2-c3
c3-ct
c4-c5
c4 - clE
c 3- 6
6-C10
c6-c?
(l, -ct
c8-c9
c8 - cr4
c9 - c10
c9 - clt
clo - c19
cll - cl2
cl2 - cl3
c13- C14
c13- Cr:t
cr5 - cr6
cl5 - c17
Structuredeterminationand refi.nement
The fundamentalmoleculein fichtelite (Fig. 1) has
stucture: there are threenona perhydrophenanthrene
linearly fused, six-membered,saturatedcarbon rings
in chair conformation,$dth an axial methyl group, an
angularmethyl group and an isopropyl group attached
to the carbonrings. Figure 2 showsthe structuralsimilarity of fichtelite to abietic acid, in that both possessa
similar phenantlrenesfructure,along with the attached
angular methyl and isopropyl groups.The difference
lies in the absenceof the carboxylicgroupin fichtette.
Phylloretin also resemblesthe basic skeleton of
fichtelite, although it lacks the angularmethyl group'
andits rings arc unsaturated.The fichtelite moleculeis
also structurally s'imilarto that of simonellite @oresti
& Riva di Sanseverino1969).Simonellitehas tlree
nonlinearlyfused rings with attachedisopropyl and
two methyl groups;unlike fichtelite, it doesnot have
an angularmethyl group, and is partially aromaticin
nature.
0.E5{u)
1.oqr)
125(O
0.e8(o
1.r7(r)
1.6(t
r.u(t
0r5(t
1.r3(7)
r.r(r)
096(1)
034(4)
13l(t
r35(/)
0J(t
r3l(r)
089(4)
1.m€)
094(r)
13qr)
Ln(q
0.t(2)
o.rqq
o67(t
1.19(S)
uq9)
rc(E)
1.f(8)
0.7r(t
Lm(o
O :5,
091(E)
FIc. 1. A general view of the flchtelite molecule showing
three fused six-membered carbon rings with attached
metlyl, angularmethyl and isopropyl groups.The large
circles representcarbon atoms, and the small circles
representhydrogenatoms.
t0
TTIE CANADIAN MINERALOGIST
Ftc. 2. The stuctural similarity among (a) fichtelite, (b) simonellite (Foresti & Riva di
Sanseverino1969),(c) phyllorerin,and (d) abieticacid (Hoering 1967).
The location of the hydrogen attachedto C16
(Frg. 1) in the isopropyl group was not determined.
The low steric hindrance(i.e., a low barrier to rotation) of the isopropyl group resultsin a higher magnitude of thermal motion and increaseddifficultv in
locating the correct positive electrondensity correspondingto the hydrogenatom. This is apparentin
Table 4: C16 has a larger displacement-factor
than the
othercarbonatoms.
A chair conformation is observed in the rines.
which is normal for rings of sp3-hybridizedcarbon,"in
order to minimize angle strain; the chair conformation
is associatedwith an expected109.5. angle (Banks
1976). All bond anglesin tle rings agreewith the
expectedvalue; the anglesalso are consistentwith
thosein the structureof simonellite@oresti& Riva di
Sanseverino1969).Minor deviationsfrom idealifv are
athibutableto steric constraintsof the structure,*ncn
necessitatelargegbond-angles.For example,the angle
formedby C10{9{11 (whereC9 is the apex)is the
largestat 114.8'. There is a large degreeof crowding
at this intersection, and the structure must distort to
minimize steric ihterference.As there are no double
bonds in the structure,the expectedlength of C-C
bondsis 1.53A, and C-H bondsare expectedto be
1.09 A (Ege 1989). Observedbond-distancesagree
with thesevalues,any deviationsbeing attributableto
the conformation of the rings. Shorter C-H bondlengthsare observedfor C16 and C17 atoms,which
are part of the isopropyl group. The C atomsshow
larger displacement-factors(related to larger thermal
motion), which" in turn, would contribute to shorter
bond-lengths.Displacementfactors are higher for
those atoms not associatedwith the phenanthrene
skeleton.Although they are not part of the isopropyl
group, Cl1 and C19 also show short C-H bondlengths, whereasthe C9-C10 bond is long. In this
case,short C-H and long C-C bonds alleviate the
overcrowdingaroundboth setsof carbonatoms.This
is consistentwith characteristicsof the related strustures of simonellite(Foresti & Riva di Sanseverino
1969)andphenantbrene
(Trotter1963).
AcI(r.{owI-EDGuvB.ITs
We thank Forrest Curetonfor supplying the specimen, and Dr. R.D. Heyding for assistancewith the
powder pattern.This researchwas supportedby an
NSERC grant to R.C.P.We also ttrank an anon1imous
refereefor commentson the original manuscript.
OF FICHTELNE
TTIB STRUCTI,JRE
Rnrmmqcss
Barrs, J.E. (1976): Narning Organic Compoun'ds(second
ed.). SaundersCollege Publishing, Philadelphia,
Pennsylvania.
BRoMBrs,C. (1841): Uber den Fichtelite.Just. Lieb. Ann.
Chem37,30+306.
A.W. & MARX,J.N. (1964): The synthesis
BL,rRGsrArtrrR,
and stereochemistryof fichtelite. Tetahedron ktL 45,
3333-3338.
11
N.P., Hooz, J. & Lsopolo, E.I.
JortrlsoN,W.S., JENSEN,
(1968):Allylic cation promotedolefinic cyclizations.The
stereospecific formation of a tricyclic system and the
total synthesis of /l-fichtelite. J. Am. Chem. Soc. 90,
5872-5881.
J.L. & Bentor, D.H.R. (1952): The Terpenes
SuvroNssN,
(seconded., vol. III). CambridgeUniversity Press'
Cambridge,U.K.
E.C. & Bocnnr, M.T. (1939): The synthesisof
STERLtr{c.
l2-methylperhydroretene(abietane)and its non-identity
with flchtelite. ./. org. Chem.4, 20-28.
(1969): Sfnthesis of fichtelite and
& related derivativesof abietare.J, Org. Chern.Y, 1562'
1566.
SrnuNz, H. (1962): Fichtefit. Dimethyl-isopropyl-perhydroohenanthren.Narnnuissen49, 9-10.
Ecr, S. (1989): Organic Chemistry(seconded.). D.C. Heath
and Company,Toronto,Ontario.
(1970): Mineralogishe Tabellen. Akademische
VerlagsgesellschaftGeest & Portig K.-G.' Leipzig,
Germany.
Fnsm, L.F. & Flssm, M. (1949):Natural ProductsRelated
to Pherwnthrene.ReinholdPubl. Corp.,New Yorl N.Y.
FoREsrr,E. & RrvA pr SeNssvRINo,L. (1969): The X-ray
crystal and molecular structure of an organic mineral:
simonellite, CeH2a.Axi Accad-Naz Lincei, Cl. Sci. Fis.
Mat. Nat, Rend-4fl,4l-54.
Her,r.,S.R. & Srswant, J.M., eds. (1990): Xtal 3.0.
Universities of WesternAustralia and Maryland lamb,
Perth,AustraliaHomrNc, T.C. (1967): Fichtelite hydrocarbonsin fossil
wood. CarnzgieInst, Waslu,YearBooktl,203-205.
TABER.D.F. & Sar-su,S.A. (1980): Intramoleculardielsalder route to angularly substituted perhydrophenantlrenes. Synthesis of (t)-fichtelite. J. Am. Chem. Soc.
102.5085-5088.
Thorrsn, J. (1963): The crystal and molecular structure of
phenanthrene.
Acta Crystallosr. 16' 605-608.
WBAVER,J.C. (1978): Resins, Natural. /n Kirk-Othmer
Encyclopediaof ChemicalTechnology(third ed.,vol. 20;
C.I. Eashan, C. Golojuch, A. Klingsberg, G. Waldman
& M. Wainwdgbt, eds.).JohnWiley & Sons,New York'
N.Y. (197-206).
Jm{sE}l,N.P. & JomwoN,W.S. (L967):A three-stepsynthesis
Received.June 17, 1993,revised.rnanuscriptaccepted
of fichtelite from abietic acrd.J. Org. Chem,32,2M1
May 26, 1994.
2M6.
Scarica

the crystal structure of fichtelite, a naturally occurring