The spectrum of 3d 3-states Potts model and universality Mario Gravina Univ. della Calabria & INFN collaborators: R. Falcone, R.Fiore, A. Papa SM & FT 2006, Bari OUTLINE introduction 1) Svetitsky-Yaffe conjecture 2) Universal spectrum conjecture 3d 3q Potts model numerical results conclusions SM & FT 2006, Bari 1) SVETITSKY-YAFFE Universality CONJECTURE Theories with different microscopic SU(N) d+1 Z(N) d interactions but possessing the same order-disorder symmetry have common long-distance behaviour confinement-deconfinement finiteunderlying temperature global what about if transition 1st order is 2nd phase order transition? SM & FT 2006, Bari 2) universal mass spectrum correlation function of local order parameter pi m m m2r m3r 1r 1r C ( r ) p p a e C(r) pi pij j a1e1 a2e i j ra, 3er ... 1 m1, m m12, m3 … SM & FT 2006, Bari universality conjecture theory Ising 3d1 theory lF4 3d 2 Agostini at al. 1997 Caselle at al. 1999 m4 m1 m3 m1 m2 m1 SM & FT 2006, Bari m4 m4 m1 = m3 m2 = m1 = m=4 m3 1.83 m m 2 3 m0 = m1 m1 m0 m2m2 2.56= m m1 0 SU(2) theory4d 3 Fiore, Papa, Provero 2003 m4 m1 m4 m3 m1 m3 m2 m1 m2 m1 We want to test these two aspects of universality 3d 3q POTTS MODEL 1) 1st order transition 2) 3d Ising point b bc MONTE m CARLO simulations 2 ? L=48 L=70 hc CLUSTER m0 ALGORITHM to reduce autocorrelation time SM & FT 2006, Bari h Potts model H b i j h ih i ij i 0,1,2 Z(3) breaking order-disorder PHASE TRANSITION SM & FT 2006, Bari Phase diagram b h=0 Is the mass spectrum universal? 1st order critical lines point weak 1st order transition Z(3) broken phase endpoint Does universality hold 2nd order critical 2nd order critical comparison with ISING SU(3) also forendpoint weak 1st order (work in progress) transition? Falcone, Fiore, h=0Gravina, Papa Z(3) symmetric phase bc hc SM & FT 2006, Bari h h=0 – 1st order transition 2 H b b s i j j s i c.c. const . order parameter is the magnetization 3 ij ij si e 2 i i 3 M 1 3 s i 0,1,2 i L i global spin SM & FT 2006, Bari h=0 – 1st order transition at finite volume tunneling effects 0.5508 bt 0.550565 between symmetric and broken phase between degenerated broken minima complex M plane SM & FT 2006, Bari h=0 – 1st order transition at finite volume To remove the tunneling between broken minima we apply a rotation si e 2 i 3 only the real phase is present 2 i si e 3 SM & FT 2006, Bari Masses’ computation MASS CHANNELS Cij (rby ) building si sj suitable a1e a e a e ... 2 3 combinations of the m1r m2r m3r local variable C(r) ( 0meff ) (r) ln MOMENTUM s s (sC(r PROJECTION 1) s ) ZERO i i i ŷ iẑ by summing over the y and z slices s s ( s s ) meff ( r ) m i j r i i 1 iẑ , r VARIATIONALi ŷMETHOD (2 ) to well separate masses contributions in the same channel (Kronfeld 1990) SM & FT 2006, Bari (Luscher, Wolff 1990) 2+ 0+ CHANNEL h=0 b=0.5508 meff =0.1556(36) m2+ 0+=0.381(17) r SM & FT 2006, Bari masses’ computation m2+ 0+ 0.60 1st order transition b1 b t b b t 2 n m0(b1) m0+(b2) n=1/3 bt m0 (b1)0.1556 0.5508 0.550565 SM & FT 2006, Bari n b1=0.5508 b1 bt b m0 (b1 )bt=0.550565 b b m (b ) t 0 2 2 0+scaling 2+ channelregion in the 0.550565 – 0.56 at least b2 mass ratio m2+ m0+ prediction of 4d SU(3) pure gauge theory at finite temperature screening mass ratio at finite temperature? b SM & FT 2006, Bari m2 2.43(10) m0 2nd order Ising endpoint Karsch, Stickan (2000) b ~H ~ H E M ij i j ~ E E rM ~ M M H bEsE hM temperature-like ordering field-like SM & FT 2006, Bari b h ih i bc b z Pc ISING pt hc h b c (b ,h )= (0.54938(2),0.000775(10)) c c (c,c)= (0.37182(2),0.25733(2)) s@[email protected] hc h 2nd order endpoint ~ M c 0.37182 SM & FT 2006, Bari ~ M 0.37233 ~ M 0.37248 local variable Correlation function s 3 ~ mi ih ii 2 3 order parameter SM & FT 2006, Bari ~ ~ Cij (r) mimj ~ 1 ~ M 3 m i L i ~ M M sE ih s ij i ij right-pick mass spectrum =0.37248 0 0+ CHANNEL 2+ We separated contributions from m0+ 2+ two picks and calculated masses m2 m0 m2 2.51(37) m0.0749(63) 0 2,56 3d ISING VALUE SM & FT 2006, Bari 0.188(12) r CONCLUSIONS We used 3d 3q Potts model as a theoretical laboratory to test some aspects of universality THANK YOU 1) Ising point 2) weak 1st order tr. pt. SM & FT 2006, Bari evidence found of universal spectrum m2 prediction of(10SU(3) left-pick? 2.43 ) m0 screening spectrum? SM & FT 2006, Bari weak 1st order transition discontinous order parameter the jump is small Tt SM & FT 2006, Bari Phase diagram b h=0 Mass spectrum is universal? weak 1st order transition 1st order critical lines point Z(3) broken phase ISING 2ndUniversality order critical alsoendpoint holds for endpoint weak 1st order transition? h=0 Z(3) symmetric phase bc hc SM & FT 2006, Bari h Universality Critical exponents b order parameter Tc susceptibility Tc n correlation lenght SM & FT 2006, Bari Tc