RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
MOBILE ROBOTICS
Sensors
An Introduction
Basilio Bona
DAUIN – Politecnico di Torino
Basilio Bona – DAUIN – Politecnico di Torino
001/1
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
An Example
Basilio Bona – DAUIN – Politecnico di Torino
001/2
An Example
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Omnivision Camera (360°)
Pan-Tilt-Zoom (PTZ) camera
IMU=Inertial Measurement Unit
Sonars
Laser Scanner
Encoders
Bumpers
Passive wheel
Basilio Bona – DAUIN – Politecnico di Torino
001/3
Sensors Type
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
ƒ Proprioceptive
P
i
ti
sensors (PC)
– They measure quantities coming from the system, e.g., motor
speed, wheel load, heading of the robot, battery charge status,
etc.
ƒ Exteroceptive sensors (EC)
– They measure quantities coming from the environment al robot:
e.g., wall distance, magnetic fields, intensity of the ambient light,
obstacle position, etc.
ƒ Passive sensors (SP)
– They
y use the energy
gy coming
g from the environment (not
(
to be
confused with the energy required to move)
ƒ Active sensors (SA)
– Emit their proper energy and measure the reaction of the
environment
– Better performance, but may influence the environment
Basilio Bona – DAUIN – Politecnico di Torino
001/4
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Sensors Type
ƒ Analog Sensors
ƒ Digital
g
Sensors
ƒ Continuous Sensors
ƒ Binary Sensors (ON/OFF)
Basilio Bona – DAUIN – Politecnico di Torino
001/5
Sensors Classification
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Category
Tactile sensors/proximity
senso s/p o imit
sensors
Active wheel sensors
Heading
g sensors with respect
p
to
a fixed RF
Absolute cartesian sensors
Sensors
Type
Contact sensors (on/off), bumpers
EC - SP
Proximity
y sensors
(inductive/capacitive)
EC - SA
Distance sensors
(inductive/capacitive)
EC - SA
Potentiometric encoders
PC - SP
Optical, magnetic, Hall-effect,
inductive, capacitive encoders,
syncro and resolvers
PC - SA
Compasses
EC - SP
Gyroscopes
PC - SP
Inclinometers
EC – SP/A
GPS (outdoor only)
EC – SA
Optical or RF beacons
EC – SA
Ultrasonic beacons
EC – SA
Refelctive beacons
EC – SA
Basilio Bona – DAUIN – Politecnico di Torino
001/6
Sensors Classification
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Category
Sensors
Active distance sensors
(active ranging)
Motion and velocity sensors
(speed relative to fixed or
mobile objects)
Vision sensors: distance from
stereo vision, feature analysis,
segmentation object
segmentation,
recognition
Type
Reflective sensors
EC - SA
Ultrasonic sensors
EC - SA
Laser range finders, Laser scanners
EC - SA
Optical triangulation (1D)
EC - SA
Structured light (2D)
EC - SA
Doppler radar
EC - SA
Doppler sound
EC - SA
CCD and CMOS cameras
EC - SA
Integrated packages for visual
ranging
g g
EC - SA
Integrated packages for object
tracking
EC - SA
Basilio Bona – DAUIN – Politecnico di Torino
001/7
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Sensor Characteristics
Transducer = Sensor
ƒ Dynamic range and range
ƒ Resolution
ƒ Linearity
– Dynamic range
– Bandwidth or frequency
– Transfer function
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Reproducibility/precision
Accuracy
Systematic errors
Hysteresis
Temperature coefficient
Noise and disturbances: signal/noise ratio
Basilio Bona – DAUIN – Politecnico di Torino
001/8
Sensor Characteristics
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
ƒ Dynamic range
– Ratio between lower and upper limits expressed in dB
– Example.
E ample Voltage sensor
senso min=1
min 1 mV
mV, max
ma 20V:
20V
dynamic range 86dB
g = upper
pp limits
– Range
ƒ Resolution
– Minimum measurable difference between two values
– Lower limits of dynamic range = resolution
– Digital sensors: it depends on the bit number of the
A/D converter
– Example 8 bit=25510 range 20 V -> 20/255
ƒ Bandwidth
– Large bandwidth means large transfer rate
– Lower bandwidth is possible in acceleration sensors
Basilio Bona – DAUIN – Politecnico di Torino
001/9
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Accuracy and Precision
Basilio Bona – DAUIN – Politecnico di Torino
001/10
Accuracy and Precision
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Precision = Repeatability = Reproducibility
Precise but
not accurate
Not accurate and
precise
not p
Accurate but
not precise
Precise and
accurate
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Noise
Basilio Bona – DAUIN – Politecnico di Torino
001/12
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Noise Types
ƒ
ƒ
ƒ
ƒ
ƒ
Shot noise
Thermal noise
Flicker noise
Burst noise
Avalanche noise
Basilio Bona – DAUIN – Politecnico di Torino
001/13
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Shot noise
Basilio Bona – DAUIN – Politecnico di Torino
001/14
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Thermal noise
Basilio Bona – DAUIN – Politecnico di Torino
001/15
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Flicker Noise
Basilio Bona – DAUIN – Politecnico di Torino
001/16
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Flicker Noise
Basilio Bona – DAUIN – Politecnico di Torino
001/17
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Burst and Avalanche noise
Basilio Bona – DAUIN – Politecnico di Torino
001/18
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Noise Color
Basilio Bona – DAUIN – Politecnico di Torino
001/19
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Noise Floor – (Rumore di fondo)
Basilio Bona – DAUIN – Politecnico di Torino
001/20
RO
OBOTIC
CA – 01CFIDV 02CFIC
CY
Sensors and Mobile Robotics
ƒ U
Usually
ll the
th signal
i
l noise
i iis modeled
d l d according
di
tto a
statistic distribution, but …
– Causes of random errors are often unknown or poorly
– A Gaussian or symmetric distribution is often used, but this
can be wrong
ƒ Example:
– Ultrasound (sonar) sensors may overestimate the perceived
di t
distance,
therefore
th
f
they
th
do
d nott have
h
a symmetrical
t i l error
distribution
p reflected beams arrive together
g
with direct
– Often multiple
beams
– Stereo vision can correlate two images in a wrong way,
generating results that are without any sense
Basilio Bona – DAUIN – Politecnico di Torino
001/21
Scarica

02CFIC - LaDiSpe - Politecnico di Torino