Geologica Romana 41 (2008), 25-34 THE PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A COASTAL MARINE ENVIRONMENT OF SEVEN MILLION YEARS AGO (SOUTHERN CALABRIA, ITALY) Pierparide Gramigna, Adriano Guido, Adelaide Mastandrea & Franco Russo Dipartimento di Scienze della Terra, Università della Calabria, via P. Bucci, Cubo 15b, I - 87036 Rende (Cosenza), Italy [email protected] ABSTRACT - The paleontological site of Cessaniti is situated in the inland of Vibo Valentia area and it is famous for the excellent preservation and relevance of its fossil content together with the wonderful panoramas of Tyrrhenian sea. The locality is well known since nineteenth century for the richness of the fauna and flora preserved in the sediments. The fossil assemblages contain invertebrate (corals, bivalve, gastropods, brachiopods, echinoids such as Clypeaster ssp., benthic and planktonic foraminifers) and vertebrate faunas (proboscideans, rhinoceroses, giraffids, bovids, sirenids, marine turtles and fish remains). Unfortunately the access to the outcrops is strongly limited due to their locations in cultivated quarries. The fossils are preserved in calcarenites which now days are loose through diagenetic processes. This makes the fossil collection quite easy due to the low degree of cementation. The succession is constituted of a paralic system that evolves toward an open marine environment recording the Tortonian transgression. The fossils of Cessaniti site bear a relevant role in earth science research particularly in phylogenetic studies and paleogeographic reconstructions; they have also great importance for the popular scientific divulgation and museology. KEY WORDS: paleontological site, vertebrate and invertebrate fossils, paleoenvironment, upper Miocene, Cessaniti, Calabria, Italy. RIASSUNTO - Il sito di Cessaniti, posto nell’entroterra del comprensorio di Vibo Valentia (Calabria meridionale), coniuga la rilevanza paleontologica dei suoi reperti con i meravigliosi aspetti paesaggistici delle coste che lo contornano. Il sito è noto sin dall’Ottocento per la straordinaria ricchezza e l’ottimo stato di conservazione dei suoi fossili. Attualmente, gran parte dell’area è coltivata per l’estrazione di materiali inerti. I fossili sono conservati in calcareniti rese incoerenti dai processi diagenetici e quindi facilmente estraibili dalla matrice. Tale facilità del recupero, inusuale in sedimenti così antichi, rappresenta un tratto di eccezionalità del sito. La successione di Cessaniti registra la fase di trasgressione marina avvenuta circa 7 milioni di anni fa (Tortoniano superiore). L’arretramento della linea di costa, verso l’altipiano del M.te Poro causò una forte variazione del paleoambiente che venne trasformato da un sistema lagunare ad un sistema francamente marino. Cessaniti ha fornito migliaia di fossili, tra cui splendidi esemplari di echinidi (principalmente Clypeaster), grandi molluschi (tra cui Glycimeris, Chlamys, Pecten, Conus, Buccinum e Ancilla) e numerosi e ben preservati brachiopodi (Terebratula sinuosa). Da questo sito provengono numerosi resti di mammiferi marini e terrestri, ben conservati ma disarticolati e dispersi. Tra i vertebrati marini sono stati rinvenuti sirenidi (Metaxytherium serresii), tartarughe (Trionix sp.), pesci marini tropicali (oltre venti specie di tetraodontiformi), razze (Myliobatis sp.) e denti di squalo (Carcharodon sp.). Tra i mammiferi terrestri sono presenti: proboscidati (Stegotetrabelodon cf. syrticus), rinoceronti (Diceros primaevus), bovidi e giraffidi (Samotherium). I fossili di Cessanti, oltre all’importanza che rivestono nelle indagini filogenetiche e nelle ricostruzioni paleogeografiche e paleoecologiche, hanno una grande valenza museologico-divulgativa. Si tratta di reperti in un così perfetto stato di conservazione che li rende testimonianze uniche della vita nel Miocene superiore nel bacino Mediterraneo. Cessanti apre una finestra su un ambiente costiero di 7 milioni di anni fa: fondali pieni di vita, mari abitati da squali e dugonghi, terre popolate da grandi mammiferi ormai scomparsi. Queste caratteristiche fanno di Cessaniti un “unicum” nel panorama geo-paleontologico calabrese di valore scientifico nazionale ed internazionale, da preservare e proporre come geosito. PAROLE CHIAVE : sito paleontologico, fossili di invertebrati e vertebrati, paleoambienti, Miocene superiore, Cessaniti, Calabria, Italia. INTRODUCTION Numerous studies have been performed on geology and paleontology of Cessaniti area (e.g. Nicotera, 1959; Barbera & Tavernier, 1987,1990; Grasso et al., 1996; Papazzoni & Sirotti, 1999; Ferretti et al., 2001, 2003; Rook et al., 2006; Carone & Domning, 2007). The site is 26 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al. Fig. 1 - Geological scheme of Cessaniti area. - Schema geologico dell’area di Cessaniti. located in some quarries (Cava Brunia, Cava Forcone) along the road that connects the Vibo Valentia airport with the Cessaniti village (Fig. 1, 2). A geological mapping of the Cessaniti area has been carried out by Nicotera (1959), allowing an accurate reconstruction of the stratigraphy of the Northern sector of Monte Poro area. The Author also recognized the main regional events of the Upper Miocene stratigraphy: (a) the widespread occurrence of shallow marine arenites rich in molluscan and echinoid remains during Tortonian; (b) the onset of the pelagic tripolaceous sedimentation at the beginning of Messinian; (c) the occurrence of the so-called “Calcare di Base ”, witnessing the onset of the evaporitic sedimentation. These events, well documented in the literature of Middle - Upper Miocene of Mediterranean area (Selli, 1957; Ogniben, 1973), are easily recognizable in the study site. The stratigraphic succession, established by Nicotera (1959), has been used as reference section in several paleontological - paleoecological research (i.e., Barbera & Tavernier, 1987,1990). It comprises the following Fig. 2 - Panoramic view of the Brunia quarry near Cessaniti village. - Vista panoramica di Cava Brunia localizzata in prossimità di Cessaniti. PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 27 Fig. 3 - Stratigraphic succession of the studied area. - Successione stratigrafica dell’area di studio. intervals: Crystalline basement; Poorly sorted conglomerate with clasts deriving from the underlying substratum. Dark coloured shales and arenaceous shales, alternated to light grey coarse sandstones. The interval contains a fauna dominated by Cerithium ssp. and ostreids. Poorly cemented, almost unfossiliferous sandstones. The thickness of unit b), c) and d) are thin (from a few meters to 10-15 m). Grey to yellowish, poorly cemented, fossiliferous sandstones. According to Nicotera (1959) this unit can reach the thickness of 150 m and includes all the sands with fully marine faunas (Clypeaster ssp., Pecten ssp. and several species of other mollusc, brachiopods, benthic foraminifers and coralline red algae). 28 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al. Fig. 4 - a) Shale lagoonal horizont at the base of Cessaniti succession; b) small oyster bioconstruction (Crassostrea gryphoides) at the top of lagoonal horizont. - a) Orizzonte argillitico lagunare affiorante alla base della successione di Cessaniti; b) particolare di una biocostruzione a grosse ostreidi (Crassostrea gryphoides). Thin-bedded marls and shales, upwards grading into tripolaceous marls, rich in planktonic microfauna (mainly foraminifers). “Evaporitic”, unfossiliferous limestones; it corresponds to the so-called “Calcare di Base”. The succession is affected by significant facies changes, due to the paleotopography and the diachronous timing of the transgression. Sometimes the intervals before the regional transgression (b, c, and d) are lacking and the basement is overlain directly by marine fossiliferous sandstones of unit e. Moreover true coral reefs, reaching the thickness of about 15 m, are intercalated within the sandstones of unit e. Fig. 5 - Low angle cross lamination typical of the flood tidal delta deposits. - Laminazioni incrociate a basso angolo tipiche dei corpi tidali. The fossil assemblages are rich and differentiated. Among invertebrates the most famous, common and best preserved fauna belong to echinoids, represented mainly by the genera Clypeaster and Echinolampas (Checchia Rispoli, 1925; Imbesi Smedile, 1958). Bivalves are also present with the genera Amusium, Pecten, Chlamys, Glycymeris, etc. Gastropods are less frequent and restricted to particular beds, among them have been recognized specimens belonging to the genera Cerithium, Conus, Buccinum and Ancilla, the last three preserved as moulds. In the upper part of the succession brachiopods, Fig.6 - Well preserved echinoid shells of the genus Clypeaster sp. - Echinidi (Clypeaster sp.) ben preservati nella matrice arenacea. PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... mainly Terebratula, are relatively common and forms decimeter thick beds (Gaetani & Saccà, 1983). Also benthic foraminifera are widely represented, in particular are present banks constituted only by Heterostegina papyracea. Among the vertebrate fauna numerous fossils of terrestrial mammals have been recovered like proboscideans (Stegotetrabelodon cfr. syrticus), rhinoceroses (Diceros primaevus), bovids and giraffids (Samotherium sp.). The marine vertebrate fauna is represented by sirenids (Metaxytherium serresii), turtles (Trionix sp.), tropical marine fishes (more than twenty species of tetraodontiforms), rays (Myliobatis sp.) and sharks (Carcharodon sp.) (Barone 1990). All these data point to a sedimentary basin deeply influenced by riverine inputs and continental runoff. The paleontological and sedimentological characteristics permit to consider the Cessaniti site a “unicum” in the calabrian geo-paleontological panorama. GEOLOGICAL AND PALEONTOLOGICAL BACKGROUND The stratigraphic succession of the Cessaniti area can Geologica Romana 41 (2008), 25-34 29 be schematized in four units (Fig. 3): Unit 1 The base of the succession is represented by an interval made up of dark-coloured shales alternated to gray coarse sandstones, yielding an oligotypic brackish water assemblage dominated by Cerithium ssp. and ostreids (Crassostrea spp.; Fig. 4); subordinately are also present fish remains and undeterminable plant debris. Specimens of Crassostrea gryphoides, densely packed, form small banks (Fig. 4), interpreted as “string reef” sensu Stenzel (1971). The prominent character of this unit is the absence of fully marine organisms. Dominance of alternated marl/silt laminae at the top of shale interval indicates a low energy environment. Furthermore the occurrence of lignite layers suggests coastal marshes and swamps bordering the lagoons. These data imply a restricted depositional environment, with periodical inputs of freshwater, such as marginal marine lagoons with limited access to ocean waters. In the upper part follows poorly cemented, meter thick not fossiliferous sandstone bed. The low angle cross-laminated structure of this interval indicates that sandstones represent flood-tidal delta into the mud lagoonal environment (Fig. 5). Poorly sorted conglomerates, interpretable as “fan delta” deposit, locally occur. Unit 2 Fig. 7 - Great pectinids of the genus Macrochlamys. - Pettinidi (Macrochlamys sp.) di grosse dimensioni. Fig. 8 - Internal mould of gasteropod of the genus Conus. - Modello interno di gasteropode (Conus sp.). This unit, which furnished a large part of the famous fossil assemblages, is mainly constituted by gray sandstones that lies above the previously unit through a sharp, erosional contact, marked by the concentration of pebble and oyster shell lags (Ostrea edulis var. lamellosa). Granitoid pebbles are decimeter in size, well rounded and often encrusted by serpulids. Just above the erosional marine surface, fully marine fossil assemblage, including echinoids (mainly Clypeaster), molluscs and internal moulds of gastropods, occur (Figs. 6, 7, 8). This boundary marks the onset of truly marine fauna above lagoonal deposits. Occasionally this lag is represented by clay pockets, with shells of Crassotrea sp. or Ostrea edulis var. lamellosa. This surface is evident across all the outcrops of Cessaniti area (i.e. for a lateral extension of several hundreds of meters; Neri et al., 2005). The shells of the lag were exhumed and redistributed from the oyster banks through a process of shoreface erosion (Rogers & Kidwell, 2000). We interpreted this surface as a shoreface ravinement surface (Fig. 9). The ravinement surface is constituted by coarse conglomerate deposits of coastal origin, created by the action of waves (Stamp, 1921). The ravinement process represents the first stage of the transgression and marks the landward migration of the shoreline. Swift (1968) named the ravinement surface as “wave ravinement surface”. Generally the ravinement surface is associated with a bone bed frequently represented by sirenid vertebrae (Metaxytherium sp.) 30 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al. Fig. 9 - Shoreface ravinement surface in the Cessaniti site. - Superficie di “ravinement” nel sito di Cessaniti. Fig. 10 - a, c) Metaxytherium serresii: a, lateral view of skull; c, mandible in dorsal view. b, d) Samotherium sp.: b, upper left dental arcade in occlusal view; d, left metatarsal in anterior view. - a, c) Metaxytherium serresii: a, cranio in vista laterale sinistra, manca gran parte della porzione superiore; c, mandibola in veduta dorsale. b, d) Samotherium sp.: b, arcata dentaria superiore sinistra in veduta occlusale; d) metatarsale sinistro in veduta anteriore. PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 31 Fig. 11 - Densely packed tests of Heterostegina papyracea in the upper part of the succession. - Accumulo bioclastico a macroforaminiferi (Heterostegina papyracea) nella parte alta della successione. and other bone fragments (Fig. 10). This peculiar sedimentological aspect could have allowed the good preservation and the recovery of the very rich vertebrate and invertebrate fauna of this site. The depositional style of this unit is dominated by same CU (coarsening upward) cycles a few meters thick. Each cycle (up to 3m) evolves from amalgamated to strongly bioturbated sandstones. The depositional structures consist of badly preserved hummochy and planar or low-angle cross laminations. This unit records a lower shoreface depositional environment. Fig. 12 - Bioconstruction dominated by Porites sp. cropping out near the Cessaniti site. - Biocostruzione a Porites sp. in prossimità della località fossilifera di Cessaniti. Unit 3 The subsequent unit, observable on the road toward Cessaniti village, is made of yellowish poorly cemented sandstones, with a depositional style quite similar to the previous unit. The boundary with the underlying unit is represented by a sandy clay level, usually badly exposed; it does not yield marine fauna and possibly records paralic deposits separating two marine sequences. The fossil assemblage include Clypeaster ssp., Echinolampas ssp., Terebratula sp., Macrochlamys, and a great number of benthic foraminifera, mainly Heterostegina papyracea (Papazzoni & Sirotti 1999) (Fig. 11). The abundance of Heterostegina indicates open marine conditions rather than a restricted environment (Hottinger, 1977, Hallock & Glenn, 1986; Hohennegger, 1995). Recent Heterostegina commonly colonizes sea bottoms with hard or soft substratum at depth between 20-200 m (Hottinger, 1977; Hohenneger, 1994,1995; Hohenneger et al., 1999). Field observations revealed the presence of Heterostegina banks, characterized by plurimetric scale cross bedding structures, which indicate elevates hydraulic energy conditions as the occurrence of thick shelled Clypeaster. This unit passes laterally to a oligotypic patch reef about 30 m in thickness, localized near the studied site (few hundreds of meters), and characterized by the dominance of Porites calabricae and the presence of Tarbellastraea reussiana and Siderastraea (Romano et al., 2007) (Fig. 12). This unit compared to the previous one shows a thinner grain size, a higher autochthonous carbonate component, and the occurrence of planktonic Fig. 13 - SEM photomicrograph of an echinoid skeleton. Growth of syntaxial calcite in the skeleton pore spaces (originally filled by organic matter). - Immagine al SEM di uno scheletro di echinide. Crescita sintassiale di calcite nei pori originariamente riempiti da materia organica. 32 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al. Fig. 14 - Paleoenvironmental reconstruction of Cessaniti area during the upper Miocene. a) In the first stage of the Tortonian transgression the environment were characterized by marginal lagoon associated with the sandy barrier. b) Final stage of Tortonian transgression. The relatively sea level rise determined the landward migration of the paleo- coastline and the consequent drowning of the coastal system and the establishing of truly marine condition. - Ricostruzione paleoambientale dell’area di Cessaniti durante il Miocene superiore. a) Nella fase iniziale della trasgressione tortoniana l’ambiente fu caratterizzato da una laguna con barra sabbiosa. b) successivamente l’innalzamento relativo del livello marino determinò l’arretramento della linea di costa e l’istaurarsi di condizioni francamente marine. Geologica Romana 41 (2008), 25-34 PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... foraminifers. These characteristics suggest clearly marine depositional conditions. Unit 4 The uppermost part of the succession, very badly exposed, sometimes completely covered and marked by an abrupt contact, is made of thin-bedded blue hemipelagic marls and shales rich in planktonic microfauna. This unit, named “Marne ad Orbulina”, upwards grades into tripolaceous marls followed by a limestone interval, attributable to the Lower Messinian “Calcare di Base”. DIAGENETIC HISTORY The great importance of the Cessaniti site is due to the excellent preservation of fossils and their easy collection for the low sandstone cementation. To better understand the phenomenon we carried out a diagenetic research performed through the micromorphological and geochemical analyses of the Clypeaster skeletons. The choice of echinoids is due to their great number and very well preservation. Firstly we recognized that the skeletons preserved their original mineralogy (Mg-calcite), then we delineated the diagenetic history which can be summarized as follows: Death of organisms and rapid burial of their skeletons in a semipermeable mixture of sandy/muddy sediments. The fast burial together with the abundance of organic matter in the skeletons permitted the good preservation of microstructure and original mineralogy. Growth of syntaxial calcite in the skeleton pore spaces (originally filled by organic matter) together with the sand cementation made the mineralized remains hard and resistant to the lithostatic pressure through the time (Fig.13). Late partial dissolution of the calcite filling the pores and the carbonate cement among particles made the fossils easy to extract from the sediment. This dissolution phase is still working. In summary this sequence of diagenetic events makes the Cessaniti site an open space laboratory for paleontological studies and paleoenvironmental reconstructions. PALEOENVIRONMENTAL EVOLUTION The Cessaniti succession records the history of the Tortonian transgression in southern Italy. In the early stage the coastal area consisted of a marginal lagoon 33 barred by a sandy island (“barrier island complex”) (Fig. 14a). The salinity was low, permitting the settlement of an oligotypic fauna constituted mainly of gastropods and giant ostreids. A rapid sea level rise determined the onset of truly marine conditions, marked by an erosional surface (shoreface ravinement surface) which records the landward migration of the paleo-coastline. In the successive stage the permanence of high stand sea level conditions is testified by the occurrence of open marine fauna, like brachiopods and planktonic organisms (Fig. 14b). Nevertheless the depositional environments were not so deep: the development of small patch reefs and the occurrence of echinoid assemblages suggest depositional conditions in the photic zone, particularly in shoreface/offshore transition settings. The final stage of the transgression triggered a rapid drowning, recorded by the deposition of blue hemipelagic marls (“Marne ad Orbulina”). CONCLUSION Cessaniti site open a window on a coastal environment 7 million years old. The fossil assemblages are rich, differentiated and well preserved thanks to the particular diagenetic history. Among invertebrates the most famous and best preserved are echinoids, represented mainly by the genera Clypeaster. Molluscs (bivalves and gastropods) are also present. In the upper part of the succession, brachiopods and benthic foraminifera constitute sedimentary accumulation geometries (carpets, lens, banks). Fossils of terrestrial mammals occur. Among them have been recognized proboscideans, rhinoceroses, bovids and giraffids. These fossils suggest the presence, near the coast, of a proximal woodland ecosystem like a savanna. Marine vertebrate fauna is represented firstly by sirenids, tropical marine fishes and sharks. It’s to be hoped that paleontological deposits very rich, well preserved and varied like Cessaniti would be protected and make attractive for a cultural tourism and education of citizens. All that means also to respect the treasures of Nature and to preserve the record of the ancient life. ACKNOWLEDGEMENTS - The Authors would like to remember the great contribution to this research made by Claudio Neri, recently deceased. We thanks Filippo Barattolo (Università Federico II, Napoli) and Roberto Coccioni (Università Carlo Bo, Urbino) for their advices and comments that greatly improved this paper. REFERENCES Barbera C. & Tavernier A. (1987) - Osservazioni paleoambientali su un banco di ostriche del Tortoniano di Capo Vaticano (Calabria, Italia). Atti Congr. S.I.M., Sorrento 2931 maggio 1987, Lavori S.I.M., 23, 409-416. Barbera C. & Tavernier A. (1990) - Paleoecologia della succes- sione miocenica di Vibo Valentia. In Robba, E. (ed.), Atti Quarto Simp. Ecol. Paleoecol. Com. Bent., Sorrento 1988, Mus. Reg. Sci. Nat. Torino, 233-245. Barone G. (1990) - Tetraodontiformi del Tortoniano di Cessaniti. Notiz. di Mineral. e Paleontologia, 65, 57-62. 34 Geologica Romana 41 (2008), 25-34 Carone G. & Domning D. (2007) - Metaxytherium serresii (Mammalia: Sirenia): new pre-Pliocene record, and implications for Mediterranean paleoecology before and after the Messinian Salinity Crisis. Bollettino della Società Paleontologica Italiana, 46, 55-92. Checchia Rispoli G. (1925) - Illustrazione dei Clipeastri miocenici della Calabria, seguita da uno studio sulla morfologia interna e sulla classificazione dei Clipeastri. Mem. P. Serv. alla descr. Carta geol. d’It., 9, pp. 75. Ferretti M. P., Rook L. & Torre D. (2003) - Stegotetrabelodon (Proboscidea, Elephantidae) from the Late Miocene of Southern Italy. Journal of Vertebrate Paleontology, 23, 659-666. Ferretti M. P., Torre D. & Rook L. (2001) - The remains from Cessaniti (Calabria, Southern Italy) and their bearing on Late Miocene biogeography of the genus. The World of Elephants - International Congress, Rome 2001, 633-636. Gaetani M. & Saccà D.(1983) - Brachiopodi neogenici e pleistocenici della provincia di Messina e della Calabria meridionale. Geologica Romana, 22, 1-43. Hallock P. & Glenn E. C. (1986) - Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1, 55-64. Hohenegger J. (1994) - The distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 15, 291-334. Hohenegger J. (1995) - Depth estimation by proportions of living larger foraminifera. Marine Micropaleontology, 26, 3147. Hohenegger J., Yordanova E., Yoshikatsu N. & Tatzreiter F. (1999) - Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36, 109-168. Hottinger L. (1977) - Distribution of larger Peneroplidae, Borelis, and Numulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleontological Bulletin, 15, 35-109. Imbesi Smedile M. (1958) - Clipeastri aquitaniani, elveziani e tortoniani della Calabria. Paleontographia Italica, 43, 1-47. GRAMIGNA et al. Neri C., Gramigna P., Guido A., Perri E., Rao A. & Romano C. (2005) - Paleoenvironmental evolution of the Upper Miocene fossil-bearing site of Cessaniti (Central Calabria). Abstract V Giornata di Paleontologia, Urbino, 20-22 Maggio 2005. Nicotera P. (1959) - Rilevamento geologico del versante settentrionale del M. Poro (Calabria). Mem. Note Ist. Geol. Appl. Napoli, 7: 92. Ogniben L. (1973) - Schema geologico della Calabria in base ai dati moderni. Geol. Romana, 12, 243-585. Papazzoni C.A. & Sirotti A. (1999) - Heterostegina papyracea Sequenza, 1880, from the Upper Miocene of Cessaniti (Vibo Valentia, Calabria, Southern Italy). Boll. Soc. Paleont. It., 38: 15-21. Rogers R.R. & Kidwell S.M. (2000) - Associations of Vertebrate Skeletal Concentrations and Discontinuity Surfaces in Terrestrial and Shallow Marine Records: A test in the Cretaceous of Montana. Journal of Geology, 108, 131-154. Romano C., Neri C., Russo A., Russo F. & Stolarcki J. (2007) - Le biofacies e la storia diagenetica delle biocostruzioni del Miocene Superiore, affioranti lungo le coste tirreniche dell’Italia meridionale. Geologica Romana, 40, 77-96. Rook L., Gallai G. & Torre D. (2006) - Lands and endemic mammals in the Late Miocene of Italy: contraints for paleoegeographic outlines of Thyrrenian area. Paleogeography, Paleoclimatology, Paleoecology, 238, 263-269. Selli R (1957). Sulla trasgressione del Miocene nell’Italia Meridionale. Giornale di Geologia, 26, 1-54. Stamp L.D. (1921) - On cycles of sedimentation in the Eocene strata of the Anglo-Franco-Belgiam basin. Geological Magazine, 58, 108-114. Swift D.J.P. (1968). Coastal erosion and transgressive stratigraphy. Journal of Geology, 76, 444-456. Accettato per la stampa: Ottobre 2008