Geologica Romana 41 (2008), 25-34
THE PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A COASTAL
MARINE ENVIRONMENT OF SEVEN MILLION YEARS AGO
(SOUTHERN CALABRIA, ITALY)
Pierparide Gramigna, Adriano Guido, Adelaide Mastandrea & Franco Russo
Dipartimento di Scienze della Terra, Università della Calabria, via P. Bucci, Cubo 15b, I - 87036 Rende (Cosenza), Italy
[email protected]
ABSTRACT - The paleontological site of Cessaniti is situated in the inland of Vibo Valentia area and it is
famous for the excellent preservation and relevance of its fossil content together with the wonderful panoramas of
Tyrrhenian sea. The locality is well known since nineteenth century for the richness of the fauna and flora preserved in the sediments. The fossil assemblages contain invertebrate (corals, bivalve, gastropods, brachiopods, echinoids such as Clypeaster ssp., benthic and planktonic foraminifers) and vertebrate faunas (proboscideans, rhinoceroses, giraffids, bovids, sirenids, marine turtles and fish remains). Unfortunately the access to the outcrops is
strongly limited due to their locations in cultivated quarries. The fossils are preserved in calcarenites which now
days are loose through diagenetic processes. This makes the fossil collection quite easy due to the low degree of
cementation. The succession is constituted of a paralic system that evolves toward an open marine environment
recording the Tortonian transgression. The fossils of Cessaniti site bear a relevant role in earth science research
particularly in phylogenetic studies and paleogeographic reconstructions; they have also great importance for the
popular scientific divulgation and museology.
KEY WORDS: paleontological site, vertebrate and invertebrate fossils, paleoenvironment, upper Miocene, Cessaniti,
Calabria, Italy.
RIASSUNTO - Il sito di Cessaniti, posto nell’entroterra del comprensorio di Vibo Valentia (Calabria meridionale), coniuga la rilevanza paleontologica dei suoi reperti con i meravigliosi aspetti paesaggistici delle coste che
lo contornano.
Il sito è noto sin dall’Ottocento per la straordinaria ricchezza e l’ottimo stato di conservazione dei suoi fossili. Attualmente, gran parte dell’area è coltivata per l’estrazione di materiali inerti.
I fossili sono conservati in calcareniti rese incoerenti dai processi diagenetici e quindi facilmente estraibili dalla
matrice. Tale facilità del recupero, inusuale in sedimenti così antichi, rappresenta un tratto di eccezionalità del
sito. La successione di Cessaniti registra la fase di trasgressione marina avvenuta circa 7 milioni di anni fa
(Tortoniano superiore). L’arretramento della linea di costa, verso l’altipiano del M.te Poro causò una forte variazione del paleoambiente che venne trasformato da un sistema lagunare ad un sistema francamente marino.
Cessaniti ha fornito migliaia di fossili, tra cui splendidi esemplari di echinidi (principalmente Clypeaster),
grandi molluschi (tra cui Glycimeris, Chlamys, Pecten, Conus, Buccinum e Ancilla) e numerosi e ben preservati
brachiopodi (Terebratula sinuosa).
Da questo sito provengono numerosi resti di mammiferi marini e terrestri, ben conservati ma disarticolati e dispersi. Tra i vertebrati marini sono stati rinvenuti sirenidi (Metaxytherium serresii), tartarughe (Trionix sp.), pesci
marini tropicali (oltre venti specie di tetraodontiformi), razze (Myliobatis sp.) e denti di squalo (Carcharodon sp.).
Tra i mammiferi terrestri sono presenti: proboscidati (Stegotetrabelodon cf. syrticus), rinoceronti (Diceros primaevus), bovidi e giraffidi (Samotherium).
I fossili di Cessanti, oltre all’importanza che rivestono nelle indagini filogenetiche e nelle ricostruzioni paleogeografiche e paleoecologiche, hanno una grande valenza museologico-divulgativa. Si tratta di reperti in un così
perfetto stato di conservazione che li rende testimonianze uniche della vita nel Miocene superiore nel bacino
Mediterraneo.
Cessanti apre una finestra su un ambiente costiero di 7 milioni di anni fa: fondali pieni di vita, mari abitati da
squali e dugonghi, terre popolate da grandi mammiferi ormai scomparsi. Queste caratteristiche fanno di Cessaniti
un “unicum” nel panorama geo-paleontologico calabrese di valore scientifico nazionale ed internazionale, da
preservare e proporre come geosito.
PAROLE CHIAVE : sito paleontologico, fossili di invertebrati e vertebrati, paleoambienti, Miocene superiore, Cessaniti,
Calabria, Italia.
INTRODUCTION
Numerous studies have been performed on geology
and paleontology of Cessaniti area (e.g. Nicotera, 1959;
Barbera & Tavernier, 1987,1990; Grasso et al., 1996;
Papazzoni & Sirotti, 1999; Ferretti et al., 2001, 2003;
Rook et al., 2006; Carone & Domning, 2007). The site is
26
Geologica Romana 41 (2008), 25-34
GRAMIGNA et al.
Fig. 1 - Geological scheme of Cessaniti area.
- Schema geologico dell’area di Cessaniti.
located in some quarries (Cava Brunia, Cava Forcone)
along the road that connects the Vibo Valentia airport
with the Cessaniti village (Fig. 1, 2).
A geological mapping of the Cessaniti area has been
carried out by Nicotera (1959), allowing an accurate
reconstruction of the stratigraphy of the Northern sector
of Monte Poro area. The Author also recognized the
main regional events of the Upper Miocene stratigraphy:
(a) the widespread occurrence of shallow marine arenites
rich in molluscan and echinoid remains during
Tortonian; (b) the onset of the pelagic tripolaceous sedimentation at the beginning of Messinian; (c) the occurrence of the so-called “Calcare di Base ”, witnessing the
onset of the evaporitic sedimentation.
These events, well documented in the literature of
Middle - Upper Miocene of Mediterranean area (Selli,
1957; Ogniben, 1973), are easily recognizable in the
study site.
The stratigraphic succession, established by Nicotera
(1959), has been used as reference section in several
paleontological - paleoecological research (i.e., Barbera
& Tavernier, 1987,1990). It comprises the following
Fig. 2 - Panoramic view of the Brunia quarry near Cessaniti village.
- Vista panoramica di Cava Brunia localizzata in prossimità di
Cessaniti.
PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A...
Geologica Romana 41 (2008), 25-34
27
Fig. 3 - Stratigraphic succession of the studied area.
- Successione stratigrafica dell’area di studio.
intervals:
Crystalline basement;
Poorly sorted conglomerate with clasts deriving from
the underlying substratum.
Dark coloured shales and arenaceous shales, alternated to light grey coarse sandstones. The interval contains
a fauna dominated by Cerithium ssp. and ostreids.
Poorly cemented, almost unfossiliferous sandstones.
The thickness of unit b), c) and d) are thin (from a few
meters to 10-15 m).
Grey to yellowish, poorly cemented, fossiliferous
sandstones. According to Nicotera (1959) this unit can
reach the thickness of 150 m and includes all the sands
with fully marine faunas (Clypeaster ssp., Pecten ssp.
and several species of other mollusc, brachiopods, benthic foraminifers and coralline red algae).
28
Geologica Romana 41 (2008), 25-34
GRAMIGNA et al.
Fig. 4 - a) Shale lagoonal horizont at the base of Cessaniti succession; b) small oyster bioconstruction (Crassostrea gryphoides) at the top of lagoonal horizont.
- a) Orizzonte argillitico lagunare affiorante alla base della successione di Cessaniti; b) particolare di una biocostruzione a grosse ostreidi
(Crassostrea gryphoides).
Thin-bedded marls and shales, upwards grading into
tripolaceous marls, rich in planktonic microfauna (mainly foraminifers).
“Evaporitic”, unfossiliferous limestones; it corresponds to the so-called “Calcare di Base”.
The succession is affected by significant facies
changes, due to the paleotopography and the diachronous timing of the transgression. Sometimes the intervals before the regional transgression (b, c, and d) are
lacking and the basement is overlain directly by marine
fossiliferous sandstones of unit e. Moreover true coral
reefs, reaching the thickness of about 15 m, are intercalated within the sandstones of unit e.
Fig. 5 - Low angle cross lamination typical of the flood tidal delta
deposits.
- Laminazioni incrociate a basso angolo tipiche dei corpi tidali.
The fossil assemblages are rich and differentiated.
Among invertebrates the most famous, common and best
preserved fauna belong to echinoids, represented mainly
by the genera Clypeaster and Echinolampas (Checchia
Rispoli, 1925; Imbesi Smedile, 1958). Bivalves are also
present with the genera Amusium, Pecten, Chlamys,
Glycymeris, etc. Gastropods are less frequent and
restricted to particular beds, among them have been recognized specimens belonging to the genera Cerithium,
Conus, Buccinum and Ancilla, the last three preserved as
moulds. In the upper part of the succession brachiopods,
Fig.6 - Well preserved echinoid shells of the genus Clypeaster sp.
- Echinidi (Clypeaster sp.) ben preservati nella matrice arenacea.
PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A...
mainly Terebratula, are relatively common and forms
decimeter thick beds (Gaetani & Saccà, 1983). Also benthic foraminifera are widely represented, in particular
are present banks constituted only by Heterostegina
papyracea.
Among the vertebrate fauna numerous fossils of terrestrial mammals have been recovered like proboscideans (Stegotetrabelodon cfr. syrticus), rhinoceroses (Diceros primaevus), bovids and giraffids (Samotherium sp.). The marine vertebrate fauna is represented
by sirenids (Metaxytherium serresii), turtles (Trionix
sp.), tropical marine fishes (more than twenty species of
tetraodontiforms), rays (Myliobatis sp.) and sharks
(Carcharodon sp.) (Barone 1990).
All these data point to a sedimentary basin deeply
influenced by riverine inputs and continental runoff.
The paleontological and sedimentological characteristics permit to consider the Cessaniti site a “unicum” in
the calabrian geo-paleontological panorama.
GEOLOGICAL AND PALEONTOLOGICAL
BACKGROUND
The stratigraphic succession of the Cessaniti area can
Geologica Romana 41 (2008), 25-34
29
be schematized in four units (Fig. 3):
Unit 1
The base of the succession is represented by an interval
made up of dark-coloured shales alternated to gray coarse
sandstones, yielding an oligotypic brackish water assemblage dominated by Cerithium ssp. and ostreids
(Crassostrea spp.; Fig. 4); subordinately are also present
fish remains and undeterminable plant debris. Specimens
of Crassostrea gryphoides, densely packed, form small
banks (Fig. 4), interpreted as “string reef” sensu Stenzel
(1971). The prominent character of this unit is the
absence of fully marine organisms. Dominance of alternated marl/silt laminae at the top of shale interval indicates a low energy environment. Furthermore the occurrence of lignite layers suggests coastal marshes and
swamps bordering the lagoons. These data imply a
restricted depositional environment, with periodical
inputs of freshwater, such as marginal marine lagoons
with limited access to ocean waters.
In the upper part follows poorly cemented, meter thick
not fossiliferous sandstone bed. The low angle cross-laminated structure of this interval indicates that sandstones
represent flood-tidal delta into the mud lagoonal environment (Fig. 5). Poorly sorted conglomerates, interpretable
as “fan delta” deposit, locally occur.
Unit 2
Fig. 7 - Great pectinids of the genus Macrochlamys.
- Pettinidi (Macrochlamys sp.) di grosse dimensioni.
Fig. 8 - Internal mould of gasteropod of the genus Conus.
- Modello interno di gasteropode (Conus sp.).
This unit, which furnished a large part of the famous
fossil assemblages, is mainly constituted by gray sandstones that lies above the previously unit through a
sharp, erosional contact, marked by the concentration of
pebble and oyster shell lags (Ostrea edulis var. lamellosa). Granitoid pebbles are decimeter in size, well
rounded and often encrusted by serpulids.
Just above the erosional marine surface, fully marine
fossil assemblage, including echinoids (mainly
Clypeaster), molluscs and internal moulds of gastropods, occur (Figs. 6, 7, 8). This boundary marks the
onset of truly marine fauna above lagoonal deposits.
Occasionally this lag is represented by clay pockets,
with shells of Crassotrea sp. or Ostrea edulis var. lamellosa. This surface is evident across all the outcrops of
Cessaniti area (i.e. for a lateral extension of several hundreds of meters; Neri et al., 2005). The shells of the lag
were exhumed and redistributed from the oyster banks
through a process of shoreface erosion (Rogers &
Kidwell, 2000). We interpreted this surface as a
shoreface ravinement surface (Fig. 9). The ravinement
surface is constituted by coarse conglomerate deposits of
coastal origin, created by the action of waves (Stamp,
1921). The ravinement process represents the first stage
of the transgression and marks the landward migration of
the shoreline. Swift (1968) named the ravinement surface as “wave ravinement surface”. Generally the ravinement surface is associated with a bone bed frequently
represented by sirenid vertebrae (Metaxytherium sp.)
30
Geologica Romana 41 (2008), 25-34
GRAMIGNA et al.
Fig. 9 - Shoreface ravinement surface in the Cessaniti site.
- Superficie di “ravinement” nel sito di Cessaniti.
Fig. 10 - a, c) Metaxytherium serresii: a, lateral view of skull; c, mandible in dorsal view. b, d) Samotherium sp.: b, upper left dental arcade in occlusal
view; d, left metatarsal in anterior view.
- a, c) Metaxytherium serresii: a, cranio in vista laterale sinistra, manca gran parte della porzione superiore; c, mandibola in veduta dorsale. b, d)
Samotherium sp.: b, arcata dentaria superiore sinistra in veduta occlusale; d) metatarsale sinistro in veduta anteriore.
PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A...
Geologica Romana 41 (2008), 25-34
31
Fig. 11 - Densely packed tests of Heterostegina papyracea in the upper
part of the succession.
- Accumulo bioclastico a macroforaminiferi (Heterostegina papyracea)
nella parte alta della successione.
and other bone fragments (Fig. 10). This peculiar sedimentological aspect could have allowed the good preservation and the recovery of the very rich vertebrate and
invertebrate fauna of this site.
The depositional style of this unit is dominated by
same CU (coarsening upward) cycles a few meters thick.
Each cycle (up to 3m) evolves from amalgamated to
strongly bioturbated sandstones. The depositional structures consist of badly preserved hummochy and planar or
low-angle cross laminations. This unit records a lower
shoreface depositional environment.
Fig. 12 - Bioconstruction dominated by Porites sp. cropping out near
the Cessaniti site.
- Biocostruzione a Porites sp. in prossimità della località fossilifera di
Cessaniti.
Unit 3
The subsequent unit, observable on the road toward
Cessaniti village, is made of yellowish poorly cemented
sandstones, with a depositional style quite similar to the
previous unit. The boundary with the underlying unit is
represented by a sandy clay level, usually badly exposed;
it does not yield marine fauna and possibly records paralic deposits separating two marine sequences. The fossil assemblage include Clypeaster ssp., Echinolampas
ssp., Terebratula sp., Macrochlamys, and a great number
of benthic foraminifera, mainly Heterostegina papyracea (Papazzoni & Sirotti 1999) (Fig. 11). The abundance
of Heterostegina indicates open marine conditions rather
than a restricted environment (Hottinger, 1977, Hallock
& Glenn, 1986; Hohennegger, 1995). Recent Heterostegina commonly colonizes sea bottoms with hard or
soft substratum at depth between 20-200 m (Hottinger,
1977; Hohenneger, 1994,1995; Hohenneger et al., 1999).
Field observations revealed the presence of
Heterostegina banks, characterized by plurimetric scale
cross bedding structures, which indicate elevates
hydraulic energy conditions as the occurrence of thick
shelled Clypeaster.
This unit passes laterally to a oligotypic patch reef
about 30 m in thickness, localized near the studied site
(few hundreds of meters), and characterized by the dominance of Porites calabricae and the presence of
Tarbellastraea reussiana and Siderastraea (Romano et
al., 2007) (Fig. 12). This unit compared to the previous
one shows a thinner grain size, a higher autochthonous
carbonate component, and the occurrence of planktonic
Fig. 13 - SEM photomicrograph of an echinoid skeleton. Growth of
syntaxial calcite in the skeleton pore spaces (originally filled by organic matter).
- Immagine al SEM di uno scheletro di echinide. Crescita sintassiale
di calcite nei pori originariamente riempiti da materia organica.
32
Geologica Romana 41 (2008), 25-34
GRAMIGNA et al.
Fig. 14 - Paleoenvironmental reconstruction of Cessaniti area during the upper Miocene. a) In the first stage of the Tortonian transgression the environment were characterized by marginal lagoon associated with the sandy barrier. b) Final stage of Tortonian transgression. The relatively sea level
rise determined the landward migration of the paleo- coastline and the consequent drowning of the coastal system and the establishing of truly marine
condition.
- Ricostruzione paleoambientale dell’area di Cessaniti durante il Miocene superiore. a) Nella fase iniziale della trasgressione tortoniana l’ambiente fu caratterizzato da una laguna con barra sabbiosa. b) successivamente l’innalzamento relativo del livello marino determinò l’arretramento della
linea di costa e l’istaurarsi di condizioni francamente marine.
Geologica Romana 41 (2008), 25-34
PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A...
foraminifers. These characteristics suggest clearly
marine depositional conditions.
Unit 4
The uppermost part of the succession, very badly
exposed, sometimes completely covered and marked by
an abrupt contact, is made of thin-bedded blue hemipelagic marls and shales rich in planktonic microfauna. This
unit, named “Marne ad Orbulina”, upwards grades into
tripolaceous marls followed by a limestone interval,
attributable to the Lower Messinian “Calcare di Base”.
DIAGENETIC HISTORY
The great importance of the Cessaniti site is due to the
excellent preservation of fossils and their easy collection
for the low sandstone cementation. To better understand
the phenomenon we carried out a diagenetic research
performed through the micromorphological and geochemical analyses of the Clypeaster skeletons. The
choice of echinoids is due to their great number and very
well preservation. Firstly we recognized that the skeletons preserved their original mineralogy (Mg-calcite),
then we delineated the diagenetic history which can be
summarized as follows:
Death of organisms and rapid burial of their skeletons
in a semipermeable mixture of sandy/muddy sediments.
The fast burial together with the abundance of organic
matter in the skeletons permitted the good preservation
of microstructure and original mineralogy.
Growth of syntaxial calcite in the skeleton pore spaces
(originally filled by organic matter) together with the
sand cementation made the mineralized remains hard
and resistant to the lithostatic pressure through the time
(Fig.13).
Late partial dissolution of the calcite filling the pores
and the carbonate cement among particles made the fossils easy to extract from the sediment. This dissolution
phase is still working.
In summary this sequence of diagenetic events makes
the Cessaniti site an open space laboratory for paleontological studies and paleoenvironmental reconstructions.
PALEOENVIRONMENTAL EVOLUTION
The Cessaniti succession records the history of the
Tortonian transgression in southern Italy. In the early
stage the coastal area consisted of a marginal lagoon
33
barred by a sandy island (“barrier island complex”) (Fig.
14a). The salinity was low, permitting the settlement of
an oligotypic fauna constituted mainly of gastropods and
giant ostreids. A rapid sea level rise determined the onset
of truly marine conditions, marked by an erosional surface (shoreface ravinement surface) which records the
landward migration of the paleo-coastline. In the successive stage the permanence of high stand sea level conditions is testified by the occurrence of open marine fauna,
like brachiopods and planktonic organisms (Fig. 14b).
Nevertheless the depositional environments were not so
deep: the development of small patch reefs and the
occurrence of echinoid assemblages suggest depositional conditions in the photic zone, particularly in
shoreface/offshore transition settings. The final stage of
the transgression triggered a rapid drowning, recorded
by the deposition of blue hemipelagic marls (“Marne ad
Orbulina”).
CONCLUSION
Cessaniti site open a window on a coastal environment
7 million years old. The fossil assemblages are rich, differentiated and well preserved thanks to the particular
diagenetic history.
Among invertebrates the most famous and best preserved are echinoids, represented mainly by the genera
Clypeaster. Molluscs (bivalves and gastropods) are also
present. In the upper part of the succession, brachiopods
and benthic foraminifera constitute sedimentary accumulation geometries (carpets, lens, banks).
Fossils of terrestrial mammals occur. Among them
have been recognized proboscideans, rhinoceroses,
bovids and giraffids. These fossils suggest the presence,
near the coast, of a proximal woodland ecosystem like a
savanna. Marine vertebrate fauna is represented firstly
by sirenids, tropical marine fishes and sharks.
It’s to be hoped that paleontological deposits very rich,
well preserved and varied like Cessaniti would be protected and make attractive for a cultural tourism and education of citizens. All that means also to respect the
treasures of Nature and to preserve the record of the
ancient life.
ACKNOWLEDGEMENTS - The Authors would like to
remember the great contribution to this research made by
Claudio Neri, recently deceased. We thanks Filippo Barattolo
(Università Federico II, Napoli) and Roberto Coccioni
(Università Carlo Bo, Urbino) for their advices and comments
that greatly improved this paper.
REFERENCES
Barbera C. & Tavernier A. (1987) - Osservazioni paleoambientali su un banco di ostriche del Tortoniano di Capo
Vaticano (Calabria, Italia). Atti Congr. S.I.M., Sorrento 2931 maggio 1987, Lavori S.I.M., 23, 409-416.
Barbera C. & Tavernier A. (1990) - Paleoecologia della succes-
sione miocenica di Vibo Valentia. In Robba, E. (ed.), Atti
Quarto Simp. Ecol. Paleoecol. Com. Bent., Sorrento 1988,
Mus. Reg. Sci. Nat. Torino, 233-245.
Barone G. (1990) - Tetraodontiformi del Tortoniano di
Cessaniti. Notiz. di Mineral. e Paleontologia, 65, 57-62.
34
Geologica Romana 41 (2008), 25-34
Carone G. & Domning D. (2007) - Metaxytherium serresii
(Mammalia: Sirenia): new pre-Pliocene record, and implications for Mediterranean paleoecology before and after
the Messinian Salinity Crisis. Bollettino della Società
Paleontologica Italiana, 46, 55-92.
Checchia Rispoli G. (1925) - Illustrazione dei Clipeastri miocenici della Calabria, seguita da uno studio sulla morfologia interna e sulla classificazione dei Clipeastri. Mem. P.
Serv. alla descr. Carta geol. d’It., 9, pp. 75.
Ferretti M. P., Rook L. & Torre D. (2003) - Stegotetrabelodon
(Proboscidea, Elephantidae) from the Late Miocene of
Southern Italy. Journal of Vertebrate Paleontology, 23,
659-666.
Ferretti M. P., Torre D. & Rook L. (2001) - The remains from
Cessaniti (Calabria, Southern Italy) and their bearing on
Late Miocene biogeography of the genus. The World of
Elephants - International Congress, Rome 2001, 633-636.
Gaetani M. & Saccà D.(1983) - Brachiopodi neogenici e pleistocenici della provincia di Messina e della Calabria meridionale. Geologica Romana, 22, 1-43.
Hallock P. & Glenn E. C. (1986) - Larger foraminifera: a tool
for paleoenvironmental analysis of Cenozoic carbonate
depositional facies. Palaios, 1, 55-64.
Hohenegger J. (1994) - The distribution of living larger
Foraminifera NW of Sesoko-Jima, Okinawa, Japan.
Marine Ecology, 15, 291-334.
Hohenegger J. (1995) - Depth estimation by proportions of living larger foraminifera. Marine Micropaleontology, 26, 3147.
Hohenegger J., Yordanova E., Yoshikatsu N. & Tatzreiter F.
(1999) - Habitats of larger foraminifera on the upper reef
slope of Sesoko Island, Okinawa, Japan. Marine
Micropaleontology, 36, 109-168.
Hottinger L. (1977) - Distribution of larger Peneroplidae,
Borelis, and Numulitidae in the Gulf of Elat, Red Sea.
Utrecht Micropaleontological Bulletin, 15, 35-109.
Imbesi Smedile M. (1958) - Clipeastri aquitaniani, elveziani e
tortoniani della Calabria. Paleontographia Italica, 43, 1-47.
GRAMIGNA et al.
Neri C., Gramigna P., Guido A., Perri E., Rao A. & Romano C.
(2005) - Paleoenvironmental evolution of the Upper
Miocene fossil-bearing site of Cessaniti (Central Calabria).
Abstract V Giornata di Paleontologia, Urbino, 20-22
Maggio 2005.
Nicotera P. (1959) - Rilevamento geologico del versante settentrionale del M. Poro (Calabria). Mem. Note Ist. Geol. Appl.
Napoli, 7: 92.
Ogniben L. (1973) - Schema geologico della Calabria in base
ai dati moderni. Geol. Romana, 12, 243-585.
Papazzoni C.A. & Sirotti A. (1999) - Heterostegina papyracea
Sequenza, 1880, from the Upper Miocene of Cessaniti
(Vibo Valentia, Calabria, Southern Italy). Boll. Soc.
Paleont. It., 38: 15-21.
Rogers R.R. & Kidwell S.M. (2000) - Associations of
Vertebrate Skeletal Concentrations and Discontinuity
Surfaces in Terrestrial and Shallow Marine Records: A test
in the Cretaceous of Montana. Journal of Geology, 108,
131-154.
Romano C., Neri C., Russo A., Russo F. & Stolarcki J. (2007)
- Le biofacies e la storia diagenetica delle biocostruzioni
del Miocene Superiore, affioranti lungo le coste tirreniche
dell’Italia meridionale. Geologica Romana, 40, 77-96.
Rook L., Gallai G. & Torre D. (2006) - Lands and endemic
mammals in the Late Miocene of Italy: contraints for paleoegeographic outlines of Thyrrenian area. Paleogeography,
Paleoclimatology, Paleoecology, 238, 263-269.
Selli R (1957). Sulla trasgressione del Miocene nell’Italia
Meridionale. Giornale di Geologia, 26, 1-54.
Stamp L.D. (1921) - On cycles of sedimentation in the Eocene
strata of the Anglo-Franco-Belgiam basin. Geological
Magazine, 58, 108-114.
Swift D.J.P. (1968). Coastal erosion and transgressive stratigraphy. Journal of Geology, 76, 444-456.
Accettato per la stampa: Ottobre 2008
Scarica

the paleontological site of cessaniti