Photonic Devices (The control of…) Andrea Melloni F. Morichetti, S. Grillanda, D. Melati, N. Peserico, M. Carminati, A. Annoni, P. Ciccarella, G. Ferrari, M. Sampietro, M. Sorel Politecnico di Milano, Italy A. Melloni, Progress in photonics, Firenze 2015 http://photonics.deib.polimi.it Politecnico di Milano (Italy) - Photonic Devices Lab http://photonics.deib.polimi.it 400 m2 A. Melloni, Progress in photonics, Firenze 2015 1969: 46 years of integrated optics … A. Melloni, Progress in photonics, Firenze 2015 3 Integrated photonics: ubiquitousness and complexity A. Melloni, Progress in photonics, Firenze 2015 4 Market: 350 B€ (650 B€ in 2020) http://www.photonics21.org/download/Brochures/Photonics_Roadmap_final_lowres.pdf A. Melloni, Progress in photonics, Firenze 2015 5 Technologies and Waveguides Ge:SiO2 0.5…3 % SiON 2…8 % Si3N4 38 % InP 3 / 70 % As2S3 60…100 % SOI 140% Dn Mach-Zehnder D. Couplers, Y, MMI, Star couplers Ring Resonators Gratings A. Melloni, Progress in photonics, Firenze 2015 6 Waveguides 2.2 mm 2.2 mm Silicon Nitride <0.3 mm BPSG 2-5 mm SiON Silicon (SOI) HSQ / SiO2 220 nm Silicon Oxynitride Si SiN SiO2 480 nm SiO2 Photonic crystal wg Segmented waveguide A. Melloni, Progress in photonics, Firenze 2015 SiO2 Waveguide for sensing Dielectric (SiO2…SiON…Si3N4, polymers) Beam forming network Arrayed Waveguide grating A. Melloni, Progress in photonics, Firenze 2015 8 Indium Phosphide Courtesy of TU/e A. Melloni, Progress in photonics, Firenze 2015 9 Silicon photonics Slow light, trap light CMOS silicon modulators Filter Delay lines A. Melloni, Progress in photonics, Firenze 2015 Resonant Router Biochip 10 Indium Phosphide The (potential) market forecast [M$] JePPIX Roadmap Using Generic Integrated Photonics 2012 800 700 600 500 400 300 200 100 0 Silicon Photonics * * * * * 2013 ------------------------------------------------- 2024 A. Melloni, Progress in photonics, Firenze 2015 11 A Moore law for photonics (?) M. Smit et al., “An introduction to InP-based generic integration technology”, 2014 Semicond. Sci. Technol. T. Baehr-Jones et al., “Myths and rumours of silicon photonics,” Nat. Photonics, vol. 6, Apr. 2012. A. Melloni, Progress in photonics, Firenze 2015 12 It’s a long way (in my view) … • Moore law in photonics… No scaling in photonics ! • Photonics as electronics…. Photonics is analog ! • Plasmonic, graphene, carbon nanotubes … • CMOS compatibility… Mendeleev on chip ! • More Moore or More than Moore? … Integration, synergy • Everyone does their job! … generic foundry scheme • Control & feedback, toward “system-on-a-chip” paradigm A. Melloni, Progress in photonics, Firenze 2015 13 Control & Feedback: motivations Benefits of photonic integration lies in the aggregation of several components Technology can squeeze many devices in small chips MINIATURIZATION INTEGRATION MIT Complex photonic systems-on-chip are still struggling to emerge... A. Melloni, Progress in photonics, Firenze 2015 14 Control & Feedback: motivations Benefits of photonic integration lies in the aggregation of several components Technology can squeeze many devices in small chips Technology is critical… High Index contrast technologies ΔT = 1 K → Δf = 10 GHz MINIATURIZATION Δn = 10-4 → Δf = 10 GHz Δw = 1 nm → Δf = 100 GHz TE/TM and λ dependence… INTEGRATION MIT Complex photonic systems-on-chip are still struggling to emerge... A. Melloni, Progress in photonics, Firenze 2015 (Interferometric) devices suffer from temperature drifts, xtalk, fabrication tolerances, nonlinearities, aging… 15 Control & Feedback: motivations Benefits of photonic integration lies in the aggregation of several components Technology can squeeze many devices in small chips Technology is critical Silicon Photonics: ΔT = 1 K → Δf = 10 GHz Δn = 10-4 → Δf = 10 GHz MINIATURIZATION Δw = 1 nm → Δf = 100 GHz TE/TM and λ dependent ≠ INTEGRATION Complex photonic systems-on-chip are still struggling to emerge... Toward a “LESS” world FormatLESS ContentsLESS A. Melloni, Progress in photonics, Firenze 2015 Less costs Less Latency DirectionLESS Less space Less energy GridLESS MIT ColorLESS (Interferometric) devices suffer from temperature drifts, xtalk, fabrication tolerances, nonlinearities, aging… 16 Definition of “System” Supervisory Inputs Control & Calibration working point estimation actuation command Sensors Actuators physical effect A. Melloni, Progress in photonics, Firenze 2015 physical effect 17 Definition of “System” Supervisory Inputs Control & Calibration Feedback… working point estimation actuation command Sensors Actuators physical effect physical effect Photonics needs feedback and control A. Melloni, Progress in photonics, Firenze 2015 18 Heater: “The” actuator Au+NiCr+Ti SiO2 Silicon Length 1-3 mm 10-50 mm p shift 300-400 mW 10-20 mW Dneff / DT 110-5 °C-1 210-4 °C-1 Response time 1 ms 10 ms Crosstalk high low A. Melloni, Progress in photonics, Firenze 2015 S. Zanotto, Laser Photonics Rev., 2015 19 (Non Perturbative) Probes Monitor to detect light level in waveguides and provide feedback (test pin) Hitless (transparent), small, low power… A. Melloni, Progress in photonics, Firenze 2015 20 Light-waveguide interaction Surface State Absorption Surface states are located typically within the first two/three silicon atomic layers (≈ 1 nm) Interface Intra-gap energy states create a free carrier and a corresponding recombination center SSA process Band bending Conduction band Energy hn hn Traps Valence band Si SiO2 A. Melloni, Progress in photonics, Firenze 2015 S. Grillanda, F. Morichetti, Nature Comm., Sept. 2015 21 The CLIPP concept ContacLess Integrated Photonic Probe (CLIPP) metal 1 mm SiO2 metal L CA Metal DG CA Si Light in SiO2 Contactless capacitive access to the waveguide SiO2 Light out longitudinal view Si SiO2 100 nm Measuring the SSA induced waveguide conductance change DG through an ultrasensitive electric detection circuit Light dependent conductance variation Si conductivity change A induced by light Carrier mobility is typically L lower on the surface DNs compared to the bulk A. Melloni, Progress in photonics, Firenze 2015 ms Free carriers generated on the surface by SSA Si waveguide cross section CLIPP length surface free-carrier density carrier mobility 22 The CLIPP concept ContacLess Integrated Photonic Probe (CLIPP) 1 mm SiO2 metal L CA Metal DG CA Si SiO2 Light out Light in SiO2 longitudinal view Si SiO2 100 nm Ve ~ 1V fe ~ 1MHz Measuring the SSA induced waveguide conductance change DG through an ultrasensitive electric detection circuit 90° 100 kW V, f0 ie Re[Ywg] + Transimpedance Amplifier (TIA) Patented metal Contactless capacitive access to the waveguide Im[Ywg] Lock-In Amplifier A. Melloni, Progress in photonics, Firenze 2015 “Silicon Photonics: Stalking Light,” 23 Nature Photonics 8, 266 (2014) CLIPP performance CLIPP concept demonstrated for: Top view of the CLIPP 100 mm Waveguide Wire bonding pads 2 CLIPP electrodes L - single mode/multimode wgs - compact size (L down to 25 mm) - TE/TM polarizations - sensitivity down to -30 dBm - 40 dB dynamic range - speed > 20 ms (limited by TIA noise) 2 10 Ve = 1V fe = 1 MHz Conductance variation DG [nS] Conductance variation DG [nS] 10 L = 100 mm 1 10 w = 480 nm 0 10 w = 1 mm -1 10 -30 -20 -10 0 Local power P [dBm] A. Melloni, Progress in photonics, Firenze 2015 10 TE TM L = 100 mm 1 10 0 10 -1 10 -25 -20 Ve = 1 V fe = 1 MHZ -15 -10 Local power [dBm] -5 0 24 Multipoint on-chip monitoring Through Light In Thermal Actuator CLIPP 3 CLIPP 2 To OSA CLIPP 1 100 µm -50 0.8 0.7 -100 0.6 -150 CLIPP 2 0.5 0.4 -200 0.3 -250 1555.8 1555.9 1556.0 Wavelength [nm] A. Melloni, Progress in photonics, Firenze 2015 0.2 250 2.0 0.9 0.8 200 0.7 0.6 150 100 0.5 0.4 0.3 50 0.2 Estimated Optical Power [mW] 0.9 Inside 1.0 Optical Transmission OSA Drop 1.0 Electrical Signal Variation [ppm] Through port Through Optical Transmission Electrical Signal Variation [ppm] 0 1.5 1.0 0.5 0.1 0 0.0 1555.8 1555.9 1556.0 Wavelength [nm] 0.0 1555.8 1555.9 Wavelength 25 Multipoint on-chip monitoring Through Light In Thermal Actuator CLIPP 3 CLIPP 2 To OSA CLIPP 1 100 µm 200 0.7 150 100 0.6 CLIPP 2 0.5 0.4 50 0.3 0.8 200 0.7 0.6 150 0.5 0.4 100 0.3 0.2 50 0.1 0.8 1.5 0.5 0.4 0.3 0.5 2.0 CLIPP 3 1.5 0.7 0.6 1.0 Inside Estimated Optical Power [mW] 0.8 0.2 Optical Transmission 0.4 -200 0.3 250 0.9 Estimated Optical Power [mW] -150 0.5 0.9 Inside the cavity Inside Drop 1.0 2.0 0.9 Optical Transmission 0.6 1.0 Electrical Signal Variation [ppm] 0.7 -100 Drop 1.0 OSA 250 Electrical Signal Variation [ppm] 0.9 -50 0.8 Optical Transmission Electrical Signal Variation [ppm] 1.0 0 Optical Transmission Through port Through Through 1.0 0.5 0.1 0.2 -250 0.2 0.0 0.0 0 0.0 0 0.0 1555.9 1556.0 1555.8 1555.9 1555.8 1556.0 1555.9 1556.0 1555.8 1555.9 1555.81556.0 1555.9 1556.0 1555.8 1555.9 Wavelength [nm] Wavelength [nm] Wavelength [nm] Wavelength Wavelength [nm] Wavelength [nm] A. Melloni, Progress in photonics, Firenze 2015 26 Control Layer: applications A. Melloni, Progress in photonics, Firenze 2015 27 Integral controller Vd fd Vh In ε Heater ie Lock-in detector CLIPP 80 µm CLIPP readout (fe) Ve Out Error signal ε [µV] Dithering Intra-cavity Optical intensity Wavelength Locking (dithering approach) 1 Ve = 1 V fe = 1 MHz 0.5 fd = 160 Hz 0 -100 -50 0 50 Wavelength detuning [pm] 300 Vd = 100 mV (0.14 K) 0 -300 -100 -50 0 50 Wavelength detuning [pm] Optical intensity 1 FEEDBACK LOOP ON Response to a 50 pm (= ring bandwidth) detuning 0.5 Wavelength locking in 150 ms Loop response can be speeded up with FEEDBACK LOOP OFF 0 0 0.2 0.4 0.6 0.8 1 Time [s] A. Melloni, Progress in photonics, Firenze 2015 100 faster CLIPP response optimized control laws (P, PI) 100 Wavelength monitoring CLIPP demodulation Two input channels at different wavelengths λ2 λ λ1 = 1549.59 nm Heater voltage 1 λ2 = λ1 + 120 pm Heater CLIPP demod. @ fe λ2 λ1 ? ? CLIPP signal V, f0 CLIPP demod. @ fe 1 0.5 Heater ? 0 0 1 2 3 4 5 6 Heater power [mW] No signal discrimination A. Melloni, Progress in photonics, Firenze 2015 29 Wavelength monitoring CLIPP demodulation The channels are labeled with a weak λ2 λ modulation tone (depth 2%): Heater voltage 1 f1 = 10 kHz @ λ1 = 1549.59 nm f2 = 11 kHz @ λ2 = λ1 + 120 pm Heater V, f0 The CLIPP discriminates and monitors simultaneosuly different channels resonating in the microring! 1 CLIPP demod. @ fe + f1 λ1 0.5 λ2 CLIPP signal λ2 λ1 CLIPP demod. @ fe 0 0 1 1 0 λ1 3 4 5 6 5 6 CLIPP @ fe + f1 0.5 Heater 2 0 1 2 3 4 Heater power [mW] automatic tuning and locking on l1 A. Melloni, Progress in photonics, Firenze 2015 30 Wavelength swapping CLIPP demodulation The channels are labeled with a weak λ2 λ modulation tone (depth 2%): Heater voltage 1 f1 = 10 kHz @ λ1 = 1549.59 nm f2 = 11 kHz @ λ2 = λ1 + 120 pm Heater V, f0 The CLIPP discriminates and monitors simultaneosuly different channels resonating in the microring! 1 CLIPP demod. @ fe + f2 λ2 0.5 0 0 1 λ1 SWAP ! Heater λ2 automatic tuning and locking on l2 A. Melloni, Progress in photonics, Firenze 2015 1 2 3 4 5 6 CLIPP @ fe + f1 0.5 CLIPP signal λ2 λ1 CLIPP demod. @ fe 0 0 1 1 2 3 4 5 6 3 4 5 6 0.5 CLIPP @ fe + f2 0 0 1 2 Heater power [mW] 31 Multichannel feedback control Motherboard Photonic chip ASIC Photonic chip ASIC Motherboard Motherboard: • generate the CLIPPs driving signal Ve (fast DAC); • provide the I/Q clock signals to the lock-ins in the ASIC; • drive the heaters integrated onto the photonic chip (slow DACs); • FPGA-based digital processing ; controlProgress of up in tophotonics, 16 independent feedback control-loops; A.•Melloni, Firenze 2015 32 32 Lightpath tracking and feedback control routing Stage A Stage B A. Melloni et al, IPR Conference, July 2015 Stage C I1 O1 I2 O2 I3 I4 O3 O4 I5 O5 I6 O6 I7 I8 O7 O8 Ai Bi Ci 2 x 12 CLIPPs 12 heaters MZI switch CLIPP O7 Vh Controller A. Melloni, Progress in photonics, Firenze 2015 PHOTONI C CHI P Set point + - CLIPP signals O8 33 Routing with pilot tones I6 I7 1545.5 nm (Ch A) 1558.26 nm (Ch B) I8 Pilot tones 50 mV (3% modulation) 10 -6 10 -8 -10 -22 10 10 -20 -18 -16 MOD MOD Ve=1V, 613 KHz 10 KHz Out 6 – Ch. B Ch B Ch B + tone -6 -8 -10 -16 1.0 0.8 0.6 0.4 0.2 0.0 -4 10 0 1.0 0.8 0.6 -6 0.4 10 0.2 0.0 0 -8 -16 10 -20 -24 -28 -32-10 -36 10 -40 0 -22 BER 10 Ch A Ch A + tone -4 -15 O5 O6 C6 PD [dBm] BER 10 10 C5 MOD 7 KHz Out 6 – Ch. A BER 10 -4 C -14 A. Melloni, Power Progress in photonics, Firenze 2015 [dBm] Power [dBm] -13 C7 O7 C8 O8 Pilot tone OFF Pilot tone ON Out 8 – Ch. A 2 4 6 10 8 -4 Ch A Ch A + tone 10 2 4 6 BER 10G CISCO XFP modules CLIPP Signal CLIPP Signal I5 B MOD 10 2 -20 4 -18 Power [dBm] 6 Out 8 – Ch. B 10 12 Ch B C8 Ch B + tone C7 C6 C5 -6 8 10 B8 B7 A8 A7 10 12 -8 O8 O7 O6 -10 8 -16 -16 Time [s] 10 -15 12 -14 Power [dBm] -13 Routing with pilot tones 10G CISCO XFP modules I6 I7 1545.5 nm (Ch A) 1558.26 nm (Ch B) I8 Pilot tones 50 mV (3% modulation) 10 10 Ch A Ch A + tone -6 10 -8 -10 -22 10 10 -20 -18 -16 -4 C6 MOD MOD Ve=1V, 613 KHz Out 6 – Ch. B 10 Ch B Ch B + tone -6 10 -8 -10 -16 10 10 -15 -14 A. Melloni, Power Progress in photonics, Firenze 2015 [dBm] Power [dBm] -13 O5 O6 C7 O7 C8 O8 Pilot tone OFF Pilot tone ON 10 KHz BER BER 10 10 C5 MOD 7 KHz Out 6 – Ch. A BER 10 -4 C -4 Out 8 – Ch. A 10 Ch A Ch A + tone -6 10 BER I5 B MOD -8 -10 -22 10 10 -20 -18 Power [dBm] -16 -4 Out 8 – Ch. B Ch B Ch B + tone -6 -8 -10 -16 -15 -14 Power [dBm] -13 Hitless monitoring of 4x10 Gb/s WDM-MDM channels f3 f1 λ1=1544.2 nm l 1,TE l 1,TM l 2,TE l 2,TM 90° Si photonic chip 50% 50% l 1,TE CLIPP Decorrelation fiber coil f4 f2 Ve -5 10 -6 -6 10 10 λ1,TE BER -6 10 -6 10 -7 λ1,TM λ2,TE -7 10 -7 10 λ2,TM -7 10 10 -8 -8 10 -8 10 -20 Channel monitoring OFF -5 10 10 l 2,TM Channel monitoring ON -5 -5 10 l 2,TE BER-T ie CLIPP readout and pilot tones demodulation Pilot tones f1, f2, f3, f4 PBS DEMUX λ2=1558.8 nm 10 Gbit/s OOK l 1,TM -9 -8 -15 10 -10 -20 10 -15 A. Melloni, Progress in photonics, Firenze 2015 10 -25 -10 -9 -20 Receiver power [dBm] 10 -15 -25 -20 -15 36 Conclusions, the keywords PROBE FEEDBACK A. Melloni, Progress in photonics, Firenze 2015 TUNING More than Moore Adaptive Generic Foundry Programming 37 Acknowledgments We acknowledge financial support from: Eu Project – ICT/FET (2013-2016) Breaking the barriers of Optical Integration www.bboi.eu Italian National Research Project SAPPHIRE Shared Access Platform to PHotonic Integrated Resources We are grateful to: Prof. Marc Sorel & Dr. Michael J. Strain James Watt Nanofabrication Center at University of Glasgow for support in the fabrication of the silicon photonic devices A. Melloni, Progress in photonics, Firenze 2015